xilinx_emaclite.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * (C) Copyright 2007-2009 Michal Simek
  4. * (C) Copyright 2003 Xilinx Inc.
  5. *
  6. * Michal SIMEK <monstr@monstr.eu>
  7. */
  8. #include <common.h>
  9. #include <net.h>
  10. #include <config.h>
  11. #include <dm.h>
  12. #include <console.h>
  13. #include <malloc.h>
  14. #include <asm/io.h>
  15. #include <phy.h>
  16. #include <miiphy.h>
  17. #include <fdtdec.h>
  18. #include <linux/errno.h>
  19. #include <linux/kernel.h>
  20. #include <asm/io.h>
  21. DECLARE_GLOBAL_DATA_PTR;
  22. #define ENET_ADDR_LENGTH 6
  23. #define ETH_FCS_LEN 4 /* Octets in the FCS */
  24. /* Xmit complete */
  25. #define XEL_TSR_XMIT_BUSY_MASK 0x00000001UL
  26. /* Xmit interrupt enable bit */
  27. #define XEL_TSR_XMIT_IE_MASK 0x00000008UL
  28. /* Program the MAC address */
  29. #define XEL_TSR_PROGRAM_MASK 0x00000002UL
  30. /* define for programming the MAC address into the EMAC Lite */
  31. #define XEL_TSR_PROG_MAC_ADDR (XEL_TSR_XMIT_BUSY_MASK | XEL_TSR_PROGRAM_MASK)
  32. /* Transmit packet length upper byte */
  33. #define XEL_TPLR_LENGTH_MASK_HI 0x0000FF00UL
  34. /* Transmit packet length lower byte */
  35. #define XEL_TPLR_LENGTH_MASK_LO 0x000000FFUL
  36. /* Recv complete */
  37. #define XEL_RSR_RECV_DONE_MASK 0x00000001UL
  38. /* Recv interrupt enable bit */
  39. #define XEL_RSR_RECV_IE_MASK 0x00000008UL
  40. /* MDIO Address Register Bit Masks */
  41. #define XEL_MDIOADDR_REGADR_MASK 0x0000001F /* Register Address */
  42. #define XEL_MDIOADDR_PHYADR_MASK 0x000003E0 /* PHY Address */
  43. #define XEL_MDIOADDR_PHYADR_SHIFT 5
  44. #define XEL_MDIOADDR_OP_MASK 0x00000400 /* RD/WR Operation */
  45. /* MDIO Write Data Register Bit Masks */
  46. #define XEL_MDIOWR_WRDATA_MASK 0x0000FFFF /* Data to be Written */
  47. /* MDIO Read Data Register Bit Masks */
  48. #define XEL_MDIORD_RDDATA_MASK 0x0000FFFF /* Data to be Read */
  49. /* MDIO Control Register Bit Masks */
  50. #define XEL_MDIOCTRL_MDIOSTS_MASK 0x00000001 /* MDIO Status Mask */
  51. #define XEL_MDIOCTRL_MDIOEN_MASK 0x00000008 /* MDIO Enable */
  52. struct emaclite_regs {
  53. u32 tx_ping; /* 0x0 - TX Ping buffer */
  54. u32 reserved1[504];
  55. u32 mdioaddr; /* 0x7e4 - MDIO Address Register */
  56. u32 mdiowr; /* 0x7e8 - MDIO Write Data Register */
  57. u32 mdiord;/* 0x7ec - MDIO Read Data Register */
  58. u32 mdioctrl; /* 0x7f0 - MDIO Control Register */
  59. u32 tx_ping_tplr; /* 0x7f4 - Tx packet length */
  60. u32 global_interrupt; /* 0x7f8 - Global interrupt enable */
  61. u32 tx_ping_tsr; /* 0x7fc - Tx status */
  62. u32 tx_pong; /* 0x800 - TX Pong buffer */
  63. u32 reserved2[508];
  64. u32 tx_pong_tplr; /* 0xff4 - Tx packet length */
  65. u32 reserved3; /* 0xff8 */
  66. u32 tx_pong_tsr; /* 0xffc - Tx status */
  67. u32 rx_ping; /* 0x1000 - Receive Buffer */
  68. u32 reserved4[510];
  69. u32 rx_ping_rsr; /* 0x17fc - Rx status */
  70. u32 rx_pong; /* 0x1800 - Receive Buffer */
  71. u32 reserved5[510];
  72. u32 rx_pong_rsr; /* 0x1ffc - Rx status */
  73. };
  74. struct xemaclite {
  75. bool use_rx_pong_buffer_next; /* Next RX buffer to read from */
  76. u32 txpp; /* TX ping pong buffer */
  77. u32 rxpp; /* RX ping pong buffer */
