zynqpl.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. /*
  2. * (C) Copyright 2012-2013, Xilinx, Michal Simek
  3. *
  4. * (C) Copyright 2012
  5. * Joe Hershberger <joe.hershberger@ni.com>
  6. *
  7. * SPDX-License-Identifier: GPL-2.0+
  8. */
  9. #include <common.h>
  10. #include <asm/io.h>
  11. #include <zynqpl.h>
  12. #include <asm/arch/hardware.h>
  13. #include <asm/arch/sys_proto.h>
  14. #define DEVCFG_CTRL_PCFG_PROG_B 0x40000000
  15. #define DEVCFG_ISR_FATAL_ERROR_MASK 0x00740040
  16. #define DEVCFG_ISR_ERROR_FLAGS_MASK 0x00340840
  17. #define DEVCFG_ISR_RX_FIFO_OV 0x00040000
  18. #define DEVCFG_ISR_DMA_DONE 0x00002000
  19. #define DEVCFG_ISR_PCFG_DONE 0x00000004
  20. #define DEVCFG_STATUS_DMA_CMD_Q_F 0x80000000
  21. #define DEVCFG_STATUS_DMA_CMD_Q_E 0x40000000
  22. #define DEVCFG_STATUS_DMA_DONE_CNT_MASK 0x30000000
  23. #define DEVCFG_STATUS_PCFG_INIT 0x00000010
  24. #define DEVCFG_MCTRL_RFIFO_FLUSH 0x00000002
  25. #define DEVCFG_MCTRL_WFIFO_FLUSH 0x00000001
  26. #ifndef CONFIG_SYS_FPGA_WAIT
  27. #define CONFIG_SYS_FPGA_WAIT CONFIG_SYS_HZ/100 /* 10 ms */
  28. #endif
  29. #ifndef CONFIG_SYS_FPGA_PROG_TIME
  30. #define CONFIG_SYS_FPGA_PROG_TIME (CONFIG_SYS_HZ * 4) /* 4 s */
  31. #endif
  32. int zynq_info(Xilinx_desc *desc)
  33. {
  34. return FPGA_SUCCESS;
  35. }
  36. #define DUMMY_WORD 0xffffffff
  37. /* Xilinx binary format header */
  38. static const u32 bin_format[] = {
  39. DUMMY_WORD, /* Dummy words */
  40. DUMMY_WORD,
  41. DUMMY_WORD,
  42. DUMMY_WORD,
  43. DUMMY_WORD,
  44. DUMMY_WORD,
  45. DUMMY_WORD,
  46. DUMMY_WORD,
  47. 0x000000bb, /* Sync word */
  48. 0x11220044, /* Sync word */
  49. DUMMY_WORD,
  50. DUMMY_WORD,
  51. 0xaa995566, /* Sync word */
  52. };
  53. #define SWAP_NO 1
  54. #define SWAP_DONE 2
  55. /*
  56. * Load the whole word from unaligned buffer
  57. * Keep in your mind that it is byte loading on little-endian system
  58. */
  59. static u32 load_word(const void *buf, u32 swap)
  60. {
  61. u32 word = 0;
  62. u8 *bitc = (u8 *)buf;
  63. int p;
  64. if (swap == SWAP_NO) {
  65. for (p = 0; p < 4; p++) {
  66. word <<= 8;
  67. word |= bitc[p];
  68. }
  69. } else {
  70. for (p = 3; p >= 0; p--) {
  71. word <<= 8;
  72. word |= bitc[p];
  73. }
  74. }
  75. return word;
  76. }
  77. static u32 check_header(const void *buf)
  78. {
  79. u32 i, pattern;
  80. int swap = SWAP_NO;
  81. u32 *test = (u32 *)buf;
  82. debug("%s: Let's check bitstream header\n", __func__);
  83. /* Checking that passing bin is not a bitstream */
  84. for (i = 0; i < ARRAY_SIZE(bin_format); i++) {
  85. pattern = load_word(&test[i], swap);
  86. /*
  87. * Bitstreams in binary format are swapped
  88. * compare to regular bistream.
