clk_stm32f.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
  4. * Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
  5. */
  6. #include <common.h>
  7. #include <clk-uclass.h>
  8. #include <dm.h>
  9. #include <stm32_rcc.h>
  10. #include <asm/io.h>
  11. #include <asm/arch/stm32.h>
  12. #include <asm/arch/stm32_pwr.h>
  13. #include <dt-bindings/mfd/stm32f7-rcc.h>
  14. #define RCC_CR_HSION BIT(0)
  15. #define RCC_CR_HSEON BIT(16)
  16. #define RCC_CR_HSERDY BIT(17)
  17. #define RCC_CR_HSEBYP BIT(18)
  18. #define RCC_CR_CSSON BIT(19)
  19. #define RCC_CR_PLLON BIT(24)
  20. #define RCC_CR_PLLRDY BIT(25)
  21. #define RCC_CR_PLLSAION BIT(28)
  22. #define RCC_CR_PLLSAIRDY BIT(29)
  23. #define RCC_PLLCFGR_PLLM_MASK GENMASK(5, 0)
  24. #define RCC_PLLCFGR_PLLN_MASK GENMASK(14, 6)
  25. #define RCC_PLLCFGR_PLLP_MASK GENMASK(17, 16)
  26. #define RCC_PLLCFGR_PLLQ_MASK GENMASK(27, 24)
  27. #define RCC_PLLCFGR_PLLSRC BIT(22)
  28. #define RCC_PLLCFGR_PLLM_SHIFT 0
  29. #define RCC_PLLCFGR_PLLN_SHIFT 6
  30. #define RCC_PLLCFGR_PLLP_SHIFT 16
  31. #define RCC_PLLCFGR_PLLQ_SHIFT 24
  32. #define RCC_CFGR_AHB_PSC_MASK GENMASK(7, 4)
  33. #define RCC_CFGR_APB1_PSC_MASK GENMASK(12, 10)
  34. #define RCC_CFGR_APB2_PSC_MASK GENMASK(15, 13)
  35. #define RCC_CFGR_SW0 BIT(0)
  36. #define RCC_CFGR_SW1 BIT(1)
  37. #define RCC_CFGR_SW_MASK GENMASK(1, 0)
  38. #define RCC_CFGR_SW_HSI 0
  39. #define RCC_CFGR_SW_HSE RCC_CFGR_SW0
  40. #define RCC_CFGR_SW_PLL RCC_CFGR_SW1
  41. #define RCC_CFGR_SWS0 BIT(2)
  42. #define RCC_CFGR_SWS1 BIT(3)
  43. #define RCC_CFGR_SWS_MASK GENMASK(3, 2)
  44. #define RCC_CFGR_SWS_HSI 0
  45. #define RCC_CFGR_SWS_HSE RCC_CFGR_SWS0
  46. #define RCC_CFGR_SWS_PLL RCC_CFGR_SWS1
  47. #define RCC_CFGR_HPRE_SHIFT 4
  48. #define RCC_CFGR_PPRE1_SHIFT 10
  49. #define RCC_CFGR_PPRE2_SHIFT 13
  50. #define RCC_PLLSAICFGR_PLLSAIN_MASK GENMASK(14, 6)
  51. #define RCC_PLLSAICFGR_PLLSAIP_MASK GENMASK(17, 16)
  52. #define RCC_PLLSAICFGR_PLLSAIQ_MASK GENMASK(27, 24)
  53. #define RCC_PLLSAICFGR_PLLSAIR_MASK GENMASK(30, 28)
  54. #define RCC_PLLSAICFGR_PLLSAIN_SHIFT 6
  55. #define RCC_PLLSAICFGR_PLLSAIP_SHIFT 16
  56. #define RCC_PLLSAICFGR_PLLSAIQ_SHIFT 24
  57. #define RCC_PLLSAICFGR_PLLSAIR_SHIFT 28
  58. #define RCC_PLLSAICFGR_PLLSAIP_4 BIT(16)
  59. #define RCC_PLLSAICFGR_PLLSAIQ_4 BIT(26)
  60. #define RCC_PLLSAICFGR_PLLSAIR_3 BIT(29) | BIT(28)
  61. #define RCC_DCKCFGRX_TIMPRE BIT(24)
  62. #define RCC_DCKCFGRX_CK48MSEL BIT(27)
  63. #define RCC_DCKCFGRX_SDMMC1SEL BIT(28)
  64. #define RCC_DCKCFGR2_SDMMC2SEL BIT(29)
  65. #define RCC_DCKCFGR_PLLSAIDIVR_SHIFT 16
  66. #define RCC_DCKCFGR_PLLSAIDIVR_MASK GENMASK(17, 16)
  67. #define RCC_DCKCFGR_PLLSAIDIVR_2 0
  68. /*
  69. * RCC AHB1ENR specific definitions
  70. */
  71. #define RCC_AHB1ENR_ETHMAC_EN BIT(25)
  72. #define RCC_AHB1ENR_ETHMAC_TX_EN BIT(26)
  73. #define RCC_AHB1ENR_ETHMAC_RX_EN BIT(27)
