fsl_qspi.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright 2013-2015 Freescale Semiconductor, Inc.
  4. *
  5. * Freescale Quad Serial Peripheral Interface (QSPI) driver
  6. */
  7. #include <common.h>
  8. #include <malloc.h>
  9. #include <spi.h>
  10. #include <asm/io.h>
  11. #include <linux/sizes.h>
  12. #include <dm.h>
  13. #include <errno.h>
  14. #include <watchdog.h>
  15. #include <wait_bit.h>
  16. #include "fsl_qspi.h"
  17. DECLARE_GLOBAL_DATA_PTR;
  18. #define RX_BUFFER_SIZE 0x80
  19. #if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \
  20. defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D)
  21. #define TX_BUFFER_SIZE 0x200
  22. #else
  23. #define TX_BUFFER_SIZE 0x40
  24. #endif
  25. #define OFFSET_BITS_MASK GENMASK(23, 0)
  26. #define FLASH_STATUS_WEL 0x02
  27. /* SEQID */
  28. #define SEQID_WREN 1
  29. #define SEQID_FAST_READ 2
  30. #define SEQID_RDSR 3
  31. #define SEQID_SE 4
  32. #define SEQID_CHIP_ERASE 5
  33. #define SEQID_PP 6
  34. #define SEQID_RDID 7
  35. #define SEQID_BE_4K 8
  36. #ifdef CONFIG_SPI_FLASH_BAR
  37. #define SEQID_BRRD 9
  38. #define SEQID_BRWR 10
  39. #define SEQID_RDEAR 11
  40. #define SEQID_WREAR 12
  41. #endif
  42. #define SEQID_WRAR 13
  43. #define SEQID_RDAR 14
  44. /* QSPI CMD */
  45. #define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
  46. #define QSPI_CMD_RDSR 0x05 /* Read status register */
  47. #define QSPI_CMD_WREN 0x06 /* Write enable */
  48. #define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
  49. #define QSPI_CMD_BE_4K 0x20 /* 4K erase */
  50. #define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
  51. #define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
  52. #define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */
  53. /* Used for Micron, winbond and Macronix flashes */
  54. #define QSPI_CMD_WREAR 0xc5 /* EAR register write */
  55. #define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
  56. /* Used for Spansion flashes only. */
  57. #define QSPI_CMD_BRRD 0x16 /* Bank register read */
  58. #define QSPI_CMD_BRWR 0x17 /* Bank register write */
  59. /* Used for Spansion S25FS-S family flash only. */
  60. #define QSPI_CMD_RDAR 0x65 /* Read any device register */
  61. #define QSPI_CMD_WRAR 0x71 /* Write any device register */
  62. /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
  63. #define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
  64. #define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
  65. #define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
  66. /* fsl_qspi_platdata flags */
  67. #define QSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0)
  68. /* default SCK frequency, unit: HZ */
  69. #define FSL_QSPI_DEFAULT_SCK_FREQ 50000000
  70. /* QSPI max chipselect signals number */
  71. #define FSL_QSPI_MAX_CHIPSELECT_NUM 4
  72. /**
  73. * struct fsl_qspi_platdata - platform data for Freescale QSPI
  74. *
  75. * @flags: Flags for QSPI QSPI_FLAG_...
  76. * @speed_hz: Default SCK frequency
  77. * @reg_base: Base address of QSPI registers
  78. * @amba_base: Base address of QSPI memory mapping
  79. * @amba_total_size: size of QSPI memory mapping
  80. * @flash_num: Number of active slave devices
  81. * @num_chipselect: Number of QSPI chipselect signals
  82. */
  83. struct fsl_qspi_platdata {
  84. u32 flags;
  85. u32 speed_hz;
  86. fdt_addr_t reg_base;
  87. fdt_addr_t amba_base;
  88. fdt_size_t amba_total_size;
  89. u32 flash_num;
  90. u32 num_chipselect;
  91. };
  92. /**
  93. * struct fsl_qspi_priv - private data for Freescale QSPI
  94. *
  95. * @flags: Flags for QSPI QSPI_FLAG_...