  89. * Do not swap dummy word but if swap is done assume
  90. * that parsing buffer is binary format
  91. */
  92. if ((__swab32(pattern) != DUMMY_WORD) &&
  93. (__swab32(pattern) == bin_format[i])) {
  94. pattern = __swab32(pattern);
  95. swap = SWAP_DONE;
  96. debug("%s: data swapped - let's swap\n", __func__);
  97. }
  98. debug("%s: %d/%x: pattern %x/%x bin_format\n", __func__, i,
  99. (u32)&test[i], pattern, bin_format[i]);
  100. if (pattern != bin_format[i]) {
  101. debug("%s: Bitstream is not recognized\n", __func__);
  102. return 0;
  103. }
  104. }
  105. debug("%s: Found bitstream header at %x %s swapinng\n", __func__,
  106. (u32)buf, swap == SWAP_NO ? "without" : "with");
  107. return swap;
  108. }
  109. static void *check_data(u8 *buf, size_t bsize, u32 *swap)
  110. {
  111. u32 word, p = 0; /* possition */
  112. /* Because buf doesn't need to be aligned let's read it by chars */
  113. for (p = 0; p < bsize; p++) {
  114. word = load_word(&buf[p], SWAP_NO);
  115. debug("%s: word %x %x/%x\n", __func__, word, p, (u32)&buf[p]);
  116. /* Find the first bitstream dummy word */
  117. if (word == DUMMY_WORD) {
  118. debug("%s: Found dummy word at position %x/%x\n",
  119. __func__, p, (u32)&buf[p]);
  120. *swap = check_header(&buf[p]);
  121. if (*swap) {
  122. /* FIXME add full bitstream checking here */
  123. return &buf[p];
  124. }
  125. }
  126. /* Loop can be huge - support CTRL + C */
  127. if (ctrlc())
  128. return 0;
  129. }
  130. return 0;
  131. }
  132. int zynq_load(Xilinx_desc *desc, const void *buf, size_t bsize)
  133. {
  134. unsigned long ts; /* Timestamp */
  135. u32 partialbit = 0;
  136. u32 i, control, isr_status, status, swap, diff;
  137. u32 *buf_start;
  138. /* Detect if we are going working with partial or full bitstream */
  139. if (bsize != desc->size) {
  140. printf("%s: Working with partial bitstream\n", __func__);
  141. partialbit = 1;
  142. }
  143. buf_start = check_data((u8 *)buf, bsize, &swap);
  144. if (!buf_start)
  145. return FPGA_FAIL;
  146. /* Check if data is postpone from start */
  147. diff = (u32)buf_start - (u32)buf;
  148. if (diff) {
  149. printf("%s: Bitstream is not validated yet (diff %x)\n",
  150. __func__, diff);
  151. return FPGA_FAIL;
  152. }
  153. if ((u32)buf_start & 0x3) {
  154. u32 *new_buf = (u32 *)((u32)buf & ~0x3);
  155. printf("%s: Align buffer at %x to %x(swap %d)\n", __func__,
  156. (u32)buf_start, (u32)new_buf, swap);
  157. for (i = 0; i < (bsize/4); i++)
  158. new_buf[i] = load_word(&buf_start[i], swap);
  159. swap = SWAP_DONE;
  160. buf = new_buf;
  161. } else if (swap != SWAP_DONE) {
  162. /* For bitstream which are aligned */
  163. u32 *new_buf = (u32 *)buf;
  164. printf("%s: Bitstream is not swapped(%d) - swap it\n", __func__,
  165. swap);
  166. for (i = 0; i < (bsize/4); i++)
  167. new_buf[i] = load_word(&buf_start[i], swap);
  168. swap = SWAP_DONE;
  169. }
  170. if (!partialbit) {
  171. zynq_slcr_devcfg_disable();
  172. /* Setting PCFG_PROG_B signal to high */
  173. control = readl(&devcfg_base->ctrl);
  174. writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
  175. /* Setting PCFG_PROG_B signal to low */
  176. writel(control & ~DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
  177. /* Polling the PCAP_INIT status for Reset */
  178. ts = get_timer(0);
  179. while (readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT) {
  180. if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
  181. printf("%s: Timeout wait for INIT to clear\n",
  182. __func__);
  183. return FPGA_FAIL;
  184. }
  185. }
  186. /* Setting PCFG_PROG_B signal to high */