  74. /*
  75. * RCC APB1ENR specific definitions
  76. */
  77. #define RCC_APB1ENR_TIM2EN BIT(0)
  78. #define RCC_APB1ENR_PWREN BIT(28)
  79. /*
  80. * RCC APB2ENR specific definitions
  81. */
  82. #define RCC_APB2ENR_SYSCFGEN BIT(14)
  83. #define RCC_APB2ENR_SAI1EN BIT(22)
  84. enum pllsai_div {
  85. PLLSAIP,
  86. PLLSAIQ,
  87. PLLSAIR,
  88. };
  89. static const struct stm32_clk_info stm32f4_clk_info = {
  90. /* 180 MHz */
  91. .sys_pll_psc = {
  92. .pll_n = 360,
  93. .pll_p = 2,
  94. .pll_q = 8,
  95. .ahb_psc = AHB_PSC_1,
  96. .apb1_psc = APB_PSC_4,
  97. .apb2_psc = APB_PSC_2,
  98. },
  99. .has_overdrive = false,
  100. .v2 = false,
  101. };
  102. static const struct stm32_clk_info stm32f7_clk_info = {
  103. /* 200 MHz */
  104. .sys_pll_psc = {
  105. .pll_n = 400,
  106. .pll_p = 2,
  107. .pll_q = 8,
  108. .ahb_psc = AHB_PSC_1,
  109. .apb1_psc = APB_PSC_4,
  110. .apb2_psc = APB_PSC_2,
  111. },
  112. .has_overdrive = true,
  113. .v2 = true,
  114. };
  115. struct stm32_clk {
  116. struct stm32_rcc_regs *base;
  117. struct stm32_pwr_regs *pwr_regs;
  118. struct stm32_clk_info info;
  119. unsigned long hse_rate;
  120. bool pllsaip;
  121. };
  122. #ifdef CONFIG_VIDEO_STM32
  123. static const u8 plldivr_table[] = { 0, 0, 2, 3, 4, 5, 6, 7 };
  124. #endif
  125. static const u8 pllsaidivr_table[] = { 2, 4, 8, 16 };
  126. static int configure_clocks(struct udevice *dev)
  127. {
  128. struct stm32_clk *priv = dev_get_priv(dev);
  129. struct stm32_rcc_regs *regs = priv->base;
  130. struct stm32_pwr_regs *pwr = priv->pwr_regs;
  131. struct pll_psc *sys_pll_psc = &priv->info.sys_pll_psc;
  132. /* Reset RCC configuration */
  133. setbits_le32(&regs->cr, RCC_CR_HSION);
  134. writel(0, &regs->cfgr); /* Reset CFGR */
  135. clrbits_le32(&regs->cr, (RCC_CR_HSEON | RCC_CR_CSSON
  136. | RCC_CR_PLLON | RCC_CR_PLLSAION));
  137. writel(0x24003010, &regs->pllcfgr); /* Reset value from RM */
  138. clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
  139. writel(0, &regs->cir); /* Disable all interrupts */
  140. /* Configure for HSE+PLL operation */
  141. setbits_le32(&regs->cr, RCC_CR_HSEON);
  142. while (!(readl(&regs->cr) & RCC_CR_HSERDY))
  143. ;
  144. setbits_le32(&regs->cfgr, ((
  145. sys_pll_psc->ahb_psc << RCC_CFGR_HPRE_SHIFT)
  146. | (sys_pll_psc->apb1_psc << RCC_CFGR_PPRE1_SHIFT)
  147. | (sys_pll_psc->apb2_psc << RCC_CFGR_PPRE2_SHIFT)));
  148. /* Configure the main PLL */
  149. setbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLSRC); /* pll source HSE */
  150. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLM_MASK,
  151. sys_pll_psc->pll_m << RCC_PLLCFGR_PLLM_SHIFT);
  152. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLN_MASK,
  153. sys_pll_psc->pll_n << RCC_PLLCFGR_PLLN_SHIFT);
  154. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLP_MASK,
  155. ((sys_pll_psc->pll_p >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT);