  96. * @bus_clk: QSPI input clk frequency
  97. * @speed_hz: Default SCK frequency
  98. * @cur_seqid: current LUT table sequence id
  99. * @sf_addr: flash access offset
  100. * @amba_base: Base address of QSPI memory mapping of every CS
  101. * @amba_total_size: size of QSPI memory mapping
  102. * @cur_amba_base: Base address of QSPI memory mapping of current CS
  103. * @flash_num: Number of active slave devices
  104. * @num_chipselect: Number of QSPI chipselect signals
  105. * @regs: Point to QSPI register structure for I/O access
  106. */
  107. struct fsl_qspi_priv {
  108. u32 flags;
  109. u32 bus_clk;
  110. u32 speed_hz;
  111. u32 cur_seqid;
  112. u32 sf_addr;
  113. u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
  114. u32 amba_total_size;
  115. u32 cur_amba_base;
  116. u32 flash_num;
  117. u32 num_chipselect;
  118. struct fsl_qspi_regs *regs;
  119. };
  120. static u32 qspi_read32(u32 flags, u32 *addr)
  121. {
  122. return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
  123. in_be32(addr) : in_le32(addr);
  124. }
  125. static void qspi_write32(u32 flags, u32 *addr, u32 val)
  126. {
  127. flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
  128. out_be32(addr, val) : out_le32(addr, val);
  129. }
  130. static inline int is_controller_busy(const struct fsl_qspi_priv *priv)
  131. {
  132. u32 val;
  133. const u32 mask = QSPI_SR_BUSY_MASK | QSPI_SR_AHB_ACC_MASK |
  134. QSPI_SR_IP_ACC_MASK;
  135. unsigned int retry = 5;
  136. do {
  137. val = qspi_read32(priv->flags, &priv->regs->sr);
  138. if ((~val & mask) == mask)
  139. return 0;
  140. udelay(1);
  141. } while (--retry);
  142. return -ETIMEDOUT;
  143. }
  144. /* QSPI support swapping the flash read/write data
  145. * in hardware for LS102xA, but not for VF610 */
  146. static inline u32 qspi_endian_xchg(u32 data)
  147. {
  148. #ifdef CONFIG_VF610
  149. return swab32(data);
  150. #else
  151. return data;
  152. #endif
  153. }
  154. static void qspi_set_lut(struct fsl_qspi_priv *priv)
  155. {
  156. struct fsl_qspi_regs *regs = priv->regs;
  157. u32 lut_base;
  158. /* Unlock the LUT */
  159. qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
  160. qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
  161. /* Write Enable */
  162. lut_base = SEQID_WREN * 4;
  163. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
  164. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  165. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  166. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  167. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  168. /* Fast Read */
  169. lut_base = SEQID_FAST_READ * 4;
  170. #ifdef CONFIG_SPI_FLASH_BAR
  171. qspi_write32(priv->flags, &regs->lut[lut_base],
  172. OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
  173. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  174. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  175. #else
  176. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  177. qspi_write32(priv->flags, &regs->lut[lut_base],
  178. OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
  179. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  180. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  181. else
  182. qspi_write32(priv->flags, &regs->lut[lut_base],
  183. OPRND0(QSPI_CMD_FAST_READ_4B) |
  184. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
  185. OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
  186. INSTR1(LUT_ADDR));
  187. #endif
  188. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  189. OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
  190. OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
  191. INSTR1(LUT_READ));
  192. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  193. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  194. /* Read Status */
  195. lut_base = SEQID_RDSR * 4;
  196. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
  197. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  198. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  199. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  200. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  201. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  202. /* Erase a sector */
  203. lut_base = SEQID_SE * 4;
  204. #ifdef CONFIG_SPI_FLASH_BAR
  205. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
  206. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  207. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  208. #else
  209. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  210. qspi_write32(priv->flags, &regs->lut[lut_base],
  211. OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
  212. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  213. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  214. else
  215. qspi_write32(priv->flags, &regs->lut[lut_base],
  216. OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
  217. INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  218. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  219. #endif
  220. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  221. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  222. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  223. /* Erase the whole chip */
  224. lut_base = SEQID_CHIP_ERASE * 4;
  225. qspi_write32(priv->flags, &regs->lut[lut_base],
  226. OPRND0(QSPI_CMD_CHIP_ERASE) |
  227. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  228. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  229. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  230. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  231. /* Page Program */
  232. lut_base = SEQID_PP * 4;
  233. #ifdef CONFIG_SPI_FLASH_BAR
  234. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
  235. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  236. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  237. #else
  238. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  239. qspi_write32(priv->flags, &regs->lut[lut_base],
  240. OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
  241. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  242. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  243. else
  244. qspi_write32(priv->flags, &regs->lut[lut_base],
  245. OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
  246. INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  247. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  248. #endif
  249. #if defined(CONFIG_MX6SX) || defined(CONFIG_MX6UL) || \
  250. defined(CONFIG_MX6ULL) || defined(CONFIG_MX7D)
  251. /*
  252. * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
  253. * So, Use IDATSZ in IPCR to determine the size and here set 0.