  78. int phyaddr;
  79. struct emaclite_regs *regs;
  80. struct phy_device *phydev;
  81. struct mii_dev *bus;
  82. };
  83. static uchar etherrxbuff[PKTSIZE_ALIGN]; /* Receive buffer */
  84. static void xemaclite_alignedread(u32 *srcptr, void *destptr, u32 bytecount)
  85. {
  86. u32 i;
  87. u32 alignbuffer;
  88. u32 *to32ptr;
  89. u32 *from32ptr;
  90. u8 *to8ptr;
  91. u8 *from8ptr;
  92. from32ptr = (u32 *) srcptr;
  93. /* Word aligned buffer, no correction needed. */
  94. to32ptr = (u32 *) destptr;
  95. while (bytecount > 3) {
  96. *to32ptr++ = *from32ptr++;
  97. bytecount -= 4;
  98. }
  99. to8ptr = (u8 *) to32ptr;
  100. alignbuffer = *from32ptr++;
  101. from8ptr = (u8 *) &alignbuffer;
  102. for (i = 0; i < bytecount; i++)
  103. *to8ptr++ = *from8ptr++;
  104. }
  105. static void xemaclite_alignedwrite(void *srcptr, u32 *destptr, u32 bytecount)
  106. {
  107. u32 i;
  108. u32 alignbuffer;
  109. u32 *to32ptr = (u32 *) destptr;
  110. u32 *from32ptr;
  111. u8 *to8ptr;
  112. u8 *from8ptr;
  113. from32ptr = (u32 *) srcptr;
  114. while (bytecount > 3) {
  115. *to32ptr++ = *from32ptr++;
  116. bytecount -= 4;
  117. }
  118. alignbuffer = 0;
  119. to8ptr = (u8 *) &alignbuffer;
  120. from8ptr = (u8 *) from32ptr;
  121. for (i = 0; i < bytecount; i++)
  122. *to8ptr++ = *from8ptr++;
  123. *to32ptr++ = alignbuffer;
  124. }
  125. static int wait_for_bit(const char *func, u32 *reg, const u32 mask,
  126. bool set, unsigned int timeout)
  127. {
  128. u32 val;
  129. unsigned long start = get_timer(0);
  130. while (1) {
  131. val = __raw_readl(reg);
  132. if (!set)
  133. val = ~val;
  134. if ((val & mask) == mask)
  135. return 0;
  136. if (get_timer(start) > timeout)
  137. break;
  138. if (ctrlc()) {
  139. puts("Abort\n");
  140. return -EINTR;
  141. }
  142. udelay(1);
  143. }
  144. debug("%s: Timeout (reg=%p mask=%08x wait_set=%i)\n",
  145. func, reg, mask, set);
  146. return -ETIMEDOUT;
  147. }
  148. static int mdio_wait(struct emaclite_regs *regs)
  149. {
  150. return wait_for_bit(__func__, &regs->mdioctrl,
  151. XEL_MDIOCTRL_MDIOSTS_MASK, false, 2000);
  152. }
  153. static u32 phyread(struct xemaclite *emaclite, u32 phyaddress, u32 registernum,
  154. u16 *data)
  155. {
  156. struct emaclite_regs *regs = emaclite->regs;
  157. if (mdio_wait(regs))
  158. return 1;
  159. u32 ctrl_reg = __raw_readl(&regs->mdioctrl);
  160. __raw_writel(XEL_MDIOADDR_OP_MASK
  161. | ((phyaddress << XEL_MDIOADDR_PHYADR_SHIFT)
  162. | registernum), &regs->mdioaddr);
  163. __raw_writel(ctrl_reg | XEL_MDIOCTRL_MDIOSTS_MASK, &regs->mdioctrl);
  164. if (mdio_wait(regs))
  165. return 1;
  166. /* Read data */
  167. *data = __raw_readl(&regs->mdiord);
  168. return 0;
  169. }
  170. static u32 phywrite(struct xemaclite *emaclite, u32 phyaddress, u32 registernum,
  171. u16 data)
  172. {
  173. struct emaclite_regs *regs = emaclite->regs;
  174. if (mdio_wait(regs))
  175. return 1;
  176. /*
  177. * Write the PHY address, register number and clear the OP bit in the
  178. * MDIO Address register and then write the value into the MDIO Write
  179. * Data register. Finally, set the Status bit in the MDIO Control
  180. * register to start a MDIO write transaction.
