sun8i_emac.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * (C) Copyright 2016
  4. * Author: Amit Singh Tomar, amittomer25@gmail.com
  5. *
  6. * Ethernet driver for H3/A64/A83T based SoC's
  7. *
  8. * It is derived from the work done by
  9. * LABBE Corentin & Chen-Yu Tsai for Linux, THANKS!
  10. *
  11. */
  12. #include <asm/io.h>
  13. #include <asm/arch/clock.h>
  14. #include <asm/arch/gpio.h>
  15. #include <common.h>
  16. #include <dm.h>
  17. #include <fdt_support.h>
  18. #include <linux/err.h>
  19. #include <malloc.h>
  20. #include <miiphy.h>
  21. #include <net.h>
  22. #include <dt-bindings/pinctrl/sun4i-a10.h>
  23. #ifdef CONFIG_DM_GPIO
  24. #include <asm-generic/gpio.h>
  25. #endif
  26. #define MDIO_CMD_MII_BUSY BIT(0)
  27. #define MDIO_CMD_MII_WRITE BIT(1)
  28. #define MDIO_CMD_MII_PHY_REG_ADDR_MASK 0x000001f0
  29. #define MDIO_CMD_MII_PHY_REG_ADDR_SHIFT 4
  30. #define MDIO_CMD_MII_PHY_ADDR_MASK 0x0001f000
  31. #define MDIO_CMD_MII_PHY_ADDR_SHIFT 12
  32. #define CONFIG_TX_DESCR_NUM 32
  33. #define CONFIG_RX_DESCR_NUM 32
  34. #define CONFIG_ETH_BUFSIZE 2048 /* Note must be dma aligned */
  35. /*
  36. * The datasheet says that each descriptor can transfers up to 4096 bytes
  37. * But later, the register documentation reduces that value to 2048,
  38. * using 2048 cause strange behaviours and even BSP driver use 2047
  39. */
  40. #define CONFIG_ETH_RXSIZE 2044 /* Note must fit in ETH_BUFSIZE */
  41. #define TX_TOTAL_BUFSIZE (CONFIG_ETH_BUFSIZE * CONFIG_TX_DESCR_NUM)
  42. #define RX_TOTAL_BUFSIZE (CONFIG_ETH_BUFSIZE * CONFIG_RX_DESCR_NUM)
  43. #define H3_EPHY_DEFAULT_VALUE 0x58000
  44. #define H3_EPHY_DEFAULT_MASK GENMASK(31, 15)
  45. #define H3_EPHY_ADDR_SHIFT 20
  46. #define REG_PHY_ADDR_MASK GENMASK(4, 0)
  47. #define H3_EPHY_LED_POL BIT(17) /* 1: active low, 0: active high */
  48. #define H3_EPHY_SHUTDOWN BIT(16) /* 1: shutdown, 0: power up */
  49. #define H3_EPHY_SELECT BIT(15) /* 1: internal PHY, 0: external PHY */
  50. #define SC_RMII_EN BIT(13)
  51. #define SC_EPIT BIT(2) /* 1: RGMII, 0: MII */
  52. #define SC_ETCS_MASK GENMASK(1, 0)
  53. #define SC_ETCS_EXT_GMII 0x1
  54. #define SC_ETCS_INT_GMII 0x2
  55. #define CONFIG_MDIO_TIMEOUT (3 * CONFIG_SYS_HZ)
  56. #define AHB_GATE_OFFSET_EPHY 0
  57. /* IO mux settings */
  58. #define SUN8I_IOMUX_H3 2
  59. #define SUN8I_IOMUX_R40 5
  60. #define SUN8I_IOMUX 4
  61. /* H3/A64 EMAC Register's offset */
  62. #define EMAC_CTL0 0x00
  63. #define EMAC_CTL1 0x04
  64. #define EMAC_INT_STA 0x08
  65. #define EMAC_INT_EN 0x0c
  66. #define EMAC_TX_CTL0 0x10
  67. #define EMAC_TX_CTL1 0x14
  68. #define EMAC_TX_FLOW_CTL 0x1c
  69. #define EMAC_TX_DMA_DESC 0x20
  70. #define EMAC_RX_CTL0 0x24
  71. #define EMAC_RX_CTL1 0x28
  72. #define EMAC_RX_DMA_DESC 0x34
  73. #define EMAC_MII_CMD 0x48
  74. #define EMAC_MII_DATA 0x4c
  75. #define EMAC_ADDR0_HIGH 0x50
  76. #define EMAC_ADDR0_LOW 0x54
  77. #define EMAC_TX_DMA_STA 0xb0
  78. #define EMAC_TX_CUR_DESC 0xb4
  79. #define EMAC_TX_CUR_BUF 0xb8
  80. #define EMAC_RX_DMA_STA 0xc0
  81. #define EMAC_RX_CUR_DESC 0xc4
  82. DECLARE_GLOBAL_DATA_PTR;
  83. enum emac_variant {
  84. A83T_EMAC = 1,
  85. H3_EMAC,
  86. A64_EMAC,
  87. R40_GMAC,
  88. };
  89. struct emac_dma_desc {
  90. u32 status;
  91. u32 st;
  92. u32 buf_addr;
  93. u32 next;
  94. } __aligned(ARCH_DMA_MINALIGN);