  254. */
  255. qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
  256. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  257. #else
  258. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  259. OPRND0(TX_BUFFER_SIZE) |
  260. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  261. #endif
  262. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  263. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  264. /* READ ID */
  265. lut_base = SEQID_RDID * 4;
  266. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
  267. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
  268. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  269. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  270. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  271. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  272. /* SUB SECTOR 4K ERASE */
  273. lut_base = SEQID_BE_4K * 4;
  274. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
  275. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  276. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  277. #ifdef CONFIG_SPI_FLASH_BAR
  278. /*
  279. * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
  280. * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
  281. * initialization.
  282. */
  283. lut_base = SEQID_BRRD * 4;
  284. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
  285. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  286. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  287. lut_base = SEQID_BRWR * 4;
  288. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
  289. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  290. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  291. lut_base = SEQID_RDEAR * 4;
  292. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
  293. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  294. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  295. lut_base = SEQID_WREAR * 4;
  296. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
  297. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  298. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  299. #endif
  300. /*
  301. * Read any device register.
  302. * Used for Spansion S25FS-S family flash only.
  303. */
  304. lut_base = SEQID_RDAR * 4;
  305. qspi_write32(priv->flags, &regs->lut[lut_base],
  306. OPRND0(QSPI_CMD_RDAR) | PAD0(LUT_PAD1) |
  307. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  308. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  309. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  310. OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
  311. OPRND1(1) | PAD1(LUT_PAD1) |
  312. INSTR1(LUT_READ));
  313. /*
  314. * Write any device register.
  315. * Used for Spansion S25FS-S family flash only.
  316. */
  317. lut_base = SEQID_WRAR * 4;
  318. qspi_write32(priv->flags, &regs->lut[lut_base],
  319. OPRND0(QSPI_CMD_WRAR) | PAD0(LUT_PAD1) |
  320. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  321. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  322. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  323. OPRND0(1) | PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  324. /* Lock the LUT */
  325. qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
  326. qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
  327. }
  328. #if defined(CONFIG_SYS_FSL_QSPI_AHB)
  329. /*
  330. * If we have changed the content of the flash by writing or erasing,
  331. * we need to invalidate the AHB buffer. If we do not do so, we may read out
  332. * the wrong data. The spec tells us reset the AHB domain and Serial Flash
  333. * domain at the same time.
  334. */
  335. static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
  336. {
  337. struct fsl_qspi_regs *regs = priv->regs;
  338. u32 reg;
  339. reg = qspi_read32(priv->flags, &regs->mcr);
  340. reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
  341. qspi_write32(priv->flags, &regs->mcr, reg);
  342. /*
  343. * The minimum delay : 1 AHB + 2 SFCK clocks.
  344. * Delay 1 us is enough.
  345. */
  346. udelay(1);
  347. reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
  348. qspi_write32(priv->flags, &regs->mcr, reg);
  349. }
  350. /* Read out the data from the AHB buffer. */
  351. static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
  352. {
  353. struct fsl_qspi_regs *regs = priv->regs;
  354. u32 mcr_reg;
  355. void *rx_addr;
  356. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  357. qspi_write32(priv->flags, &regs->mcr,
  358. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  359. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  360. rx_addr = (void *)(uintptr_t)(priv->cur_amba_base + priv->sf_addr);
  361. /* Read out the data directly from the AHB buffer. */
  362. memcpy(rxbuf, rx_addr, len);
  363. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  364. }
  365. static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
  366. {
  367. u32 reg, reg2;
  368. struct fsl_qspi_regs *regs = priv->regs;
  369. reg = qspi_read32(priv->flags, &regs->mcr);
  370. /* Disable the module */
  371. qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
  372. /* Set the Sampling Register for DDR */
  373. reg2 = qspi_read32(priv->flags, &regs->smpr);
  374. reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
  375. reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
  376. qspi_write32(priv->flags, &regs->smpr, reg2);
  377. /* Enable the module again (enable the DDR too) */
  378. reg |= QSPI_MCR_DDR_EN_MASK;
  379. /* Enable bit 29 for imx6sx */
  380. reg |= BIT(29);
  381. qspi_write32(priv->flags, &regs->mcr, reg);
  382. }
  383. /*
  384. * There are two different ways to read out the data from the flash:
  385. * the "IP Command Read" and the "AHB Command Read".
