regmap.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright (c) 2015 Google, Inc
  4. * Written by Simon Glass <sjg@chromium.org>
  5. */
  6. #include <common.h>
  7. #include <dm.h>
  8. #include <errno.h>
  9. #include <linux/libfdt.h>
  10. #include <malloc.h>
  11. #include <mapmem.h>
  12. #include <regmap.h>
  13. #include <asm/io.h>
  14. #include <dm/of_addr.h>
  15. #include <linux/ioport.h>
  16. DECLARE_GLOBAL_DATA_PTR;
  17. /**
  18. * regmap_alloc() - Allocate a regmap with a given number of ranges.
  19. *
  20. * @count: Number of ranges to be allocated for the regmap.
  21. * Return: A pointer to the newly allocated regmap, or NULL on error.
  22. */
  23. static struct regmap *regmap_alloc(int count)
  24. {
  25. struct regmap *map;
  26. map = malloc(sizeof(*map) + sizeof(map->ranges[0]) * count);
  27. if (!map)
  28. return NULL;
  29. map->range_count = count;
  30. return map;
  31. }
  32. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  33. int regmap_init_mem_platdata(struct udevice *dev, fdt_val_t *reg, int count,
  34. struct regmap **mapp)
  35. {
  36. struct regmap_range *range;
  37. struct regmap *map;
  38. map = regmap_alloc(count);
  39. if (!map)
  40. return -ENOMEM;
  41. for (range = map->ranges; count > 0; reg += 2, range++, count--) {
  42. range->start = *reg;
  43. range->size = reg[1];
  44. }
  45. *mapp = map;
  46. return 0;
  47. }
  48. #else
  49. /**
  50. * init_range() - Initialize a single range of a regmap
  51. * @node: Device node that will use the map in question
  52. * @range: Pointer to a regmap_range structure that will be initialized
  53. * @addr_len: The length of the addr parts of the reg property
  54. * @size_len: The length of the size parts of the reg property
  55. * @index: The index of the range to initialize
  56. *
  57. * This function will read the necessary 'reg' information from the device tree
  58. * (the 'addr' part, and the 'length' part), and initialize the range in
  59. * quesion.
  60. *
  61. * Return: 0 if OK, -ve on error
  62. */
  63. static int init_range(ofnode node, struct regmap_range *range, int addr_len,
  64. int size_len, int index)
  65. {
  66. fdt_size_t sz;
  67. struct resource r;
  68. if (of_live_active()) {
  69. int ret;
  70. ret = of_address_to_resource(ofnode_to_np(node),
  71. index, &r);
  72. if (ret) {
  73. debug("%s: Could not read resource of range %d (ret = %d)\n",
  74. ofnode_get_name(node), index, ret);
  75. return ret;
  76. }
  77. range->start = r.start;
  78. range->size = r.end - r.start + 1;
  79. } else {
  80. int offset = ofnode_to_offset(node);
  81. range->start = fdtdec_get_addr_size_fixed(gd->fdt_blob, offset,
  82. "reg", index,
  83. addr_len, size_len,
  84. &sz, true);
  85. if (range->start == FDT_ADDR_T_NONE) {
  86. debug("%s: Could not read start of range %d\n",
  87. ofnode_get_name(node), index);
  88. return -EINVAL;
  89. }
  90. range->size = sz;
  91. }
  92. return 0;
  93. }
  94. int regmap_init_mem(ofnode node, struct regmap **mapp)
  95. {
  96. struct regmap_range *range;
  97. struct regmap *map;
  98. int count;
  99. int addr_len, size_len, both_len;
  100. int len;
  101. int index;
  102. addr_len = ofnode_read_simple_addr_cells(ofnode_get_parent(node));
  103. if (addr_len < 0) {
  104. debug("%s: Error while reading the addr length (ret = %d)\n",
  105. ofnode_get_name(node), addr_len);
  106. return addr_len;
  107. }
  108. size_len = ofnode_read_simple_size_cells(ofnode_get_parent(node));
  109. if (size_len < 0) {
  110. debug("%s: Error while reading the size length: (ret = %d)\n",
  111. ofnode_get_name(node), size_len);
  112. return size_len;
  113. }
  114. both_len = addr_len + size_len;
  115. if (!both_len) {
  116. debug("%s: Both addr and size length are zero\n",