  95. struct emac_eth_dev {
  96. struct emac_dma_desc rx_chain[CONFIG_TX_DESCR_NUM];
  97. struct emac_dma_desc tx_chain[CONFIG_RX_DESCR_NUM];
  98. char rxbuffer[RX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
  99. char txbuffer[TX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
  100. u32 interface;
  101. u32 phyaddr;
  102. u32 link;
  103. u32 speed;
  104. u32 duplex;
  105. u32 phy_configured;
  106. u32 tx_currdescnum;
  107. u32 rx_currdescnum;
  108. u32 addr;
  109. u32 tx_slot;
  110. bool use_internal_phy;
  111. enum emac_variant variant;
  112. void *mac_reg;
  113. phys_addr_t sysctl_reg;
  114. struct phy_device *phydev;
  115. struct mii_dev *bus;
  116. #ifdef CONFIG_DM_GPIO
  117. struct gpio_desc reset_gpio;
  118. #endif
  119. };
  120. struct sun8i_eth_pdata {
  121. struct eth_pdata eth_pdata;
  122. u32 reset_delays[3];
  123. };
  124. static int sun8i_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
  125. {
  126. struct udevice *dev = bus->priv;
  127. struct emac_eth_dev *priv = dev_get_priv(dev);
  128. ulong start;
  129. u32 miiaddr = 0;
  130. int timeout = CONFIG_MDIO_TIMEOUT;
  131. miiaddr &= ~MDIO_CMD_MII_WRITE;
  132. miiaddr &= ~MDIO_CMD_MII_PHY_REG_ADDR_MASK;
  133. miiaddr |= (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) &
  134. MDIO_CMD_MII_PHY_REG_ADDR_MASK;
  135. miiaddr &= ~MDIO_CMD_MII_PHY_ADDR_MASK;
  136. miiaddr |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) &
  137. MDIO_CMD_MII_PHY_ADDR_MASK;
  138. miiaddr |= MDIO_CMD_MII_BUSY;
  139. writel(miiaddr, priv->mac_reg + EMAC_MII_CMD);
  140. start = get_timer(0);
  141. while (get_timer(start) < timeout) {
  142. if (!(readl(priv->mac_reg + EMAC_MII_CMD) & MDIO_CMD_MII_BUSY))
  143. return readl(priv->mac_reg + EMAC_MII_DATA);
  144. udelay(10);
  145. };
  146. return -1;
  147. }
  148. static int sun8i_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
  149. u16 val)
  150. {
  151. struct udevice *dev = bus->priv;
  152. struct emac_eth_dev *priv = dev_get_priv(dev);
  153. ulong start;
  154. u32 miiaddr = 0;
  155. int ret = -1, timeout = CONFIG_MDIO_TIMEOUT;
  156. miiaddr &= ~MDIO_CMD_MII_PHY_REG_ADDR_MASK;
  157. miiaddr |= (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) &
  158. MDIO_CMD_MII_PHY_REG_ADDR_MASK;
  159. miiaddr &= ~MDIO_CMD_MII_PHY_ADDR_MASK;
  160. miiaddr |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) &
  161. MDIO_CMD_MII_PHY_ADDR_MASK;
  162. miiaddr |= MDIO_CMD_MII_WRITE;
  163. miiaddr |= MDIO_CMD_MII_BUSY;
  164. writel(val, priv->mac_reg + EMAC_MII_DATA);
  165. writel(miiaddr, priv->mac_reg + EMAC_MII_CMD);
  166. start = get_timer(0);
  167. while (get_timer(start) < timeout) {
  168. if (!(readl(priv->mac_reg + EMAC_MII_CMD) &
  169. MDIO_CMD_MII_BUSY)) {
  170. ret = 0;
  171. break;
  172. }
  173. udelay(10);
  174. };
  175. return ret;
  176. }
  177. static int _sun8i_write_hwaddr(struct emac_eth_dev *priv, u8 *mac_id)
  178. {
  179. u32 macid_lo, macid_hi;
  180. macid_lo = mac_id[0] + (mac_id[1] << 8) + (mac_id[2] << 16) +
  181. (mac_id[3] << 24);
  182. macid_hi = mac_id[4] + (mac_id[5] << 8);
  183. writel(macid_hi, priv->mac_reg + EMAC_ADDR0_HIGH);
  184. writel(macid_lo, priv->mac_reg + EMAC_ADDR0_LOW);
  185. return 0;
  186. }
  187. static void sun8i_adjust_link(struct emac_eth_dev *priv,