  386. *
  387. * The IC guy suggests we use the "AHB Command Read" which is faster
  388. * then the "IP Command Read". (What's more is that there is a bug in
  389. * the "IP Command Read" in the Vybrid.)
  390. *
  391. * After we set up the registers for the "AHB Command Read", we can use
  392. * the memcpy to read the data directly. A "missed" access to the buffer
  393. * causes the controller to clear the buffer, and use the sequence pointed
  394. * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
  395. */
  396. static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
  397. {
  398. struct fsl_qspi_regs *regs = priv->regs;
  399. /* AHB configuration for access buffer 0/1/2 .*/
  400. qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
  401. qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
  402. qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
  403. qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
  404. (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
  405. /* We only use the buffer3 */
  406. qspi_write32(priv->flags, &regs->buf0ind, 0);
  407. qspi_write32(priv->flags, &regs->buf1ind, 0);
  408. qspi_write32(priv->flags, &regs->buf2ind, 0);
  409. /*
  410. * Set the default lut sequence for AHB Read.
  411. * Parallel mode is disabled.
  412. */
  413. qspi_write32(priv->flags, &regs->bfgencr,
  414. SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
  415. /*Enable DDR Mode*/
  416. qspi_enable_ddr_mode(priv);
  417. }
  418. #endif
  419. #ifdef CONFIG_SPI_FLASH_BAR
  420. /* Bank register read/write, EAR register read/write */
  421. static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
  422. {
  423. struct fsl_qspi_regs *regs = priv->regs;
  424. u32 reg, mcr_reg, data, seqid;
  425. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  426. qspi_write32(priv->flags, &regs->mcr,
  427. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  428. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  429. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  430. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  431. if (priv->cur_seqid == QSPI_CMD_BRRD)
  432. seqid = SEQID_BRRD;
  433. else
  434. seqid = SEQID_RDEAR;
  435. qspi_write32(priv->flags, &regs->ipcr,
  436. (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
  437. /* Wait previous command complete */
  438. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  439. ;
  440. while (1) {
  441. WATCHDOG_RESET();
  442. reg = qspi_read32(priv->flags, &regs->rbsr);
  443. if (reg & QSPI_RBSR_RDBFL_MASK) {
  444. data = qspi_read32(priv->flags, &regs->rbdr[0]);
  445. data = qspi_endian_xchg(data);
  446. memcpy(rxbuf, &data, len);
  447. qspi_write32(priv->flags, &regs->mcr,
  448. qspi_read32(priv->flags, &regs->mcr) |
  449. QSPI_MCR_CLR_RXF_MASK);
  450. break;
  451. }
  452. }
  453. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  454. }
  455. #endif
  456. static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
  457. {
  458. struct fsl_qspi_regs *regs = priv->regs;
  459. u32 mcr_reg, rbsr_reg, data, size;
  460. int i;
  461. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  462. qspi_write32(priv->flags, &regs->mcr,
  463. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  464. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  465. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  466. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  467. qspi_write32(priv->flags, &regs->ipcr,
  468. (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
  469. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  470. ;
  471. i = 0;
  472. while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
  473. WATCHDOG_RESET();
  474. rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
  475. if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
  476. data = qspi_read32(priv->flags, &regs->rbdr[i]);
  477. data = qspi_endian_xchg(data);
  478. size = (len < 4) ? len : 4;
  479. memcpy(rxbuf, &data, size);
  480. len -= size;
  481. rxbuf++;
  482. i++;
  483. }
  484. }
  485. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  486. }
  487. /* If not use AHB read, read data from ip interface */
  488. static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
  489. {
  490. struct fsl_qspi_regs *regs = priv->regs;
  491. u32 mcr_reg, data;
  492. int i, size;
  493. u32 to_or_from;
  494. u32 seqid;
  495. if (priv->cur_seqid == QSPI_CMD_RDAR)
  496. seqid = SEQID_RDAR;
  497. else
  498. seqid = SEQID_FAST_READ;
  499. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  500. qspi_write32(priv->flags, &regs->mcr,
  501. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  502. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  503. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  504. to_or_from = priv->sf_addr + priv->cur_amba_base;
  505. while (len > 0) {
  506. WATCHDOG_RESET();
  507. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  508. size = (len > RX_BUFFER_SIZE) ?