  117. ofnode_get_name(node));
  118. return -EINVAL;
  119. }
  120. len = ofnode_read_size(node, "reg");
  121. if (len < 0) {
  122. debug("%s: Error while reading reg size (ret = %d)\n",
  123. ofnode_get_name(node), len);
  124. return len;
  125. }
  126. len /= sizeof(fdt32_t);
  127. count = len / both_len;
  128. if (!count) {
  129. debug("%s: Not enough data in reg property\n",
  130. ofnode_get_name(node));
  131. return -EINVAL;
  132. }
  133. map = regmap_alloc(count);
  134. if (!map)
  135. return -ENOMEM;
  136. for (range = map->ranges, index = 0; count > 0;
  137. count--, range++, index++) {
  138. int ret = init_range(node, range, addr_len, size_len, index);
  139. if (ret)
  140. return ret;
  141. }
  142. if (ofnode_read_bool(node, "little-endian"))
  143. map->endianness = REGMAP_LITTLE_ENDIAN;
  144. else if (ofnode_read_bool(node, "big-endian"))
  145. map->endianness = REGMAP_BIG_ENDIAN;
  146. else if (ofnode_read_bool(node, "native-endian"))
  147. map->endianness = REGMAP_NATIVE_ENDIAN;
  148. else /* Default: native endianness */
  149. map->endianness = REGMAP_NATIVE_ENDIAN;
  150. *mapp = map;
  151. return 0;
  152. }
  153. #endif
  154. void *regmap_get_range(struct regmap *map, unsigned int range_num)
  155. {
  156. struct regmap_range *range;
  157. if (range_num >= map->range_count)
  158. return NULL;
  159. range = &map->ranges[range_num];
  160. return map_sysmem(range->start, range->size);
  161. }
  162. int regmap_uninit(struct regmap *map)
  163. {
  164. free(map);
  165. return 0;
  166. }
  167. static inline u8 __read_8(u8 *addr, enum regmap_endianness_t endianness)
  168. {
  169. return readb(addr);
  170. }
  171. static inline u16 __read_16(u16 *addr, enum regmap_endianness_t endianness)
  172. {
  173. switch (endianness) {
  174. case REGMAP_LITTLE_ENDIAN:
  175. return in_le16(addr);
  176. case REGMAP_BIG_ENDIAN:
  177. return in_be16(addr);
  178. case REGMAP_NATIVE_ENDIAN:
  179. return readw(addr);
  180. }
  181. return readw(addr);
  182. }
  183. static inline u32 __read_32(u32 *addr, enum regmap_endianness_t endianness)
  184. {
  185. switch (endianness) {
  186. case REGMAP_LITTLE_ENDIAN:
  187. return in_le32(addr);
  188. case REGMAP_BIG_ENDIAN:
  189. return in_be32(addr);
  190. case REGMAP_NATIVE_ENDIAN:
  191. return readl(addr);
  192. }
  193. return readl(addr);
  194. }
  195. #if defined(in_le64) && defined(in_be64) && defined(readq)
  196. static inline u64 __read_64(u64 *addr, enum regmap_endianness_t endianness)
  197. {
  198. switch (endianness) {
  199. case REGMAP_LITTLE_ENDIAN:
  200. return in_le64(addr);
  201. case REGMAP_BIG_ENDIAN:
  202. return in_be64(addr);
  203. case REGMAP_NATIVE_ENDIAN:
  204. return readq(addr);
  205. }
  206. return readq(addr);
  207. }
  208. #endif
  209. int regmap_raw_read_range(struct regmap *map, uint range_num, uint offset,
  210. void *valp, size_t val_len)
  211. {
  212. struct regmap_range *range;
  213. void *ptr;
  214. if (range_num >= map->range_count) {
  215. debug("%s: range index %d larger than range count\n",
  216. __func__, range_num);
  217. return -ERANGE;
  218. }
  219. range = &map->ranges[range_num];
  220. ptr = map_physmem(range->start + offset, val_len, MAP_NOCACHE);
  221. if (offset + val_len > range->size) {
  222. debug("%s: offset/size combination invalid\n", __func__);
  223. return -ERANGE;
  224. }
  225. switch (val_len) {
  226. case REGMAP_SIZE_8:
  227. *((u8 *)valp) = __read_8(ptr, map->endianness);
  228. break;
  229. case REGMAP_SIZE_16:
  230. *((u16 *)valp) = __read_16(ptr, map->endianness);
  231. break;
  232. case REGMAP_SIZE_32:
  233. *((u32 *)valp) = __read_32(ptr, map->endianness);
  234. break;
  235. #if defined(in_le64) && defined(in_be64) && defined(readq)
