cmd_mmc.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679
  1. /*
  2. * (C) Copyright 2003
  3. * Kyle Harris, kharris@nexus-tech.net
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <command.h>
  9. #include <mmc.h>
  10. static int curr_device = -1;
  11. #ifndef CONFIG_GENERIC_MMC
  12. int do_mmc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  13. {
  14. int dev;
  15. if (argc < 2)
  16. return CMD_RET_USAGE;
  17. if (strcmp(argv[1], "init") == 0) {
  18. if (argc == 2) {
  19. if (curr_device < 0)
  20. dev = 1;
  21. else
  22. dev = curr_device;
  23. } else if (argc == 3) {
  24. dev = (int)simple_strtoul(argv[2], NULL, 10);
  25. } else {
  26. return CMD_RET_USAGE;
  27. }
  28. if (mmc_legacy_init(dev) != 0) {
  29. puts("No MMC card found\n");
  30. return 1;
  31. }
  32. curr_device = dev;
  33. printf("mmc%d is available\n", curr_device);
  34. } else if (strcmp(argv[1], "device") == 0) {
  35. if (argc == 2) {
  36. if (curr_device < 0) {
  37. puts("No MMC device available\n");
  38. return 1;
  39. }
  40. } else if (argc == 3) {
  41. dev = (int)simple_strtoul(argv[2], NULL, 10);
  42. #ifdef CONFIG_SYS_MMC_SET_DEV
  43. if (mmc_set_dev(dev) != 0)
  44. return 1;
  45. #endif
  46. curr_device = dev;
  47. } else {
  48. return CMD_RET_USAGE;
  49. }
  50. printf("mmc%d is current device\n", curr_device);
  51. } else {
  52. return CMD_RET_USAGE;
  53. }
  54. return 0;
  55. }
  56. U_BOOT_CMD(
  57. mmc, 3, 1, do_mmc,
  58. "MMC sub-system",
  59. "init [dev] - init MMC sub system\n"
  60. "mmc device [dev] - show or set current device"
  61. );
  62. #else /* !CONFIG_GENERIC_MMC */
  63. static void print_mmcinfo(struct mmc *mmc)
  64. {
  65. printf("Device: %s\n", mmc->cfg->name);
  66. printf("Manufacturer ID: %x\n", mmc->cid[0] >> 24);
  67. printf("OEM: %x\n", (mmc->cid[0] >> 8) & 0xffff);
  68. printf("Name: %c%c%c%c%c \n", mmc->cid[0] & 0xff,
  69. (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
  70. (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
  71. printf("Tran Speed: %d\n", mmc->tran_speed);
  72. printf("Rd Block Len: %d\n", mmc->read_bl_len);
  73. printf("%s version %d.%d\n", IS_SD(mmc) ? "SD" : "MMC",
  74. (mmc->version >> 8) & 0xf, mmc->version & 0xff);
  75. printf("High Capacity: %s\n", mmc->high_capacity ? "Yes" : "No");
  76. puts("Capacity: ");
  77. print_size(mmc->capacity, "\n");
  78. printf("Bus Width: %d-bit\n", mmc->bus_width);
  79. }
  80. static struct mmc *init_mmc_device(int dev, bool force_init)
  81. {
  82. struct mmc *mmc;
  83. mmc = find_mmc_device(dev);
  84. if (!mmc) {
  85. printf("no mmc device at slot %x\n", dev);
  86. return NULL;
  87. }
  88. if (force_init)
  89. mmc->has_init = 0;
  90. if (mmc_init(mmc))
  91. return NULL;
  92. return mmc;
  93. }
  94. static int do_mmcinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  95. {
  96. struct mmc *mmc;
  97. if (curr_device < 0) {
  98. if (get_mmc_num() > 0)
  99. curr_device = 0;
  100. else {
  101. puts("No MMC device available\n");
  102. return 1;
  103. }
  104. }
  105. mmc = init_mmc_device(curr_device, false);
  106. if (!mmc)
  107. return CMD_RET_FAILURE;
  108. print_mmcinfo(mmc);
  109. return CMD_RET_SUCCESS;
  110. }
  111. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  112. static int confirm_key_prog(void)