  509. RX_BUFFER_SIZE : len;
  510. qspi_write32(priv->flags, &regs->ipcr,
  511. (seqid << QSPI_IPCR_SEQID_SHIFT) |
  512. size);
  513. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  514. ;
  515. to_or_from += size;
  516. len -= size;
  517. i = 0;
  518. while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
  519. data = qspi_read32(priv->flags, &regs->rbdr[i]);
  520. data = qspi_endian_xchg(data);
  521. if (size < 4)
  522. memcpy(rxbuf, &data, size);
  523. else
  524. memcpy(rxbuf, &data, 4);
  525. rxbuf++;
  526. size -= 4;
  527. i++;
  528. }
  529. qspi_write32(priv->flags, &regs->mcr,
  530. qspi_read32(priv->flags, &regs->mcr) |
  531. QSPI_MCR_CLR_RXF_MASK);
  532. }
  533. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  534. }
  535. static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
  536. {
  537. struct fsl_qspi_regs *regs = priv->regs;
  538. u32 mcr_reg, data, reg, status_reg, seqid;
  539. int i, size, tx_size;
  540. u32 to_or_from = 0;
  541. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  542. qspi_write32(priv->flags, &regs->mcr,
  543. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  544. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  545. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  546. status_reg = 0;
  547. while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
  548. WATCHDOG_RESET();
  549. qspi_write32(priv->flags, &regs->ipcr,
  550. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  551. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  552. ;
  553. qspi_write32(priv->flags, &regs->ipcr,
  554. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
  555. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  556. ;
  557. reg = qspi_read32(priv->flags, &regs->rbsr);
  558. if (reg & QSPI_RBSR_RDBFL_MASK) {
  559. status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
  560. status_reg = qspi_endian_xchg(status_reg);
  561. }
  562. qspi_write32(priv->flags, &regs->mcr,
  563. qspi_read32(priv->flags, &regs->mcr) |
  564. QSPI_MCR_CLR_RXF_MASK);
  565. }
  566. /* Default is page programming */
  567. seqid = SEQID_PP;
  568. if (priv->cur_seqid == QSPI_CMD_WRAR)
  569. seqid = SEQID_WRAR;
  570. #ifdef CONFIG_SPI_FLASH_BAR
  571. if (priv->cur_seqid == QSPI_CMD_BRWR)
  572. seqid = SEQID_BRWR;
  573. else if (priv->cur_seqid == QSPI_CMD_WREAR)
  574. seqid = SEQID_WREAR;
  575. #endif
  576. to_or_from = priv->sf_addr + priv->cur_amba_base;
  577. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  578. tx_size = (len > TX_BUFFER_SIZE) ?
  579. TX_BUFFER_SIZE : len;
  580. size = tx_size / 16;
  581. /*
  582. * There must be atleast 128bit data
  583. * available in TX FIFO for any pop operation
  584. */
  585. if (tx_size % 16)
  586. size++;
  587. for (i = 0; i < size * 4; i++) {
  588. memcpy(&data, txbuf, 4);
  589. data = qspi_endian_xchg(data);
  590. qspi_write32(priv->flags, &regs->tbdr, data);
  591. txbuf += 4;
  592. }
  593. qspi_write32(priv->flags, &regs->ipcr,
  594. (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
  595. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  596. ;
  597. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  598. }
  599. static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
  600. {
  601. struct fsl_qspi_regs *regs = priv->regs;
  602. u32 mcr_reg, reg, data;
  603. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  604. qspi_write32(priv->flags, &regs->mcr,
  605. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  606. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  607. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  608. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  609. qspi_write32(priv->flags, &regs->ipcr,
  610. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
  611. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  612. ;
  613. while (1) {
  614. WATCHDOG_RESET();
  615. reg = qspi_read32(priv->flags, &regs->rbsr);
  616. if (reg & QSPI_RBSR_RDBFL_MASK) {
  617. data = qspi_read32(priv->flags, &regs->rbdr[0]);
  618. data = qspi_endian_xchg(data);
  619. memcpy(rxbuf, &data, len);
  620. qspi_write32(priv->flags, &regs->mcr,
  621. qspi_read32(priv->flags, &regs->mcr) |
  622. QSPI_MCR_CLR_RXF_MASK);
  623. break;
  624. }
  625. }
  626. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  627. }
  628. static void qspi_op_erase(struct fsl_qspi_priv *priv)
  629. {
  630. struct fsl_qspi_regs *regs = priv->regs;
  631. u32 mcr_reg;
  632. u32 to_or_from = 0;
  633. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  634. qspi_write32(priv->flags, &regs->mcr,