  236. case REGMAP_SIZE_64:
  237. *((u64 *)valp) = __read_64(ptr, map->endianness);
  238. break;
  239. #endif
  240. default:
  241. debug("%s: regmap size %zu unknown\n", __func__, val_len);
  242. return -EINVAL;
  243. }
  244. return 0;
  245. }
  246. int regmap_raw_read(struct regmap *map, uint offset, void *valp, size_t val_len)
  247. {
  248. return regmap_raw_read_range(map, 0, offset, valp, val_len);
  249. }
  250. int regmap_read(struct regmap *map, uint offset, uint *valp)
  251. {
  252. return regmap_raw_read(map, offset, valp, REGMAP_SIZE_32);
  253. }
  254. static inline void __write_8(u8 *addr, const u8 *val,
  255. enum regmap_endianness_t endianness)
  256. {
  257. writeb(*val, addr);
  258. }
  259. static inline void __write_16(u16 *addr, const u16 *val,
  260. enum regmap_endianness_t endianness)
  261. {
  262. switch (endianness) {
  263. case REGMAP_NATIVE_ENDIAN:
  264. writew(*val, addr);
  265. break;
  266. case REGMAP_LITTLE_ENDIAN:
  267. out_le16(addr, *val);
  268. break;
  269. case REGMAP_BIG_ENDIAN:
  270. out_be16(addr, *val);
  271. break;
  272. }
  273. }
  274. static inline void __write_32(u32 *addr, const u32 *val,
  275. enum regmap_endianness_t endianness)
  276. {
  277. switch (endianness) {
  278. case REGMAP_NATIVE_ENDIAN:
  279. writel(*val, addr);
  280. break;
  281. case REGMAP_LITTLE_ENDIAN:
  282. out_le32(addr, *val);
  283. break;
  284. case REGMAP_BIG_ENDIAN:
  285. out_be32(addr, *val);
  286. break;
  287. }
  288. }
  289. #if defined(out_le64) && defined(out_be64) && defined(writeq)
  290. static inline void __write_64(u64 *addr, const u64 *val,
  291. enum regmap_endianness_t endianness)
  292. {
  293. switch (endianness) {
  294. case REGMAP_NATIVE_ENDIAN:
  295. writeq(*val, addr);
  296. break;
  297. case REGMAP_LITTLE_ENDIAN:
  298. out_le64(addr, *val);
  299. break;
  300. case REGMAP_BIG_ENDIAN:
  301. out_be64(addr, *val);
  302. break;
  303. }
  304. }
  305. #endif
  306. int regmap_raw_write_range(struct regmap *map, uint range_num, uint offset,
  307. const void *val, size_t val_len)
  308. {
  309. struct regmap_range *range;
  310. void *ptr;
  311. if (range_num >= map->range_count) {
  312. debug("%s: range index %d larger than range count\n",
  313. __func__, range_num);
  314. return -ERANGE;
  315. }
  316. range = &map->ranges[range_num];
  317. ptr = map_physmem(range->start + offset, val_len, MAP_NOCACHE);
  318. if (offset + val_len > range->size) {
  319. debug("%s: offset/size combination invalid\n", __func__);
  320. return -ERANGE;
  321. }
  322. switch (val_len) {
  323. case REGMAP_SIZE_8:
  324. __write_8(ptr, val, map->endianness);
  325. break;
  326. case REGMAP_SIZE_16:
  327. __write_16(ptr, val, map->endianness);
  328. break;
  329. case REGMAP_SIZE_32:
  330. __write_32(ptr, val, map->endianness);
  331. break;
  332. #if defined(out_le64) && defined(out_be64) && defined(writeq)
  333. case REGMAP_SIZE_64:
  334. __write_64(ptr, val, map->endianness);
  335. break;
  336. #endif
  337. default:
  338. debug("%s: regmap size %zu unknown\n", __func__, val_len);
  339. return -EINVAL;
  340. }
  341. return 0;
  342. }
  343. int regmap_raw_write(struct regmap *map, uint offset, const void *val,
  344. size_t val_len)
  345. {
  346. return regmap_raw_write_range(map, 0, offset, val, val_len);
  347. }
  348. int regmap_write(struct regmap *map, uint offset, uint val)
  349. {
  350. return regmap_raw_write(map, offset, &val, REGMAP_SIZE_32);
  351. }
  352. int regmap_update_bits(struct regmap *map, uint offset, uint mask, uint val)
  353. {
  354. uint reg;
  355. int ret;
  356. ret = regmap_read(map, offset, &reg);
  357. if (ret)
  358. return ret;
  359. reg &= ~mask;
  360. return regmap_write(map, offset, reg | val);
  361. }