  188. struct phy_device *phydev)
  189. {
  190. u32 v;
  191. v = readl(priv->mac_reg + EMAC_CTL0);
  192. if (phydev->duplex)
  193. v |= BIT(0);
  194. else
  195. v &= ~BIT(0);
  196. v &= ~0x0C;
  197. switch (phydev->speed) {
  198. case 1000:
  199. break;
  200. case 100:
  201. v |= BIT(2);
  202. v |= BIT(3);
  203. break;
  204. case 10:
  205. v |= BIT(3);
  206. break;
  207. }
  208. writel(v, priv->mac_reg + EMAC_CTL0);
  209. }
  210. static int sun8i_emac_set_syscon_ephy(struct emac_eth_dev *priv, u32 *reg)
  211. {
  212. if (priv->use_internal_phy) {
  213. /* H3 based SoC's that has an Internal 100MBit PHY
  214. * needs to be configured and powered up before use
  215. */
  216. *reg &= ~H3_EPHY_DEFAULT_MASK;
  217. *reg |= H3_EPHY_DEFAULT_VALUE;
  218. *reg |= priv->phyaddr << H3_EPHY_ADDR_SHIFT;
  219. *reg &= ~H3_EPHY_SHUTDOWN;
  220. *reg |= H3_EPHY_SELECT;
  221. } else
  222. /* This is to select External Gigabit PHY on
  223. * the boards with H3 SoC.
  224. */
  225. *reg &= ~H3_EPHY_SELECT;
  226. return 0;
  227. }
  228. static int sun8i_emac_set_syscon(struct emac_eth_dev *priv)
  229. {
  230. int ret;
  231. u32 reg;
  232. reg = readl(priv->sysctl_reg + 0x30);
  233. if (priv->variant == R40_GMAC)
  234. return 0;
  235. if (priv->variant == H3_EMAC) {
  236. ret = sun8i_emac_set_syscon_ephy(priv, &reg);
  237. if (ret)
  238. return ret;
  239. }
  240. reg &= ~(SC_ETCS_MASK | SC_EPIT);
  241. if (priv->variant == H3_EMAC || priv->variant == A64_EMAC)
  242. reg &= ~SC_RMII_EN;
  243. switch (priv->interface) {
  244. case PHY_INTERFACE_MODE_MII:
  245. /* default */
  246. break;
  247. case PHY_INTERFACE_MODE_RGMII:
  248. reg |= SC_EPIT | SC_ETCS_INT_GMII;
  249. break;
  250. case PHY_INTERFACE_MODE_RMII:
  251. if (priv->variant == H3_EMAC ||
  252. priv->variant == A64_EMAC) {
  253. reg |= SC_RMII_EN | SC_ETCS_EXT_GMII;
  254. break;
  255. }
  256. /* RMII not supported on A83T */
  257. default:
  258. debug("%s: Invalid PHY interface\n", __func__);
  259. return -EINVAL;
  260. }
  261. writel(reg, priv->sysctl_reg + 0x30);
  262. return 0;
  263. }
  264. static int sun8i_phy_init(struct emac_eth_dev *priv, void *dev)
  265. {
  266. struct phy_device *phydev;
  267. phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
  268. if (!phydev)
  269. return -ENODEV;
  270. phy_connect_dev(phydev, dev);
  271. priv->phydev = phydev;
  272. phy_config(priv->phydev);
  273. return 0;
  274. }
  275. static void rx_descs_init(struct emac_eth_dev *priv)
  276. {
  277. struct emac_dma_desc *desc_table_p = &priv->rx_chain[0];
  278. char *rxbuffs = &priv->rxbuffer[0];
  279. struct emac_dma_desc *desc_p;
  280. u32 idx;
  281. /* flush Rx buffers */
  282. flush_dcache_range((uintptr_t)rxbuffs, (ulong)rxbuffs +
  283. RX_TOTAL_BUFSIZE);
  284. for (idx = 0; idx < CONFIG_RX_DESCR_NUM; idx++) {
  285. desc_p = &desc_table_p[idx];
  286. desc_p->buf_addr = (uintptr_t)&rxbuffs[idx * CONFIG_ETH_BUFSIZE]
  287. ;
  288. desc_p->next = (uintptr_t)&desc_table_p[idx + 1];
  289. desc_p->st |= CONFIG_ETH_RXSIZE;
  290. desc_p->status = BIT(31);
  291. }
  292. /* Correcting the last pointer of the chain */
  293. desc_p->next = (uintptr_t)&desc_table_p[0];
  294. flush_dcache_range((uintptr_t)priv->rx_chain,
  295. (uintptr_t)priv->rx_chain +
  296. sizeof(priv->rx_chain));
