serial_stm32.c 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
  4. * Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
  5. */
  6. #include <common.h>
  7. #include <clk.h>
  8. #include <dm.h>
  9. #include <serial.h>
  10. #include <watchdog.h>
  11. #include <asm/io.h>
  12. #include <asm/arch/stm32.h>
  13. #include "serial_stm32.h"
  14. static void _stm32_serial_setbrg(fdt_addr_t base,
  15. struct stm32_uart_info *uart_info,
  16. u32 clock_rate,
  17. int baudrate)
  18. {
  19. bool stm32f4 = uart_info->stm32f4;
  20. u32 int_div, mantissa, fraction, oversampling;
  21. int_div = DIV_ROUND_CLOSEST(clock_rate, baudrate);
  22. if (int_div < 16) {
  23. oversampling = 8;
  24. setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_OVER8);
  25. } else {
  26. oversampling = 16;
  27. clrbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_OVER8);
  28. }
  29. mantissa = (int_div / oversampling) << USART_BRR_M_SHIFT;
  30. fraction = int_div % oversampling;
  31. writel(mantissa | fraction, base + BRR_OFFSET(stm32f4));
  32. }
  33. static int stm32_serial_setbrg(struct udevice *dev, int baudrate)
  34. {
  35. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  36. _stm32_serial_setbrg(plat->base, plat->uart_info,
  37. plat->clock_rate, baudrate);
  38. return 0;
  39. }
  40. static int stm32_serial_setconfig(struct udevice *dev, uint serial_config)
  41. {
  42. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  43. bool stm32f4 = plat->uart_info->stm32f4;
  44. u8 uart_enable_bit = plat->uart_info->uart_enable_bit;
  45. u32 cr1 = plat->base + CR1_OFFSET(stm32f4);
  46. u32 config = 0;
  47. uint parity = SERIAL_GET_PARITY(serial_config);
  48. uint bits = SERIAL_GET_BITS(serial_config);
  49. uint stop = SERIAL_GET_STOP(serial_config);
  50. /*
  51. * only parity config is implemented, check if other serial settings
  52. * are the default one.
  53. * (STM32F4 serial IP didn't support parity setting)
  54. */
  55. if (bits != SERIAL_8_BITS || stop != SERIAL_ONE_STOP || stm32f4)
  56. return -ENOTSUPP; /* not supported in driver*/
  57. clrbits_le32(cr1, USART_CR1_RE | USART_CR1_TE | BIT(uart_enable_bit));
  58. /* update usart configuration (uart need to be disable)
  59. * PCE: parity check enable
  60. * PS : '0' : Even / '1' : Odd
  61. * M[1:0] = '00' : 8 Data bits
  62. * M[1:0] = '01' : 9 Data bits with parity
  63. */
  64. switch (parity) {
  65. default:
  66. case SERIAL_PAR_NONE:
  67. config = 0;
  68. break;
  69. case SERIAL_PAR_ODD:
  70. config = USART_CR1_PCE | USART_CR1_PS | USART_CR1_M0;
  71. break;
  72. case SERIAL_PAR_EVEN:
  73. config = USART_CR1_PCE | USART_CR1_M0;
  74. break;
  75. }
  76. clrsetbits_le32(cr1,
  77. USART_CR1_PCE | USART_CR1_PS | USART_CR1_M1 |
  78. USART_CR1_M0,
  79. config);
  80. setbits_le32(cr1, USART_CR1_RE | USART_CR1_TE | BIT(uart_enable_bit));
  81. return 0;
  82. }
  83. static int stm32_serial_getc(struct udevice *dev)
  84. {
  85. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  86. bool stm32f4 = plat->uart_info->stm32f4;
  87. fdt_addr_t base = plat->base;
  88. u32 isr = readl(base + ISR_OFFSET(stm32f4));
  89. if ((isr & USART_ISR_RXNE) == 0)
  90. return -EAGAIN;
  91. if (isr & (USART_ISR_PE | USART_ISR_ORE)) {
  92. if (!stm32f4)
  93. setbits_le32(base + ICR_OFFSET,
  94. USART_ICR_PCECF | USART_ICR_ORECF);
  95. else
  96. readl(base + RDR_OFFSET(stm32f4));
  97. return -EIO;
  98. }
  99. return readl(base + RDR_OFFSET(stm32f4));
  100. }
  101. static int _stm32_serial_putc(fdt_addr_t base,
  102. struct stm32_uart_info *uart_info,
  103. const char c)
  104. {
  105. bool stm32f4 = uart_info->stm32f4;
  106. if ((readl(base + ISR_OFFSET(stm32f4)) & USART_ISR_TXE) == 0)
  107. return -EAGAIN;
  108. writel(c, base + TDR_OFFSET(stm32f4));
  109. return 0;
  110. }
  111. static int stm32_serial_putc(struct udevice *dev, const char c)
  112. {
  113. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  114. return _stm32_serial_putc(plat->base, plat->uart_info, c);
  115. }