  181. */
  182. u32 ctrl_reg = __raw_readl(&regs->mdioctrl);
  183. __raw_writel(~XEL_MDIOADDR_OP_MASK
  184. & ((phyaddress << XEL_MDIOADDR_PHYADR_SHIFT)
  185. | registernum), &regs->mdioaddr);
  186. __raw_writel(data, &regs->mdiowr);
  187. __raw_writel(ctrl_reg | XEL_MDIOCTRL_MDIOSTS_MASK, &regs->mdioctrl);
  188. if (mdio_wait(regs))
  189. return 1;
  190. return 0;
  191. }
  192. static void emaclite_stop(struct udevice *dev)
  193. {
  194. debug("eth_stop\n");
  195. }
  196. /* Use MII register 1 (MII status register) to detect PHY */
  197. #define PHY_DETECT_REG 1
  198. /* Mask used to verify certain PHY features (or register contents)
  199. * in the register above:
  200. * 0x1000: 10Mbps full duplex support
  201. * 0x0800: 10Mbps half duplex support
  202. * 0x0008: Auto-negotiation support
  203. */
  204. #define PHY_DETECT_MASK 0x1808
  205. static int setup_phy(struct udevice *dev)
  206. {
  207. int i, ret;
  208. u16 phyreg;
  209. struct xemaclite *emaclite = dev_get_priv(dev);
  210. struct phy_device *phydev;
  211. u32 supported = SUPPORTED_10baseT_Half |
  212. SUPPORTED_10baseT_Full |
  213. SUPPORTED_100baseT_Half |
  214. SUPPORTED_100baseT_Full;
  215. if (emaclite->phyaddr != -1) {
  216. phyread(emaclite, emaclite->phyaddr, PHY_DETECT_REG, &phyreg);
  217. if ((phyreg != 0xFFFF) &&
  218. ((phyreg & PHY_DETECT_MASK) == PHY_DETECT_MASK)) {
  219. /* Found a valid PHY address */
  220. debug("Default phy address %d is valid\n",
  221. emaclite->phyaddr);
  222. } else {
  223. debug("PHY address is not setup correctly %d\n",
  224. emaclite->phyaddr);
  225. emaclite->phyaddr = -1;
  226. }
  227. }
  228. if (emaclite->phyaddr == -1) {
  229. /* detect the PHY address */
  230. for (i = 31; i >= 0; i--) {
  231. phyread(emaclite, i, PHY_DETECT_REG, &phyreg);
  232. if ((phyreg != 0xFFFF) &&
  233. ((phyreg & PHY_DETECT_MASK) == PHY_DETECT_MASK)) {
  234. /* Found a valid PHY address */
  235. emaclite->phyaddr = i;
  236. debug("emaclite: Found valid phy address, %d\n",
  237. i);
  238. break;
  239. }
  240. }
  241. }
  242. /* interface - look at tsec */
  243. phydev = phy_connect(emaclite->bus, emaclite->phyaddr, dev,
  244. PHY_INTERFACE_MODE_MII);
  245. /*
  246. * Phy can support 1000baseT but device NOT that's why phydev->supported
  247. * must be setup for 1000baseT. phydev->advertising setups what speeds
  248. * will be used for autonegotiation where 1000baseT must be disabled.