  297. writel((uintptr_t)&desc_table_p[0], (priv->mac_reg + EMAC_RX_DMA_DESC));
  298. priv->rx_currdescnum = 0;
  299. }
  300. static void tx_descs_init(struct emac_eth_dev *priv)
  301. {
  302. struct emac_dma_desc *desc_table_p = &priv->tx_chain[0];
  303. char *txbuffs = &priv->txbuffer[0];
  304. struct emac_dma_desc *desc_p;
  305. u32 idx;
  306. for (idx = 0; idx < CONFIG_TX_DESCR_NUM; idx++) {
  307. desc_p = &desc_table_p[idx];
  308. desc_p->buf_addr = (uintptr_t)&txbuffs[idx * CONFIG_ETH_BUFSIZE]
  309. ;
  310. desc_p->next = (uintptr_t)&desc_table_p[idx + 1];
  311. desc_p->status = (1 << 31);
  312. desc_p->st = 0;
  313. }
  314. /* Correcting the last pointer of the chain */
  315. desc_p->next = (uintptr_t)&desc_table_p[0];
  316. /* Flush all Tx buffer descriptors */
  317. flush_dcache_range((uintptr_t)priv->tx_chain,
  318. (uintptr_t)priv->tx_chain +
  319. sizeof(priv->tx_chain));
  320. writel((uintptr_t)&desc_table_p[0], priv->mac_reg + EMAC_TX_DMA_DESC);
  321. priv->tx_currdescnum = 0;
  322. }
  323. static int _sun8i_emac_eth_init(struct emac_eth_dev *priv, u8 *enetaddr)
  324. {
  325. u32 reg, v;
  326. int timeout = 100;
  327. reg = readl((priv->mac_reg + EMAC_CTL1));
  328. if (!(reg & 0x1)) {
  329. /* Soft reset MAC */
  330. setbits_le32((priv->mac_reg + EMAC_CTL1), 0x1);
  331. do {
  332. reg = readl(priv->mac_reg + EMAC_CTL1);
  333. } while ((reg & 0x01) != 0 && (--timeout));
  334. if (!timeout) {
  335. printf("%s: Timeout\n", __func__);
  336. return -1;
  337. }
  338. }
  339. /* Rewrite mac address after reset */
  340. _sun8i_write_hwaddr(priv, enetaddr);
  341. v = readl(priv->mac_reg + EMAC_TX_CTL1);
  342. /* TX_MD Transmission starts after a full frame located in TX DMA FIFO*/
  343. v |= BIT(1);
  344. writel(v, priv->mac_reg + EMAC_TX_CTL1);
  345. v = readl(priv->mac_reg + EMAC_RX_CTL1);
  346. /* RX_MD RX DMA reads data from RX DMA FIFO to host memory after a
  347. * complete frame has been written to RX DMA FIFO
  348. */
  349. v |= BIT(1);
  350. writel(v, priv->mac_reg + EMAC_RX_CTL1);
  351. /* DMA */
  352. writel(8 << 24, priv->mac_reg + EMAC_CTL1);
  353. /* Initialize rx/tx descriptors */
  354. rx_descs_init(priv);
  355. tx_descs_init(priv);
  356. /* PHY Start Up */
  357. phy_startup(priv->phydev);
  358. sun8i_adjust_link(priv, priv->phydev);
  359. /* Start RX DMA */
  360. v = readl(priv->mac_reg + EMAC_RX_CTL1);
  361. v |= BIT(30);
  362. writel(v, priv->mac_reg + EMAC_RX_CTL1);
  363. /* Start TX DMA */
  364. v = readl(priv->mac_reg + EMAC_TX_CTL1);
  365. v |= BIT(30);
  366. writel(v, priv->mac_reg + EMAC_TX_CTL1);
  367. /* Enable RX/TX */
  368. setbits_le32(priv->mac_reg + EMAC_RX_CTL0, BIT(31));
  369. setbits_le32(priv->mac_reg + EMAC_TX_CTL0, BIT(31));
  370. return 0;
  371. }
  372. static int parse_phy_pins(struct udevice *dev)
  373. {
  374. struct emac_eth_dev *priv = dev_get_priv(dev);
  375. int offset;
  376. const char *pin_name;
  377. int drive, pull = SUN4I_PINCTRL_NO_PULL, i;
  378. offset = fdtdec_lookup_phandle(gd->fdt_blob, dev_of_offset(dev),
  379. "pinctrl-0");
  380. if (offset < 0) {
  381. printf("WARNING: emac: cannot find pinctrl-0 node\n");
  382. return offset;
  383. }
  384. drive = fdt_getprop_u32_default_node(gd->fdt_blob, offset, 0,
  385. "drive-strength", ~0);
  386. if (drive != ~0) {
  387. if (drive <= 10)