  156. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLQ_MASK,
  157. sys_pll_psc->pll_q << RCC_PLLCFGR_PLLQ_SHIFT);
  158. /* configure SDMMC clock */
  159. if (priv->info.v2) { /*stm32f7 case */
  160. if (priv->pllsaip)
  161. /* select PLLSAIP as 48MHz clock source */
  162. setbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_CK48MSEL);
  163. else
  164. /* select PLLQ as 48MHz clock source */
  165. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_CK48MSEL);
  166. /* select 48MHz as SDMMC1 clock source */
  167. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_SDMMC1SEL);
  168. /* select 48MHz as SDMMC2 clock source */
  169. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGR2_SDMMC2SEL);
  170. } else { /* stm32f4 case */
  171. if (priv->pllsaip)
  172. /* select PLLSAIP as 48MHz clock source */
  173. setbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_CK48MSEL);
  174. else
  175. /* select PLLQ as 48MHz clock source */
  176. clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_CK48MSEL);
  177. /* select 48MHz as SDMMC1 clock source */
  178. clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_SDMMC1SEL);
  179. }
  180. /*
  181. * Configure the SAI PLL to generate LTDC pixel clock and
  182. * 48 Mhz for SDMMC and USB
  183. */
  184. clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIP_MASK,
  185. RCC_PLLSAICFGR_PLLSAIP_4);
  186. clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIR_MASK,
  187. RCC_PLLSAICFGR_PLLSAIR_3);
  188. clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIN_MASK,
  189. 195 << RCC_PLLSAICFGR_PLLSAIN_SHIFT);
  190. clrsetbits_le32(&regs->dckcfgr, RCC_DCKCFGR_PLLSAIDIVR_MASK,
  191. RCC_DCKCFGR_PLLSAIDIVR_2 << RCC_DCKCFGR_PLLSAIDIVR_SHIFT);
  192. /* Enable the main PLL */
  193. setbits_le32(&regs->cr, RCC_CR_PLLON);
  194. while (!(readl(&regs->cr) & RCC_CR_PLLRDY))
  195. ;
  196. /* Enable the SAI PLL */
  197. setbits_le32(&regs->cr, RCC_CR_PLLSAION);
  198. while (!(readl(&regs->cr) & RCC_CR_PLLSAIRDY))
  199. ;
  200. setbits_le32(&regs->apb1enr, RCC_APB1ENR_PWREN);
  201. if (priv->info.has_overdrive) {
  202. /*
  203. * Enable high performance mode
  204. * System frequency up to 200 MHz
  205. */
  206. setbits_le32(&pwr->cr1, PWR_CR1_ODEN);
  207. /* Infinite wait! */
  208. while (!(readl(&pwr->csr1) & PWR_CSR1_ODRDY))
  209. ;
  210. /* Enable the Over-drive switch */
  211. setbits_le32(&pwr->cr1, PWR_CR1_ODSWEN);
  212. /* Infinite wait! */
  213. while (!(readl(&pwr->csr1) & PWR_CSR1_ODSWRDY))
  214. ;
  215. }
  216. stm32_flash_latency_cfg(5);
  217. clrbits_le32(&regs->cfgr, (RCC_CFGR_SW0 | RCC_CFGR_SW1));
  218. setbits_le32(&regs->cfgr, RCC_CFGR_SW_PLL);
  219. while ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) !=
  220. RCC_CFGR_SWS_PLL)
  221. ;
  222. #ifdef CONFIG_ETH_DESIGNWARE
  223. /* gate the SYSCFG clock, needed to set RMII ethernet interface */