  116. static int stm32_serial_pending(struct udevice *dev, bool input)
  117. {
  118. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  119. bool stm32f4 = plat->uart_info->stm32f4;
  120. fdt_addr_t base = plat->base;
  121. if (input)
  122. return readl(base + ISR_OFFSET(stm32f4)) &
  123. USART_ISR_RXNE ? 1 : 0;
  124. else
  125. return readl(base + ISR_OFFSET(stm32f4)) &
  126. USART_ISR_TXE ? 0 : 1;
  127. }
  128. static void _stm32_serial_init(fdt_addr_t base,
  129. struct stm32_uart_info *uart_info)
  130. {
  131. bool stm32f4 = uart_info->stm32f4;
  132. u8 uart_enable_bit = uart_info->uart_enable_bit;
  133. /* Disable uart-> enable fifo -> enable uart */
  134. clrbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_RE | USART_CR1_TE |
  135. BIT(uart_enable_bit));
  136. if (uart_info->has_fifo)
  137. setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_FIFOEN);
  138. setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_RE | USART_CR1_TE |
  139. BIT(uart_enable_bit));
  140. }
  141. static int stm32_serial_probe(struct udevice *dev)
  142. {
  143. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  144. struct clk clk;
  145. int ret;
  146. plat->uart_info = (struct stm32_uart_info *)dev_get_driver_data(dev);
  147. ret = clk_get_by_index(dev, 0, &clk);
  148. if (ret < 0)
  149. return ret;
  150. ret = clk_enable(&clk);
  151. if (ret) {
  152. dev_err(dev, "failed to enable clock\n");
  153. return ret;
  154. }
  155. plat->clock_rate = clk_get_rate(&clk);
  156. if (plat->clock_rate < 0) {
  157. clk_disable(&clk);
  158. return plat->clock_rate;
  159. };
  160. _stm32_serial_init(plat->base, plat->uart_info);
  161. return 0;
  162. }
  163. static const struct udevice_id stm32_serial_id[] = {
  164. { .compatible = "st,stm32-uart", .data = (ulong)&stm32f4_info},
  165. { .compatible = "st,stm32f7-uart", .data = (ulong)&stm32f7_info},
  166. { .compatible = "st,stm32h7-uart", .data = (ulong)&stm32h7_info},
  167. {}
  168. };
  169. static int stm32_serial_ofdata_to_platdata(struct udevice *dev)
  170. {
  171. struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
  172. plat->base = devfdt_get_addr(dev);
  173. if (plat->base == FDT_ADDR_T_NONE)
  174. return -EINVAL;
  175. return 0;
  176. }
  177. static const struct dm_serial_ops stm32_serial_ops = {
  178. .putc = stm32_serial_putc,
  179. .pending = stm32_serial_pending,
  180. .getc = stm32_serial_getc,
  181. .setbrg = stm32_serial_setbrg,
  182. .setconfig = stm32_serial_setconfig
  183. };
  184. U_BOOT_DRIVER(serial_stm32) = {
  185. .name = "serial_stm32",
  186. .id = UCLASS_SERIAL,
  187. .of_match = of_match_ptr(stm32_serial_id),
  188. .ofdata_to_platdata = of_match_ptr(stm32_serial_ofdata_to_platdata),
  189. .platdata_auto_alloc_size = sizeof(struct stm32x7_serial_platdata),
  190. .ops = &stm32_serial_ops,
  191. .probe = stm32_serial_probe,
  192. #if !CONFIG_IS_ENABLED(OF_CONTROL)
  193. .flags = DM_FLAG_PRE_RELOC,
  194. #endif
  195. };
  196. #ifdef CONFIG_DEBUG_UART_STM32
  197. #include <debug_uart.h>
  198. static inline struct stm32_uart_info *_debug_uart_info(void)
  199. {
  200. struct stm32_uart_info *uart_info;
  201. #if defined(CONFIG_STM32F4)
  202. uart_info = &stm32f4_info;
  203. #elif defined(CONFIG_STM32F7)
  204. uart_info = &stm32f7_info;
  205. #else
  206. uart_info = &stm32h7_info;
  207. #endif
  208. return uart_info;
  209. }
  210. static inline void _debug_uart_init(void)
  211. {
  212. fdt_addr_t base = CONFIG_DEBUG_UART_BASE;
  213. struct stm32_uart_info *uart_info = _debug_uart_info();
  214. _stm32_serial_init(base, uart_info);
  215. _stm32_serial_setbrg(base, uart_info,
  216. CONFIG_DEBUG_UART_CLOCK,
  217. CONFIG_BAUDRATE);
  218. printf("DEBUG done\n");
  219. }
  220. static inline void _debug_uart_putc(int c)
  221. {
  222. fdt_addr_t base = CONFIG_DEBUG_UART_BASE;
  223. struct stm32_uart_info *uart_info = _debug_uart_info();
  224. while (_stm32_serial_putc(base, uart_info, c) == -EAGAIN)
  225. WATCHDOG_RESET();
  226. }
  227. DEBUG_UART_FUNCS
  228. #endif