  388. drive = SUN4I_PINCTRL_10_MA;
  389. else if (drive <= 20)
  390. drive = SUN4I_PINCTRL_20_MA;
  391. else if (drive <= 30)
  392. drive = SUN4I_PINCTRL_30_MA;
  393. else
  394. drive = SUN4I_PINCTRL_40_MA;
  395. }
  396. if (fdt_get_property(gd->fdt_blob, offset, "bias-pull-up", NULL))
  397. pull = SUN4I_PINCTRL_PULL_UP;
  398. else if (fdt_get_property(gd->fdt_blob, offset, "bias-pull-down", NULL))
  399. pull = SUN4I_PINCTRL_PULL_DOWN;
  400. for (i = 0; ; i++) {
  401. int pin;
  402. pin_name = fdt_stringlist_get(gd->fdt_blob, offset,
  403. "pins", i, NULL);
  404. if (!pin_name)
  405. break;
  406. pin = sunxi_name_to_gpio(pin_name);
  407. if (pin < 0)
  408. continue;
  409. if (priv->variant == H3_EMAC)
  410. sunxi_gpio_set_cfgpin(pin, SUN8I_IOMUX_H3);
  411. else if (priv->variant == R40_GMAC)
  412. sunxi_gpio_set_cfgpin(pin, SUN8I_IOMUX_R40);
  413. else
  414. sunxi_gpio_set_cfgpin(pin, SUN8I_IOMUX);
  415. if (drive != ~0)
  416. sunxi_gpio_set_drv(pin, drive);
  417. if (pull != ~0)
  418. sunxi_gpio_set_pull(pin, pull);
  419. }
  420. if (!i) {
  421. printf("WARNING: emac: cannot find pins property\n");
  422. return -2;
  423. }
  424. return 0;
  425. }
  426. static int _sun8i_eth_recv(struct emac_eth_dev *priv, uchar **packetp)
  427. {
  428. u32 status, desc_num = priv->rx_currdescnum;
  429. struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num];
  430. int length = -EAGAIN;
  431. int good_packet = 1;
  432. uintptr_t desc_start = (uintptr_t)desc_p;
  433. uintptr_t desc_end = desc_start +
  434. roundup(sizeof(*desc_p), ARCH_DMA_MINALIGN);
  435. ulong data_start = (uintptr_t)desc_p->buf_addr;
  436. ulong data_end;
  437. /* Invalidate entire buffer descriptor */
  438. invalidate_dcache_range(desc_start, desc_end);
  439. status = desc_p->status;
  440. /* Check for DMA own bit */
  441. if (!(status & BIT(31))) {
  442. length = (desc_p->status >> 16) & 0x3FFF;
  443. if (length < 0x40) {
  444. good_packet = 0;
  445. debug("RX: Bad Packet (runt)\n");
  446. }
  447. data_end = data_start + length;
  448. /* Invalidate received data */
  449. invalidate_dcache_range(rounddown(data_start,
  450. ARCH_DMA_MINALIGN),
  451. roundup(data_end,
  452. ARCH_DMA_MINALIGN));
  453. if (good_packet) {
  454. if (length > CONFIG_ETH_RXSIZE) {
  455. printf("Received packet is too big (len=%d)\n",
  456. length);
  457. return -EMSGSIZE;
  458. }
  459. *packetp = (uchar *)(ulong)desc_p->buf_addr;
  460. return length;
  461. }
  462. }
  463. return length;
  464. }
  465. static int _sun8i_emac_eth_send(struct emac_eth_dev *priv, void *packet,
  466. int len)
  467. {
  468. u32 v, desc_num = priv->tx_currdescnum;
  469. struct emac_dma_desc *desc_p = &priv->tx_chain[desc_num];
  470. uintptr_t desc_start = (uintptr_t)desc_p;
  471. uintptr_t desc_end = desc_start +
  472. roundup(sizeof(*desc_p), ARCH_DMA_MINALIGN);
  473. uintptr_t data_start = (uintptr_t)desc_p->buf_addr;
  474. uintptr_t data_end = data_start +
  475. roundup(len, ARCH_DMA_MINALIGN);
  476. /* Invalidate entire buffer descriptor */
  477. invalidate_dcache_range(desc_start, desc_end);
  478. desc_p->st = len;
  479. /* Mandatory undocumented bit */
  480. desc_p->st |= BIT(24);
  481. memcpy((void *)data_start, packet, len);
  482. /* Flush data to be sent */
  483. flush_dcache_range(data_start, data_end);