  249. */
  250. phydev->supported = supported | SUPPORTED_1000baseT_Half |
  251. SUPPORTED_1000baseT_Full;
  252. phydev->advertising = supported;
  253. emaclite->phydev = phydev;
  254. phy_config(phydev);
  255. ret = phy_startup(phydev);
  256. if (ret)
  257. return ret;
  258. if (!phydev->link) {
  259. printf("%s: No link.\n", phydev->dev->name);
  260. return 0;
  261. }
  262. /* Do not setup anything */
  263. return 1;
  264. }
  265. static int emaclite_start(struct udevice *dev)
  266. {
  267. struct xemaclite *emaclite = dev_get_priv(dev);
  268. struct eth_pdata *pdata = dev_get_platdata(dev);
  269. struct emaclite_regs *regs = emaclite->regs;
  270. debug("EmacLite Initialization Started\n");
  271. /*
  272. * TX - TX_PING & TX_PONG initialization
  273. */
  274. /* Restart PING TX */
  275. __raw_writel(0, &regs->tx_ping_tsr);
  276. /* Copy MAC address */
  277. xemaclite_alignedwrite(pdata->enetaddr, &regs->tx_ping,
  278. ENET_ADDR_LENGTH);
  279. /* Set the length */
  280. __raw_writel(ENET_ADDR_LENGTH, &regs->tx_ping_tplr);
  281. /* Update the MAC address in the EMAC Lite */
  282. __raw_writel(XEL_TSR_PROG_MAC_ADDR, &regs->tx_ping_tsr);
  283. /* Wait for EMAC Lite to finish with the MAC address update */
  284. while ((__raw_readl(&regs->tx_ping_tsr) &
  285. XEL_TSR_PROG_MAC_ADDR) != 0)
  286. ;
  287. if (emaclite->txpp) {
  288. /* The same operation with PONG TX */
  289. __raw_writel(0, &regs->tx_pong_tsr);
  290. xemaclite_alignedwrite(pdata->enetaddr, &regs->tx_pong,
  291. ENET_ADDR_LENGTH);
  292. __raw_writel(ENET_ADDR_LENGTH, &regs->tx_pong_tplr);
  293. __raw_writel(XEL_TSR_PROG_MAC_ADDR, &regs->tx_pong_tsr);
  294. while ((__raw_readl(&regs->tx_pong_tsr) &
  295. XEL_TSR_PROG_MAC_ADDR) != 0)
  296. ;
  297. }
  298. /*
  299. * RX - RX_PING & RX_PONG initialization
  300. */
  301. /* Write out the value to flush the RX buffer */
  302. __raw_writel(XEL_RSR_RECV_IE_MASK, &regs->rx_ping_rsr);
  303. if (emaclite->rxpp)
  304. __raw_writel(XEL_RSR_RECV_IE_MASK, &regs->rx_pong_rsr);
  305. __raw_writel(XEL_MDIOCTRL_MDIOEN_MASK, &regs->mdioctrl);
  306. if (__raw_readl(&regs->mdioctrl) & XEL_MDIOCTRL_MDIOEN_MASK)
  307. if (!setup_phy(dev))
  308. return -1;
  309. debug("EmacLite Initialization complete\n");
  310. return 0;
  311. }
  312. static int xemaclite_txbufferavailable(struct xemaclite *emaclite)
  313. {
  314. u32 tmp;
  315. struct emaclite_regs *regs = emaclite->regs;
  316. /*
  317. * Read the other buffer register
  318. * and determine if the other buffer is available
  319. */
  320. tmp = ~__raw_readl(&regs->tx_ping_tsr);
  321. if (emaclite->txpp)
  322. tmp |= ~__raw_readl(&regs->tx_pong_tsr);
  323. return !(tmp & XEL_TSR_XMIT_BUSY_MASK);
  324. }
  325. static int emaclite_send(struct udevice *dev, void *ptr, int len)
  326. {
  327. u32 reg;
  328. struct xemaclite *emaclite = dev_get_priv(dev);
  329. struct emaclite_regs *regs = emaclite->regs;
  330. u32 maxtry = 1000;
  331. if (len > PKTSIZE)
  332. len = PKTSIZE;
  333. while (xemaclite_txbufferavailable(emaclite) && maxtry) {
  334. udelay(10);
  335. maxtry--;
  336. }
  337. if (!maxtry) {
  338. printf("Error: Timeout waiting for ethernet TX buffer\n");
  339. /* Restart PING TX */
  340. __raw_writel(0, &regs->tx_ping_tsr);
  341. if (emaclite->txpp) {
  342. __raw_writel(0, &regs->tx_pong_tsr);
  343. }
  344. return -1;
  345. }
  346. /* Determine if the expected buffer address is empty */