  187. writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
  188. /* Polling the PCAP_INIT status for Set */
  189. ts = get_timer(0);
  190. while (!(readl(&devcfg_base->status) &
  191. DEVCFG_STATUS_PCFG_INIT)) {
  192. if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
  193. printf("%s: Timeout wait for INIT to set\n",
  194. __func__);
  195. return FPGA_FAIL;
  196. }
  197. }
  198. }
  199. isr_status = readl(&devcfg_base->int_sts);
  200. /* Clear it all, so if Boot ROM comes back, it can proceed */
  201. writel(0xFFFFFFFF, &devcfg_base->int_sts);
  202. if (isr_status & DEVCFG_ISR_FATAL_ERROR_MASK) {
  203. debug("%s: Fatal errors in PCAP 0x%X\n", __func__, isr_status);
  204. /* If RX FIFO overflow, need to flush RX FIFO first */
  205. if (isr_status & DEVCFG_ISR_RX_FIFO_OV) {
  206. writel(DEVCFG_MCTRL_RFIFO_FLUSH, &devcfg_base->mctrl);
  207. writel(0xFFFFFFFF, &devcfg_base->int_sts);
  208. }
  209. return FPGA_FAIL;
  210. }
  211. status = readl(&devcfg_base->status);
  212. debug("%s: Status = 0x%08X\n", __func__, status);
  213. if (status & DEVCFG_STATUS_DMA_CMD_Q_F) {
  214. debug("%s: Error: device busy\n", __func__);
  215. return FPGA_FAIL;
  216. }
  217. debug("%s: Device ready\n", __func__);
  218. if (!(status & DEVCFG_STATUS_DMA_CMD_Q_E)) {
  219. if (!(readl(&devcfg_base->int_sts) & DEVCFG_ISR_DMA_DONE)) {
  220. /* Error state, transfer cannot occur */
  221. debug("%s: ISR indicates error\n", __func__);
  222. return FPGA_FAIL;
  223. } else {
  224. /* Clear out the status */
  225. writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
  226. }
  227. }
  228. if (status & DEVCFG_STATUS_DMA_DONE_CNT_MASK) {
  229. /* Clear the count of completed DMA transfers */
  230. writel(DEVCFG_STATUS_DMA_DONE_CNT_MASK, &devcfg_base->status);
  231. }
  232. debug("%s: Source = 0x%08X\n", __func__, (u32)buf);
  233. debug("%s: Size = %zu\n", __func__, bsize);
  234. /* Set up the transfer */
  235. writel((u32)buf | 1, &devcfg_base->dma_src_addr);
  236. writel(0xFFFFFFFF, &devcfg_base->dma_dst_addr);
  237. writel(bsize >> 2, &devcfg_base->dma_src_len);
  238. writel(0, &devcfg_base->dma_dst_len);
  239. isr_status = readl(&devcfg_base->int_sts);
  240. /* Polling the PCAP_INIT status for Set */
  241. ts = get_timer(0);
  242. while (!(isr_status & DEVCFG_ISR_DMA_DONE)) {
  243. if (isr_status & DEVCFG_ISR_ERROR_FLAGS_MASK) {
  244. debug("%s: Error: isr = 0x%08X\n", __func__,
  245. isr_status);
  246. debug("%s: Write count = 0x%08X\n", __func__,
  247. readl(&devcfg_base->write_count));
  248. debug("%s: Read count = 0x%08X\n", __func__,
  249. readl(&devcfg_base->read_count));
  250. return FPGA_FAIL;
  251. }
  252. if (get_timer(ts) > CONFIG_SYS_FPGA_PROG_TIME) {
  253. printf("%s: Timeout wait for DMA to complete\n",
  254. __func__);
  255. return FPGA_FAIL;
  256. }
  257. isr_status = readl(&devcfg_base->int_sts);
  258. }
  259. debug("%s: DMA transfer is done\n", __func__);
  260. /* Check FPGA configuration completion */
  261. ts = get_timer(0);
  262. while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) {
  263. if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
  264. printf("%s: Timeout wait for FPGA to config\n",
  265. __func__);
  266. return FPGA_FAIL;
  267. }
  268. isr_status = readl(&devcfg_base->int_sts);
  269. }
  270. debug("%s: FPGA config done\n", __func__);
  271. /* Clear out the DMA status */
  272. writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
  273. if (!partialbit)
  274. zynq_slcr_devcfg_enable();
  275. return FPGA_SUCCESS;
  276. }
  277. int zynq_dump(Xilinx_desc *desc, const void *buf, size_t bsize)
  278. {
  279. return FPGA_FAIL;
  280. }