  224. setbits_le32(&regs->apb2enr, RCC_APB2ENR_SYSCFGEN);
  225. #endif
  226. return 0;
  227. }
  228. static bool stm32_clk_get_ck48msel(struct stm32_clk *priv)
  229. {
  230. struct stm32_rcc_regs *regs = priv->base;
  231. if (priv->info.v2) /*stm32f7 case */
  232. return readl(&regs->dckcfgr2) & RCC_DCKCFGRX_CK48MSEL;
  233. else
  234. return readl(&regs->dckcfgr) & RCC_DCKCFGRX_CK48MSEL;
  235. }
  236. static unsigned long stm32_clk_get_pllsai_vco_rate(struct stm32_clk *priv)
  237. {
  238. struct stm32_rcc_regs *regs = priv->base;
  239. u16 pllm, pllsain;
  240. pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
  241. pllsain = ((readl(&regs->pllsaicfgr) & RCC_PLLSAICFGR_PLLSAIN_MASK)
  242. >> RCC_PLLSAICFGR_PLLSAIN_SHIFT);
  243. return ((priv->hse_rate / pllm) * pllsain);
  244. }
  245. static unsigned long stm32_clk_get_pllsai_rate(struct stm32_clk *priv,
  246. enum pllsai_div output)
  247. {
  248. struct stm32_rcc_regs *regs = priv->base;
  249. u16 pll_div_output;
  250. switch (output) {
  251. case PLLSAIP:
  252. pll_div_output = ((((readl(&regs->pllsaicfgr)
  253. & RCC_PLLSAICFGR_PLLSAIP_MASK)
  254. >> RCC_PLLSAICFGR_PLLSAIP_SHIFT) + 1) << 1);
  255. break;
  256. case PLLSAIQ:
  257. pll_div_output = (readl(&regs->pllsaicfgr)
  258. & RCC_PLLSAICFGR_PLLSAIQ_MASK)
  259. >> RCC_PLLSAICFGR_PLLSAIQ_SHIFT;
  260. break;
  261. case PLLSAIR:
  262. pll_div_output = (readl(&regs->pllsaicfgr)
  263. & RCC_PLLSAICFGR_PLLSAIR_MASK)
  264. >> RCC_PLLSAICFGR_PLLSAIR_SHIFT;
  265. break;
  266. default:
  267. pr_err("incorrect PLLSAI output %d\n", output);
  268. return -EINVAL;
  269. }
  270. return (stm32_clk_get_pllsai_vco_rate(priv) / pll_div_output);
  271. }
  272. static bool stm32_get_timpre(struct stm32_clk *priv)
  273. {
  274. struct stm32_rcc_regs *regs = priv->base;
  275. u32 val;
  276. if (priv->info.v2) /*stm32f7 case */
  277. val = readl(&regs->dckcfgr2);
  278. else
  279. val = readl(&regs->dckcfgr);
  280. /* get timer prescaler */
  281. return !!(val & RCC_DCKCFGRX_TIMPRE);
  282. }
  283. static u32 stm32_get_hclk_rate(struct stm32_rcc_regs *regs, u32 sysclk)
  284. {
  285. u8 shift;
  286. /* Prescaler table lookups for clock computation */
  287. u8 ahb_psc_table[16] = {
  288. 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9
  289. };
  290. shift = ahb_psc_table[(
  291. (readl(&regs->cfgr) & RCC_CFGR_AHB_PSC_MASK)
  292. >> RCC_CFGR_HPRE_SHIFT)];
  293. return sysclk >> shift;
  294. };
  295. static u8 stm32_get_apb_shift(struct stm32_rcc_regs *regs, enum apb apb)
  296. {
  297. /* Prescaler table lookups for clock computation */
  298. u8 apb_psc_table[8] = {
  299. 0, 0, 0, 0, 1, 2, 3, 4
  300. };
  301. if (apb == APB1)
  302. return apb_psc_table[(
  303. (readl(&regs->cfgr) & RCC_CFGR_APB1_PSC_MASK)
  304. >> RCC_CFGR_PPRE1_SHIFT)];
  305. else /* APB2 */
  306. return apb_psc_table[(