  635. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  636. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  637. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  638. to_or_from = priv->sf_addr + priv->cur_amba_base;
  639. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  640. qspi_write32(priv->flags, &regs->ipcr,
  641. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  642. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  643. ;
  644. if (priv->cur_seqid == QSPI_CMD_SE) {
  645. qspi_write32(priv->flags, &regs->ipcr,
  646. (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
  647. } else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
  648. qspi_write32(priv->flags, &regs->ipcr,
  649. (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
  650. }
  651. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  652. ;
  653. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  654. }
  655. int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
  656. const void *dout, void *din, unsigned long flags)
  657. {
  658. u32 bytes = DIV_ROUND_UP(bitlen, 8);
  659. static u32 wr_sfaddr;
  660. u32 txbuf;
  661. WATCHDOG_RESET();
  662. if (dout) {
  663. if (flags & SPI_XFER_BEGIN) {
  664. priv->cur_seqid = *(u8 *)dout;
  665. memcpy(&txbuf, dout, 4);
  666. }
  667. if (flags == SPI_XFER_END) {
  668. priv->sf_addr = wr_sfaddr;
  669. qspi_op_write(priv, (u8 *)dout, bytes);
  670. return 0;
  671. }
  672. if (priv->cur_seqid == QSPI_CMD_FAST_READ ||
  673. priv->cur_seqid == QSPI_CMD_RDAR) {
  674. priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  675. } else if ((priv->cur_seqid == QSPI_CMD_SE) ||
  676. (priv->cur_seqid == QSPI_CMD_BE_4K)) {
  677. priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  678. qspi_op_erase(priv);
  679. } else if (priv->cur_seqid == QSPI_CMD_PP ||
  680. priv->cur_seqid == QSPI_CMD_WRAR) {
  681. wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
  682. } else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
  683. (priv->cur_seqid == QSPI_CMD_WREAR)) {
  684. #ifdef CONFIG_SPI_FLASH_BAR
  685. wr_sfaddr = 0;
  686. #endif
  687. }
  688. }
  689. if (din) {
  690. if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
  691. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  692. qspi_ahb_read(priv, din, bytes);
  693. #else
  694. qspi_op_read(priv, din, bytes);
  695. #endif
  696. } else if (priv->cur_seqid == QSPI_CMD_RDAR) {
  697. qspi_op_read(priv, din, bytes);
  698. } else if (priv->cur_seqid == QSPI_CMD_RDID)
  699. qspi_op_rdid(priv, din, bytes);
  700. else if (priv->cur_seqid == QSPI_CMD_RDSR)
  701. qspi_op_rdsr(priv, din, bytes);
  702. #ifdef CONFIG_SPI_FLASH_BAR
  703. else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
  704. (priv->cur_seqid == QSPI_CMD_RDEAR)) {
  705. priv->sf_addr = 0;
  706. qspi_op_rdbank(priv, din, bytes);
  707. }
  708. #endif
  709. }
  710. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  711. if ((priv->cur_seqid == QSPI_CMD_SE) ||
  712. (priv->cur_seqid == QSPI_CMD_PP) ||
  713. (priv->cur_seqid == QSPI_CMD_BE_4K) ||
  714. (priv->cur_seqid == QSPI_CMD_WREAR) ||
  715. (priv->cur_seqid == QSPI_CMD_BRWR))
  716. qspi_ahb_invalid(priv);
  717. #endif
  718. return 0;
  719. }
  720. void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
  721. {
  722. u32 mcr_val;
  723. mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
  724. if (disable)
  725. mcr_val |= QSPI_MCR_MDIS_MASK;
  726. else
  727. mcr_val &= ~QSPI_MCR_MDIS_MASK;
  728. qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
  729. }
  730. void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
  731. {
  732. u32 smpr_val;
  733. smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
  734. smpr_val &= ~clear_bits;
  735. smpr_val |= set_bits;
  736. qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
  737. }
  738. static int fsl_qspi_child_pre_probe(struct udevice *dev)
  739. {
  740. struct spi_slave *slave = dev_get_parent_priv(dev);
  741. slave->max_write_size = TX_BUFFER_SIZE;
  742. return 0;
  743. }
  744. static int fsl_qspi_probe(struct udevice *bus)
  745. {
  746. u32 mcr_val;
  747. u32 amba_size_per_chip;
  748. struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
  749. struct fsl_qspi_priv *priv = dev_get_priv(bus);
  750. struct dm_spi_bus *dm_spi_bus;
  751. int i, ret;
  752. dm_spi_bus = bus->uclass_priv;
  753. dm_spi_bus->max_hz = plat->speed_hz;
  754. priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
  755. priv->flags = plat->flags;
  756. priv->speed_hz = plat->speed_hz;
  757. /*
  758. * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
  759. * AMBA memory zone should be located on the 0~4GB space
  760. * even on a 64bits cpu.