  484. /* frame end */
  485. desc_p->st |= BIT(30);
  486. desc_p->st |= BIT(31);
  487. /*frame begin */
  488. desc_p->st |= BIT(29);
  489. desc_p->status = BIT(31);
  490. /*Descriptors st and status field has changed, so FLUSH it */
  491. flush_dcache_range(desc_start, desc_end);
  492. /* Move to next Descriptor and wrap around */
  493. if (++desc_num >= CONFIG_TX_DESCR_NUM)
  494. desc_num = 0;
  495. priv->tx_currdescnum = desc_num;
  496. /* Start the DMA */
  497. v = readl(priv->mac_reg + EMAC_TX_CTL1);
  498. v |= BIT(31);/* mandatory */
  499. v |= BIT(30);/* mandatory */
  500. writel(v, priv->mac_reg + EMAC_TX_CTL1);
  501. return 0;
  502. }
  503. static int sun8i_eth_write_hwaddr(struct udevice *dev)
  504. {
  505. struct eth_pdata *pdata = dev_get_platdata(dev);
  506. struct emac_eth_dev *priv = dev_get_priv(dev);
  507. return _sun8i_write_hwaddr(priv, pdata->enetaddr);
  508. }
  509. static void sun8i_emac_board_setup(struct emac_eth_dev *priv)
  510. {
  511. struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  512. if (priv->variant == H3_EMAC) {
  513. /* Only H3/H5 have clock controls for internal EPHY */
  514. if (priv->use_internal_phy) {
  515. /* Set clock gating for ephy */
  516. setbits_le32(&ccm->bus_gate4,
  517. BIT(AHB_GATE_OFFSET_EPHY));
  518. /* Deassert EPHY */
  519. setbits_le32(&ccm->ahb_reset2_cfg,
  520. BIT(AHB_RESET_OFFSET_EPHY));
  521. }
  522. }
  523. if (priv->variant == R40_GMAC) {
  524. /* Set clock gating for emac */
  525. setbits_le32(&ccm->ahb_reset1_cfg, BIT(AHB_RESET_OFFSET_GMAC));
  526. /* De-assert EMAC */
  527. setbits_le32(&ccm->ahb_gate1, BIT(AHB_GATE_OFFSET_GMAC));
  528. /* Select RGMII for R40 */
  529. setbits_le32(&ccm->gmac_clk_cfg,
  530. CCM_GMAC_CTRL_TX_CLK_SRC_INT_RGMII |
  531. CCM_GMAC_CTRL_GPIT_RGMII);
  532. setbits_le32(&ccm->gmac_clk_cfg,
  533. CCM_GMAC_CTRL_TX_CLK_DELAY(CONFIG_GMAC_TX_DELAY));
  534. } else {
  535. /* Set clock gating for emac */
  536. setbits_le32(&ccm->ahb_gate0, BIT(AHB_GATE_OFFSET_GMAC));
  537. /* De-assert EMAC */
  538. setbits_le32(&ccm->ahb_reset0_cfg, BIT(AHB_RESET_OFFSET_GMAC));
  539. }
  540. }
  541. #if defined(CONFIG_DM_GPIO)
  542. static int sun8i_mdio_reset(struct mii_dev *bus)
  543. {
  544. struct udevice *dev = bus->priv;
  545. struct emac_eth_dev *priv = dev_get_priv(dev);
  546. struct sun8i_eth_pdata *pdata = dev_get_platdata(dev);
  547. int ret;
  548. if (!dm_gpio_is_valid(&priv->reset_gpio))
  549. return 0;
  550. /* reset the phy */
  551. ret = dm_gpio_set_value(&priv->reset_gpio, 0);
  552. if (ret)
  553. return ret;
  554. udelay(pdata->reset_delays[0]);
  555. ret = dm_gpio_set_value(&priv->reset_gpio, 1);
  556. if (ret)
  557. return ret;
  558. udelay(pdata->reset_delays[1]);
  559. ret = dm_gpio_set_value(&priv->reset_gpio, 0);
  560. if (ret)
  561. return ret;
  562. udelay(pdata->reset_delays[2]);
  563. return 0;
  564. }
  565. #endif
  566. static int sun8i_mdio_init(const char *name, struct udevice *priv)
  567. {
  568. struct mii_dev *bus = mdio_alloc();
  569. if (!bus) {
  570. debug("Failed to allocate MDIO bus\n");
  571. return -ENOMEM;
  572. }
  573. bus->read = sun8i_mdio_read;
  574. bus->write = sun8i_mdio_write;
  575. snprintf(bus->name, sizeof(bus->name), name);
  576. bus->priv = (void *)priv;
  577. #if defined(CONFIG_DM_GPIO)