  307. (readl(&regs->cfgr) & RCC_CFGR_APB2_PSC_MASK)
  308. >> RCC_CFGR_PPRE2_SHIFT)];
  309. };
  310. static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
  311. enum apb apb)
  312. {
  313. struct stm32_rcc_regs *regs = priv->base;
  314. u8 shift = stm32_get_apb_shift(regs, apb);
  315. if (stm32_get_timpre(priv))
  316. /*
  317. * if APB prescaler is configured to a
  318. * division factor of 1, 2 or 4
  319. */
  320. switch (shift) {
  321. case 0:
  322. case 1:
  323. case 2:
  324. return stm32_get_hclk_rate(regs, sysclk);
  325. default:
  326. return (sysclk >> shift) * 4;
  327. }
  328. else
  329. /*
  330. * if APB prescaler is configured to a
  331. * division factor of 1
  332. */
  333. if (shift == 0)
  334. return sysclk;
  335. else
  336. return (sysclk >> shift) * 2;
  337. };
  338. static ulong stm32_clk_get_rate(struct clk *clk)
  339. {
  340. struct stm32_clk *priv = dev_get_priv(clk->dev);
  341. struct stm32_rcc_regs *regs = priv->base;
  342. u32 sysclk = 0;
  343. u32 vco;
  344. u32 sdmmcxsel_bit;
  345. u32 saidivr;
  346. u32 pllsai_rate;
  347. u16 pllm, plln, pllp, pllq;
  348. if ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) ==
  349. RCC_CFGR_SWS_PLL) {
  350. pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
  351. plln = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLN_MASK)
  352. >> RCC_PLLCFGR_PLLN_SHIFT);
  353. pllp = ((((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLP_MASK)
  354. >> RCC_PLLCFGR_PLLP_SHIFT) + 1) << 1);
  355. pllq = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLQ_MASK)
  356. >> RCC_PLLCFGR_PLLQ_SHIFT);
  357. vco = (priv->hse_rate / pllm) * plln;
  358. sysclk = vco / pllp;
  359. } else {
  360. return -EINVAL;
  361. }
  362. switch (clk->id) {
  363. /*
  364. * AHB CLOCK: 3 x 32 bits consecutive registers are used :
  365. * AHB1, AHB2 and AHB3
  366. */
  367. case STM32F7_AHB1_CLOCK(GPIOA) ... STM32F7_AHB3_CLOCK(QSPI):
  368. return stm32_get_hclk_rate(regs, sysclk);
  369. /* APB1 CLOCK */
  370. case STM32F7_APB1_CLOCK(TIM2) ... STM32F7_APB1_CLOCK(UART8):
  371. /* For timer clock, an additionnal prescaler is used*/
  372. switch (clk->id) {
  373. case STM32F7_APB1_CLOCK(TIM2):
  374. case STM32F7_APB1_CLOCK(TIM3):
  375. case STM32F7_APB1_CLOCK(TIM4):
  376. case STM32F7_APB1_CLOCK(TIM5):
  377. case STM32F7_APB1_CLOCK(TIM6):
  378. case STM32F7_APB1_CLOCK(TIM7):
  379. case STM32F7_APB1_CLOCK(TIM12):
  380. case STM32F7_APB1_CLOCK(TIM13):
  381. case STM32F7_APB1_CLOCK(TIM14):
  382. return stm32_get_timer_rate(priv, sysclk, APB1);
  383. }
  384. return (sysclk >> stm32_get_apb_shift(regs, APB1));
  385. /* APB2 CLOCK */
  386. case STM32F7_APB2_CLOCK(TIM1) ... STM32F7_APB2_CLOCK(DSI):
  387. switch (clk->id) {
  388. /*
  389. * particular case for SDMMC1 and SDMMC2 :
  390. * 48Mhz source clock can be from main PLL or from
  391. * PLLSAIP