  761. */
  762. priv->amba_base[0] = (u32)plat->amba_base;
  763. priv->amba_total_size = (u32)plat->amba_total_size;
  764. priv->flash_num = plat->flash_num;
  765. priv->num_chipselect = plat->num_chipselect;
  766. /* make sure controller is not busy anywhere */
  767. ret = is_controller_busy(priv);
  768. if (ret) {
  769. debug("ERROR : The controller is busy\n");
  770. return ret;
  771. }
  772. mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
  773. /* Set endianness to LE for i.mx */
  774. if (IS_ENABLED(CONFIG_MX6) || IS_ENABLED(CONFIG_MX7))
  775. mcr_val = QSPI_MCR_END_CFD_LE;
  776. qspi_write32(priv->flags, &priv->regs->mcr,
  777. QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK |
  778. (mcr_val & QSPI_MCR_END_CFD_MASK));
  779. qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
  780. QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
  781. /*
  782. * Assign AMBA memory zone for every chipselect
  783. * QuadSPI has two channels, every channel has two chipselects.
  784. * If the property 'num-cs' in dts is 2, the AMBA memory will be divided
  785. * into two parts and assign to every channel. This indicate that every
  786. * channel only has one valid chipselect.
  787. * If the property 'num-cs' in dts is 4, the AMBA memory will be divided
  788. * into four parts and assign to every chipselect.
  789. * Every channel will has two valid chipselects.
  790. */
  791. amba_size_per_chip = priv->amba_total_size >>
  792. (priv->num_chipselect >> 1);
  793. for (i = 1 ; i < priv->num_chipselect ; i++)
  794. priv->amba_base[i] =
  795. amba_size_per_chip + priv->amba_base[i - 1];
  796. /*
  797. * Any read access to non-implemented addresses will provide
  798. * undefined results.
  799. *
  800. * In case single die flash devices, TOP_ADDR_MEMA2 and
  801. * TOP_ADDR_MEMB2 should be initialized/programmed to
  802. * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
  803. * setting the size of these devices to 0. This would ensure
  804. * that the complete memory map is assigned to only one flash device.
  805. */
  806. qspi_write32(priv->flags, &priv->regs->sfa1ad,
  807. priv->amba_base[0] + amba_size_per_chip);
  808. switch (priv->num_chipselect) {
  809. case 1:
  810. break;
  811. case 2:
  812. qspi_write32(priv->flags, &priv->regs->sfa2ad,
  813. priv->amba_base[1]);
  814. qspi_write32(priv->flags, &priv->regs->sfb1ad,
  815. priv->amba_base[1] + amba_size_per_chip);
  816. qspi_write32(priv->flags, &priv->regs->sfb2ad,
  817. priv->amba_base[1] + amba_size_per_chip);
  818. break;
  819. case 4:
  820. qspi_write32(priv->flags, &priv->regs->sfa2ad,
  821. priv->amba_base[2]);
  822. qspi_write32(priv->flags, &priv->regs->sfb1ad,
  823. priv->amba_base[3]);
  824. qspi_write32(priv->flags, &priv->regs->sfb2ad,
  825. priv->amba_base[3] + amba_size_per_chip);
  826. break;
  827. default:
  828. debug("Error: Unsupported chipselect number %u!\n",
  829. priv->num_chipselect);
  830. qspi_module_disable(priv, 1);
  831. return -EINVAL;
  832. }
  833. qspi_set_lut(priv);
  834. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  835. qspi_init_ahb_read(priv);
  836. #endif
  837. qspi_module_disable(priv, 0);
  838. return 0;
  839. }
  840. static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
  841. {
  842. struct fdt_resource res_regs, res_mem;
  843. struct fsl_qspi_platdata *plat = bus->platdata;
  844. const void *blob = gd->fdt_blob;
  845. int node = dev_of_offset(bus);
  846. int ret, flash_num = 0, subnode;
  847. if (fdtdec_get_bool(blob, node, "big-endian"))
  848. plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