  578. bus->reset = sun8i_mdio_reset;
  579. #endif
  580. return mdio_register(bus);
  581. }
  582. static int sun8i_emac_eth_start(struct udevice *dev)
  583. {
  584. struct eth_pdata *pdata = dev_get_platdata(dev);
  585. return _sun8i_emac_eth_init(dev->priv, pdata->enetaddr);
  586. }
  587. static int sun8i_emac_eth_send(struct udevice *dev, void *packet, int length)
  588. {
  589. struct emac_eth_dev *priv = dev_get_priv(dev);
  590. return _sun8i_emac_eth_send(priv, packet, length);
  591. }
  592. static int sun8i_emac_eth_recv(struct udevice *dev, int flags, uchar **packetp)
  593. {
  594. struct emac_eth_dev *priv = dev_get_priv(dev);
  595. return _sun8i_eth_recv(priv, packetp);
  596. }
  597. static int _sun8i_free_pkt(struct emac_eth_dev *priv)
  598. {
  599. u32 desc_num = priv->rx_currdescnum;
  600. struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num];
  601. uintptr_t desc_start = (uintptr_t)desc_p;
  602. uintptr_t desc_end = desc_start +
  603. roundup(sizeof(u32), ARCH_DMA_MINALIGN);
  604. /* Make the current descriptor valid again */
  605. desc_p->status |= BIT(31);
  606. /* Flush Status field of descriptor */
  607. flush_dcache_range(desc_start, desc_end);
  608. /* Move to next desc and wrap-around condition. */
  609. if (++desc_num >= CONFIG_RX_DESCR_NUM)
  610. desc_num = 0;
  611. priv->rx_currdescnum = desc_num;
  612. return 0;
  613. }
  614. static int sun8i_eth_free_pkt(struct udevice *dev, uchar *packet,
  615. int length)
  616. {
  617. struct emac_eth_dev *priv = dev_get_priv(dev);
  618. return _sun8i_free_pkt(priv);
  619. }
  620. static void sun8i_emac_eth_stop(struct udevice *dev)
  621. {
  622. struct emac_eth_dev *priv = dev_get_priv(dev);
  623. /* Stop Rx/Tx transmitter */
  624. clrbits_le32(priv->mac_reg + EMAC_RX_CTL0, BIT(31));
  625. clrbits_le32(priv->mac_reg + EMAC_TX_CTL0, BIT(31));
  626. /* Stop TX DMA */
  627. clrbits_le32(priv->mac_reg + EMAC_TX_CTL1, BIT(30));
  628. phy_shutdown(priv->phydev);
  629. }
  630. static int sun8i_emac_eth_probe(struct udevice *dev)
  631. {
  632. struct eth_pdata *pdata = dev_get_platdata(dev);
  633. struct emac_eth_dev *priv = dev_get_priv(dev);
  634. priv->mac_reg = (void *)pdata->iobase;
  635. sun8i_emac_board_setup(priv);
  636. sun8i_emac_set_syscon(priv);
  637. sun8i_mdio_init(dev->name, dev);
  638. priv->bus = miiphy_get_dev_by_name(dev->name);
  639. return sun8i_phy_init(priv, dev);
  640. }
  641. static const struct eth_ops sun8i_emac_eth_ops = {
  642. .start = sun8i_emac_eth_start,
  643. .write_hwaddr = sun8i_eth_write_hwaddr,
  644. .send = sun8i_emac_eth_send,
  645. .recv = sun8i_emac_eth_recv,
  646. .free_pkt = sun8i_eth_free_pkt,
  647. .stop = sun8i_emac_eth_stop,
  648. };
  649. static int sun8i_emac_eth_ofdata_to_platdata(struct udevice *dev)
  650. {
  651. struct sun8i_eth_pdata *sun8i_pdata = dev_get_platdata(dev);
  652. struct eth_pdata *pdata = &sun8i_pdata->eth_pdata;
  653. struct emac_eth_dev *priv = dev_get_priv(dev);
  654. const char *phy_mode;
  655. const fdt32_t *reg;
  656. int node = dev_of_offset(dev);
  657. int offset = 0;
  658. #ifdef CONFIG_DM_GPIO
  659. int reset_flags = GPIOD_IS_OUT;
  660. int ret = 0;
  661. #endif
  662. pdata->iobase = devfdt_get_addr(dev);
  663. if (pdata->iobase == FDT_ADDR_T_NONE) {
  664. debug("%s: Cannot find MAC base address\n", __func__);