  392. */
  393. case STM32F7_APB2_CLOCK(SDMMC1):
  394. case STM32F7_APB2_CLOCK(SDMMC2):
  395. if (clk->id == STM32F7_APB2_CLOCK(SDMMC1))
  396. sdmmcxsel_bit = RCC_DCKCFGRX_SDMMC1SEL;
  397. else
  398. sdmmcxsel_bit = RCC_DCKCFGR2_SDMMC2SEL;
  399. if (readl(&regs->dckcfgr2) & sdmmcxsel_bit)
  400. /* System clock is selected as SDMMC1 clock */
  401. return sysclk;
  402. /*
  403. * 48 MHz can be generated by either PLLSAIP
  404. * or by PLLQ depending of CK48MSEL bit of RCC_DCKCFGR
  405. */
  406. if (stm32_clk_get_ck48msel(priv))
  407. return stm32_clk_get_pllsai_rate(priv, PLLSAIP);
  408. else
  409. return (vco / pllq);
  410. break;
  411. /* For timer clock, an additionnal prescaler is used*/
  412. case STM32F7_APB2_CLOCK(TIM1):
  413. case STM32F7_APB2_CLOCK(TIM8):
  414. case STM32F7_APB2_CLOCK(TIM9):
  415. case STM32F7_APB2_CLOCK(TIM10):
  416. case STM32F7_APB2_CLOCK(TIM11):
  417. return stm32_get_timer_rate(priv, sysclk, APB2);
  418. break;
  419. /* particular case for LTDC clock */
  420. case STM32F7_APB2_CLOCK(LTDC):
  421. saidivr = readl(&regs->dckcfgr);
  422. saidivr = (saidivr & RCC_DCKCFGR_PLLSAIDIVR_MASK)
  423. >> RCC_DCKCFGR_PLLSAIDIVR_SHIFT;
  424. pllsai_rate = stm32_clk_get_pllsai_rate(priv, PLLSAIR);
  425. return pllsai_rate / pllsaidivr_table[saidivr];
  426. }
  427. return (sysclk >> stm32_get_apb_shift(regs, APB2));
  428. default:
  429. pr_err("clock index %ld out of range\n", clk->id);
  430. return -EINVAL;
  431. }
  432. }
  433. static ulong stm32_set_rate(struct clk *clk, ulong rate)
  434. {
  435. #ifdef CONFIG_VIDEO_STM32
  436. struct stm32_clk *priv = dev_get_priv(clk->dev);
  437. struct stm32_rcc_regs *regs = priv->base;
  438. u32 pllsair_rate, pllsai_vco_rate, current_rate;
  439. u32 best_div, best_diff, diff;
  440. u16 div;
  441. u8 best_plldivr, best_pllsaidivr;
  442. u8 i, j;
  443. bool found = false;
  444. /* Only set_rate for LTDC clock is implemented */
  445. if (clk->id != STM32F7_APB2_CLOCK(LTDC)) {
  446. pr_err("set_rate not implemented for clock index %ld\n",
  447. clk->id);
  448. return 0;
  449. }
  450. if (rate == stm32_clk_get_rate(clk))
  451. /* already set to requested rate */
  452. return rate;
  453. /* get the current PLLSAIR output freq */
  454. pllsair_rate = stm32_clk_get_pllsai_rate(priv, PLLSAIR);
  455. best_div = pllsair_rate / rate;
  456. /* look into pllsaidivr_table if this divider is available*/
  457. for (i = 0 ; i < sizeof(pllsaidivr_table); i++)
  458. if (best_div == pllsaidivr_table[i]) {
  459. /* set pll_saidivr with found value */
  460. clrsetbits_le32(&regs->dckcfgr,
  461. RCC_DCKCFGR_PLLSAIDIVR_MASK,
  462. pllsaidivr_table[i]);
  463. return rate;
  464. }
  465. /*
  466. * As no pllsaidivr value is suitable to obtain requested freq,
  467. * test all combination of pllsaidivr * pllsair and find the one
  468. * which give freq closest to requested rate.