  347. reg = __raw_readl(&regs->tx_ping_tsr);
  348. if ((reg & XEL_TSR_XMIT_BUSY_MASK) == 0) {
  349. debug("Send packet from tx_ping buffer\n");
  350. /* Write the frame to the buffer */
  351. xemaclite_alignedwrite(ptr, &regs->tx_ping, len);
  352. __raw_writel(len
  353. & (XEL_TPLR_LENGTH_MASK_HI | XEL_TPLR_LENGTH_MASK_LO),
  354. &regs->tx_ping_tplr);
  355. reg = __raw_readl(&regs->tx_ping_tsr);
  356. reg |= XEL_TSR_XMIT_BUSY_MASK;
  357. __raw_writel(reg, &regs->tx_ping_tsr);
  358. return 0;
  359. }
  360. if (emaclite->txpp) {
  361. /* Determine if the expected buffer address is empty */
  362. reg = __raw_readl(&regs->tx_pong_tsr);
  363. if ((reg & XEL_TSR_XMIT_BUSY_MASK) == 0) {
  364. debug("Send packet from tx_pong buffer\n");
  365. /* Write the frame to the buffer */
  366. xemaclite_alignedwrite(ptr, &regs->tx_pong, len);
  367. __raw_writel(len &
  368. (XEL_TPLR_LENGTH_MASK_HI |
  369. XEL_TPLR_LENGTH_MASK_LO),
  370. &regs->tx_pong_tplr);
  371. reg = __raw_readl(&regs->tx_pong_tsr);
  372. reg |= XEL_TSR_XMIT_BUSY_MASK;
  373. __raw_writel(reg, &regs->tx_pong_tsr);
  374. return 0;
  375. }
  376. }
  377. puts("Error while sending frame\n");
  378. return -1;
  379. }
  380. static int emaclite_recv(struct udevice *dev, int flags, uchar **packetp)
  381. {
  382. u32 length, first_read, reg, attempt = 0;
  383. void *addr, *ack;
  384. struct xemaclite *emaclite = dev->priv;
  385. struct emaclite_regs *regs = emaclite->regs;
  386. struct ethernet_hdr *eth;
  387. struct ip_udp_hdr *ip;
  388. try_again:
  389. if (!emaclite->use_rx_pong_buffer_next) {
  390. reg = __raw_readl(&regs->rx_ping_rsr);
  391. debug("Testing data at rx_ping\n");
  392. if ((reg & XEL_RSR_RECV_DONE_MASK) == XEL_RSR_RECV_DONE_MASK) {
  393. debug("Data found in rx_ping buffer\n");
  394. addr = &regs->rx_ping;
  395. ack = &regs->rx_ping_rsr;
  396. } else {
  397. debug("Data not found in rx_ping buffer\n");
  398. /* Pong buffer is not available - return immediately */
  399. if (!emaclite->rxpp)
  400. return -1;
  401. /* Try pong buffer if this is first attempt */
  402. if (attempt++)
  403. return -1;
  404. emaclite->use_rx_pong_buffer_next =
  405. !emaclite->use_rx_pong_buffer_next;
  406. goto try_again;
  407. }
  408. } else {
  409. reg = __raw_readl(&regs->rx_pong_rsr);
  410. debug("Testing data at rx_pong\n");
  411. if ((reg & XEL_RSR_RECV_DONE_MASK) == XEL_RSR_RECV_DONE_MASK) {
  412. debug("Data found in rx_pong buffer\n");
  413. addr = &regs->rx_pong;
  414. ack = &regs->rx_pong_rsr;
  415. } else {
  416. debug("Data not found in rx_pong buffer\n");
  417. /* Try ping buffer if this is first attempt */
  418. if (attempt++)
  419. return -1;
  420. emaclite->use_rx_pong_buffer_next =
  421. !emaclite->use_rx_pong_buffer_next;
  422. goto try_again;
  423. }
  424. }
  425. /* Read all bytes for ARP packet with 32bit alignment - 48bytes */
  426. first_read = ALIGN(ETHER_HDR_SIZE + ARP_HDR_SIZE + ETH_FCS_LEN, 4);
  427. xemaclite_alignedread(addr, etherrxbuff, first_read);
  428. /* Detect real packet size */
  429. eth = (struct ethernet_hdr *)etherrxbuff;
  430. switch (ntohs(eth->et_protlen)) {
  431. case PROT_ARP:
  432. length = first_read;
  433. debug("ARP Packet %x\n", length);
  434. break;
  435. case PROT_IP:
  436. ip = (struct ip_udp_hdr *)(etherrxbuff + ETHER_HDR_SIZE);
  437. length = ntohs(ip->ip_len);
  438. length += ETHER_HDR_SIZE + ETH_FCS_LEN;
  439. debug("IP Packet %x\n", length);
  440. break;
  441. default:
  442. debug("Other Packet\n");
  443. length = PKTSIZE;
  444. break;
  445. }
  446. /* Read the rest of the packet which is longer then first read */
  447. if (length != first_read)
  448. xemaclite_alignedread(addr + first_read,
  449. etherrxbuff + first_read,
  450. length - first_read);
  451. /* Acknowledge the frame */
  452. reg = __raw_readl(ack);
  453. reg &= ~XEL_RSR_RECV_DONE_MASK;
  454. __raw_writel(reg, ack);
  455. debug("Packet receive from 0x%p, length %dB\n", addr, length);
  456. *packetp = etherrxbuff;
  457. return length;
  458. }
  459. static int emaclite_miiphy_read(struct mii_dev *bus, int addr,
  460. int devad, int reg)
  461. {
  462. u32 ret;
  463. u16 val = 0;
  464. ret = phyread(bus->priv, addr, reg, &val);
  465. debug("emaclite: Read MII 0x%x, 0x%x, 0x%x, %d\n", addr, reg, val, ret);
  466. return val;
  467. }
  468. static int emaclite_miiphy_write(struct mii_dev *bus, int addr, int devad,
  469. int reg, u16 value)
  470. {
  471. debug("emaclite: Write MII 0x%x, 0x%x, 0x%x\n", addr, reg, value);
  472. return phywrite(bus->priv, addr, reg, value);
  473. }
  474. static int emaclite_probe(struct udevice *dev)
  475. {
  476. struct xemaclite *emaclite = dev_get_priv(dev);
  477. int ret;
  478. emaclite->bus = mdio_alloc();
  479. emaclite->bus->read = emaclite_miiphy_read;
  480. emaclite->bus->write = emaclite_miiphy_write;
  481. emaclite->bus->priv = emaclite;
  482. ret = mdio_register_seq(emaclite->bus, dev->seq);
  483. if (ret)
  484. return ret;
  485. return 0;
  486. }
  487. static int emaclite_remove(struct udevice *dev)
  488. {
  489. struct xemaclite *emaclite = dev_get_priv(dev);
  490. free(emaclite->phydev);
  491. mdio_unregister(emaclite->bus);
  492. mdio_free(emaclite->bus);
  493. return 0;
  494. }
  495. static const struct eth_ops emaclite_ops = {
  496. .start = emaclite_start,
  497. .send = emaclite_send,
  498. .recv = emaclite_recv,
  499. .stop = emaclite_stop,
  500. };
  501. static int emaclite_ofdata_to_platdata(struct udevice *dev)
  502. {
  503. struct eth_pdata *pdata = dev_get_platdata(dev);
  504. struct xemaclite *emaclite = dev_get_priv(dev);
  505. int offset = 0;
  506. pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
  507. emaclite->regs = (struct emaclite_regs *)ioremap_nocache(pdata->iobase,
  508. 0x10000);
  509. emaclite->phyaddr = -1;
  510. offset = fdtdec_lookup_phandle(gd->fdt_blob, dev_of_offset(dev),
  511. "phy-handle");
  512. if (offset > 0)
  513. emaclite->phyaddr = fdtdec_get_int(gd->fdt_blob, offset,
  514. "reg", -1);
  515. emaclite->txpp = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
  516. "xlnx,tx-ping-pong", 0);
  517. emaclite->rxpp = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
  518. "xlnx,rx-ping-pong", 0);
  519. printf("EMACLITE: %lx, phyaddr %d, %d/%d\n", (ulong)emaclite->regs,
  520. emaclite->phyaddr, emaclite->txpp, emaclite->rxpp);
  521. return 0;
  522. }
  523. static const struct udevice_id emaclite_ids[] = {
  524. { .compatible = "xlnx,xps-ethernetlite-1.00.a" },
  525. { }
  526. };
  527. U_BOOT_DRIVER(emaclite) = {
  528. .name = "emaclite",
  529. .id = UCLASS_ETH,
  530. .of_match = emaclite_ids,
  531. .ofdata_to_platdata = emaclite_ofdata_to_platdata,
  532. .probe = emaclite_probe,
  533. .remove = emaclite_remove,
  534. .ops = &emaclite_ops,
  535. .priv_auto_alloc_size = sizeof(struct xemaclite),
  536. .platdata_auto_alloc_size = sizeof(struct eth_pdata),
  537. };