  665. return -EINVAL;
  666. }
  667. priv->variant = dev_get_driver_data(dev);
  668. if (!priv->variant) {
  669. printf("%s: Missing variant\n", __func__);
  670. return -EINVAL;
  671. }
  672. if (priv->variant != R40_GMAC) {
  673. offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "syscon");
  674. if (offset < 0) {
  675. debug("%s: cannot find syscon node\n", __func__);
  676. return -EINVAL;
  677. }
  678. reg = fdt_getprop(gd->fdt_blob, offset, "reg", NULL);
  679. if (!reg) {
  680. debug("%s: cannot find reg property in syscon node\n",
  681. __func__);
  682. return -EINVAL;
  683. }
  684. priv->sysctl_reg = fdt_translate_address((void *)gd->fdt_blob,
  685. offset, reg);
  686. if (priv->sysctl_reg == FDT_ADDR_T_NONE) {
  687. debug("%s: Cannot find syscon base address\n",
  688. __func__);
  689. return -EINVAL;
  690. }
  691. }
  692. pdata->phy_interface = -1;
  693. priv->phyaddr = -1;
  694. priv->use_internal_phy = false;
  695. offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "phy-handle");
  696. if (offset < 0) {
  697. debug("%s: Cannot find PHY address\n", __func__);
  698. return -EINVAL;
  699. }
  700. priv->phyaddr = fdtdec_get_int(gd->fdt_blob, offset, "reg", -1);
  701. phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL);
  702. if (phy_mode)
  703. pdata->phy_interface = phy_get_interface_by_name(phy_mode);
  704. printf("phy interface%d\n", pdata->phy_interface);
  705. if (pdata->phy_interface == -1) {
  706. debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
  707. return -EINVAL;
  708. }
  709. if (priv->variant == H3_EMAC) {
  710. int parent = fdt_parent_offset(gd->fdt_blob, offset);
  711. if (parent >= 0 &&
  712. !fdt_node_check_compatible(gd->fdt_blob, parent,
  713. "allwinner,sun8i-h3-mdio-internal"))
  714. priv->use_internal_phy = true;
  715. }
  716. priv->interface = pdata->phy_interface;
  717. if (!priv->use_internal_phy)
  718. parse_phy_pins(dev);
  719. #ifdef CONFIG_DM_GPIO
  720. if (fdtdec_get_bool(gd->fdt_blob, dev_of_offset(dev),
  721. "snps,reset-active-low"))
  722. reset_flags |= GPIOD_ACTIVE_LOW;
  723. ret = gpio_request_by_name(dev, "snps,reset-gpio", 0,
  724. &priv->reset_gpio, reset_flags);
  725. if (ret == 0) {
  726. ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev),
  727. "snps,reset-delays-us",
  728. sun8i_pdata->reset_delays, 3);
  729. } else if (ret == -ENOENT) {
  730. ret = 0;
  731. }
  732. #endif
  733. return 0;
  734. }
  735. static const struct udevice_id sun8i_emac_eth_ids[] = {
  736. {.compatible = "allwinner,sun8i-h3-emac", .data = (uintptr_t)H3_EMAC },
  737. {.compatible = "allwinner,sun50i-a64-emac",
  738. .data = (uintptr_t)A64_EMAC },
  739. {.compatible = "allwinner,sun8i-a83t-emac",
  740. .data = (uintptr_t)A83T_EMAC },
  741. {.compatible = "allwinner,sun8i-r40-gmac",
  742. .data = (uintptr_t)R40_GMAC },
  743. { }
  744. };
  745. U_BOOT_DRIVER(eth_sun8i_emac) = {
  746. .name = "eth_sun8i_emac",
  747. .id = UCLASS_ETH,
  748. .of_match = sun8i_emac_eth_ids,
  749. .ofdata_to_platdata = sun8i_emac_eth_ofdata_to_platdata,
  750. .probe = sun8i_emac_eth_probe,
  751. .ops = &sun8i_emac_eth_ops,
  752. .priv_auto_alloc_size = sizeof(struct emac_eth_dev),
  753. .platdata_auto_alloc_size = sizeof(struct sun8i_eth_pdata),
  754. .flags = DM_FLAG_ALLOC_PRIV_DMA,
  755. };