  469. */
  470. pllsai_vco_rate = stm32_clk_get_pllsai_vco_rate(priv);
  471. best_diff = ULONG_MAX;
  472. best_pllsaidivr = 0;
  473. best_plldivr = 0;
  474. /*
  475. * start at index 2 of plldivr_table as divider value at index 0
  476. * and 1 are 0)
  477. */
  478. for (i = 2; i < sizeof(plldivr_table); i++) {
  479. for (j = 0; j < sizeof(pllsaidivr_table); j++) {
  480. div = plldivr_table[i] * pllsaidivr_table[j];
  481. current_rate = pllsai_vco_rate / div;
  482. /* perfect combination is found ? */
  483. if (current_rate == rate) {
  484. best_pllsaidivr = j;
  485. best_plldivr = i;
  486. found = true;
  487. break;
  488. }
  489. diff = (current_rate > rate) ?
  490. current_rate - rate : rate - current_rate;
  491. /* found a better combination ? */
  492. if (diff < best_diff) {
  493. best_diff = diff;
  494. best_pllsaidivr = j;
  495. best_plldivr = i;
  496. }
  497. }
  498. if (found)
  499. break;
  500. }
  501. /* Disable the SAI PLL */
  502. clrbits_le32(&regs->cr, RCC_CR_PLLSAION);
  503. /* set pll_saidivr with found value */
  504. clrsetbits_le32(&regs->dckcfgr, RCC_DCKCFGR_PLLSAIDIVR_MASK,
  505. best_pllsaidivr << RCC_DCKCFGR_PLLSAIDIVR_SHIFT);
  506. /* set pllsair with found value */
  507. clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIR_MASK,
  508. plldivr_table[best_plldivr]
  509. << RCC_PLLSAICFGR_PLLSAIR_SHIFT);
  510. /* Enable the SAI PLL */
  511. setbits_le32(&regs->cr, RCC_CR_PLLSAION);
  512. while (!(readl(&regs->cr) & RCC_CR_PLLSAIRDY))
  513. ;
  514. div = plldivr_table[best_plldivr] * pllsaidivr_table[best_pllsaidivr];
  515. return pllsai_vco_rate / div;
  516. #else
  517. return 0;
  518. #endif
  519. }
  520. static int stm32_clk_enable(struct clk *clk)
  521. {
  522. struct stm32_clk *priv = dev_get_priv(clk->dev);
  523. struct stm32_rcc_regs *regs = priv->base;
  524. u32 offset = clk->id / 32;
  525. u32 bit_index = clk->id % 32;
  526. debug("%s: clkid = %ld, offset from AHB1ENR is %d, bit_index = %d\n",
  527. __func__, clk->id, offset, bit_index);
  528. setbits_le32(&regs->ahb1enr + offset, BIT(bit_index));
  529. return 0;
  530. }
  531. static int stm32_clk_probe(struct udevice *dev)
  532. {
  533. struct ofnode_phandle_args args;
  534. struct udevice *fixed_clock_dev = NULL;
  535. struct clk clk;
  536. int err;
  537. debug("%s\n", __func__);
  538. struct stm32_clk *priv = dev_get_priv(dev);
  539. fdt_addr_t addr;
  540. addr = dev_read_addr(dev);
  541. if (addr == FDT_ADDR_T_NONE)
  542. return -EINVAL;
  543. priv->base = (struct stm32_rcc_regs *)addr;