  849. ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
  850. "QuadSPI", &res_regs);
  851. if (ret) {
  852. debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
  853. return -ENOMEM;
  854. }
  855. ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
  856. "QuadSPI-memory", &res_mem);
  857. if (ret) {
  858. debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
  859. return -ENOMEM;
  860. }
  861. /* Count flash numbers */
  862. fdt_for_each_subnode(subnode, blob, node)
  863. ++flash_num;
  864. if (flash_num == 0) {
  865. debug("Error: Missing flashes!\n");
  866. return -ENODEV;
  867. }
  868. plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
  869. FSL_QSPI_DEFAULT_SCK_FREQ);
  870. plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
  871. FSL_QSPI_MAX_CHIPSELECT_NUM);
  872. plat->reg_base = res_regs.start;
  873. plat->amba_base = res_mem.start;
  874. plat->amba_total_size = res_mem.end - res_mem.start + 1;
  875. plat->flash_num = flash_num;
  876. debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
  877. __func__,
  878. (u64)plat->reg_base,
  879. (u64)plat->amba_base,
  880. (u64)plat->amba_total_size,
  881. plat->speed_hz,
  882. plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
  883. );
  884. return 0;
  885. }
  886. static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
  887. const void *dout, void *din, unsigned long flags)
  888. {
  889. struct fsl_qspi_priv *priv;
  890. struct udevice *bus;
  891. bus = dev->parent;
  892. priv = dev_get_priv(bus);
  893. return qspi_xfer(priv, bitlen, dout, din, flags);
  894. }
  895. static int fsl_qspi_claim_bus(struct udevice *dev)
  896. {
  897. struct fsl_qspi_priv *priv;
  898. struct udevice *bus;
  899. struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
  900. int ret;
  901. bus = dev->parent;
  902. priv = dev_get_priv(bus);
  903. /* make sure controller is not busy anywhere */
  904. ret = is_controller_busy(priv);
  905. if (ret) {
  906. debug("ERROR : The controller is busy\n");
  907. return ret;
  908. }
  909. priv->cur_amba_base = priv->amba_base[slave_plat->cs];
  910. qspi_module_disable(priv, 0);
  911. return 0;
  912. }
  913. static int fsl_qspi_release_bus(struct udevice *dev)
  914. {
  915. struct fsl_qspi_priv *priv;
  916. struct udevice *bus;
  917. bus = dev->parent;
  918. priv = dev_get_priv(bus);
  919. qspi_module_disable(priv, 1);
  920. return 0;
  921. }
  922. static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
  923. {
  924. /* Nothing to do */
  925. return 0;
  926. }
  927. static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
  928. {
  929. /* Nothing to do */
  930. return 0;
  931. }
  932. static const struct dm_spi_ops fsl_qspi_ops = {
  933. .claim_bus = fsl_qspi_claim_bus,
  934. .release_bus = fsl_qspi_release_bus,
  935. .xfer = fsl_qspi_xfer,
  936. .set_speed = fsl_qspi_set_speed,
  937. .set_mode = fsl_qspi_set_mode,
  938. };
  939. static const struct udevice_id fsl_qspi_ids[] = {
  940. { .compatible = "fsl,vf610-qspi" },
  941. { .compatible = "fsl,imx6sx-qspi" },
  942. { .compatible = "fsl,imx6ul-qspi" },
  943. { .compatible = "fsl,imx7d-qspi" },
  944. { }
  945. };
  946. U_BOOT_DRIVER(fsl_qspi) = {
  947. .name = "fsl_qspi",
  948. .id = UCLASS_SPI,
  949. .of_match = fsl_qspi_ids,
  950. .ops = &fsl_qspi_ops,
  951. .ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
  952. .platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
  953. .priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
  954. .probe = fsl_qspi_probe,
  955. .child_pre_probe = fsl_qspi_child_pre_probe,
  956. };