  544. priv->pllsaip = true;
  545. switch (dev_get_driver_data(dev)) {
  546. case STM32F42X:
  547. priv->pllsaip = false;
  548. /* fallback into STM32F469 case */
  549. case STM32F469:
  550. memcpy(&priv->info, &stm32f4_clk_info,
  551. sizeof(struct stm32_clk_info));
  552. break;
  553. case STM32F7:
  554. memcpy(&priv->info, &stm32f7_clk_info,
  555. sizeof(struct stm32_clk_info));
  556. break;
  557. default:
  558. return -EINVAL;
  559. }
  560. /* retrieve HSE frequency (external oscillator) */
  561. err = uclass_get_device_by_name(UCLASS_CLK, "clk-hse",
  562. &fixed_clock_dev);
  563. if (err) {
  564. pr_err("Can't find fixed clock (%d)", err);
  565. return err;
  566. }
  567. err = clk_request(fixed_clock_dev, &clk);
  568. if (err) {
  569. pr_err("Can't request %s clk (%d)", fixed_clock_dev->name,
  570. err);
  571. return err;
  572. }
  573. /*
  574. * set pllm factor accordingly to the external oscillator
  575. * frequency (HSE). For STM32F4 and STM32F7, we want VCO
  576. * freq at 1MHz
  577. * if input PLL frequency is 25Mhz, divide it by 25
  578. */
  579. clk.id = 0;
  580. priv->hse_rate = clk_get_rate(&clk);
  581. if (priv->hse_rate < 1000000) {
  582. pr_err("%s: unexpected HSE clock rate = %ld \"n", __func__,
  583. priv->hse_rate);
  584. return -EINVAL;
  585. }
  586. priv->info.sys_pll_psc.pll_m = priv->hse_rate / 1000000;
  587. if (priv->info.has_overdrive) {
  588. err = dev_read_phandle_with_args(dev, "st,syscfg", NULL, 0, 0,
  589. &args);
  590. if (err) {
  591. debug("%s: can't find syscon device (%d)\n", __func__,
  592. err);
  593. return err;
  594. }
  595. priv->pwr_regs = (struct stm32_pwr_regs *)ofnode_get_addr(args.node);
  596. }
  597. configure_clocks(dev);
  598. return 0;
  599. }
  600. static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args)
  601. {
  602. debug("%s(clk=%p)\n", __func__, clk);
  603. if (args->args_count != 2) {
  604. debug("Invaild args_count: %d\n", args->args_count);
  605. return -EINVAL;
  606. }
  607. if (args->args_count)
  608. clk->id = args->args[1];
  609. else
  610. clk->id = 0;
  611. return 0;
  612. }
  613. static struct clk_ops stm32_clk_ops = {
  614. .of_xlate = stm32_clk_of_xlate,
  615. .enable = stm32_clk_enable,
  616. .get_rate = stm32_clk_get_rate,
  617. .set_rate = stm32_set_rate,
  618. };
  619. U_BOOT_DRIVER(stm32fx_clk) = {
  620. .name = "stm32fx_rcc_clock",
  621. .id = UCLASS_CLK,
  622. .ops = &stm32_clk_ops,
  623. .probe = stm32_clk_probe,
  624. .priv_auto_alloc_size = sizeof(struct stm32_clk),
  625. .flags = DM_FLAG_PRE_RELOC,
  626. };