  113. {
  114. puts("Warning: Programming authentication key can be done only once !\n"
  115. " Use this command only if you are sure of what you are doing,\n"
  116. "Really perform the key programming? <y/N> ");
  117. if (confirm_yesno())
  118. return 1;
  119. puts("Authentication key programming aborted\n");
  120. return 0;
  121. }
  122. static int do_mmcrpmb_key(cmd_tbl_t *cmdtp, int flag,
  123. int argc, char * const argv[])
  124. {
  125. void *key_addr;
  126. struct mmc *mmc = find_mmc_device(curr_device);
  127. if (argc != 2)
  128. return CMD_RET_USAGE;
  129. key_addr = (void *)simple_strtoul(argv[1], NULL, 16);
  130. if (!confirm_key_prog())
  131. return CMD_RET_FAILURE;
  132. if (mmc_rpmb_set_key(mmc, key_addr)) {
  133. printf("ERROR - Key already programmed ?\n");
  134. return CMD_RET_FAILURE;
  135. }
  136. return CMD_RET_SUCCESS;
  137. }
  138. static int do_mmcrpmb_read(cmd_tbl_t *cmdtp, int flag,
  139. int argc, char * const argv[])
  140. {
  141. u16 blk, cnt;
  142. void *addr;
  143. int n;
  144. void *key_addr = NULL;
  145. struct mmc *mmc = find_mmc_device(curr_device);
  146. if (argc < 4)
  147. return CMD_RET_USAGE;
  148. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  149. blk = simple_strtoul(argv[2], NULL, 16);
  150. cnt = simple_strtoul(argv[3], NULL, 16);
  151. if (argc == 5)
  152. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  153. printf("\nMMC RPMB read: dev # %d, block # %d, count %d ... ",
  154. curr_device, blk, cnt);
  155. n = mmc_rpmb_read(mmc, addr, blk, cnt, key_addr);
  156. printf("%d RPMB blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  157. if (n != cnt)
  158. return CMD_RET_FAILURE;
  159. return CMD_RET_SUCCESS;
  160. }
  161. static int do_mmcrpmb_write(cmd_tbl_t *cmdtp, int flag,
  162. int argc, char * const argv[])
  163. {
  164. u16 blk, cnt;
  165. void *addr;
  166. int n;
  167. void *key_addr;
  168. struct mmc *mmc = find_mmc_device(curr_device);
  169. if (argc != 5)
  170. return CMD_RET_USAGE;
  171. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  172. blk = simple_strtoul(argv[2], NULL, 16);
  173. cnt = simple_strtoul(argv[3], NULL, 16);
  174. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  175. printf("\nMMC RPMB write: dev # %d, block # %d, count %d ... ",
  176. curr_device, blk, cnt);
  177. n = mmc_rpmb_write(mmc, addr, blk, cnt, key_addr);
  178. printf("%d RPMB blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  179. if (n != cnt)
  180. return CMD_RET_FAILURE;
  181. return CMD_RET_SUCCESS;
  182. }
  183. static int do_mmcrpmb_counter(cmd_tbl_t *cmdtp, int flag,
  184. int argc, char * const argv[])
  185. {
  186. unsigned long counter;
  187. struct mmc *mmc = find_mmc_device(curr_device);
  188. if (mmc_rpmb_get_counter(mmc, &counter))
  189. return CMD_RET_FAILURE;
  190. printf("RPMB Write counter= %lx\n", counter);
  191. return CMD_RET_SUCCESS;
  192. }
  193. static cmd_tbl_t cmd_rpmb[] = {
  194. U_BOOT_CMD_MKENT(key, 2, 0, do_mmcrpmb_key, "", ""),
  195. U_BOOT_CMD_MKENT(read, 5, 1, do_mmcrpmb_read, "", ""),
  196. U_BOOT_CMD_MKENT(write, 5, 0, do_mmcrpmb_write, "", ""),
  197. U_BOOT_CMD_MKENT(counter, 1, 1, do_mmcrpmb_counter, "", ""),
  198. };
  199. static int do_mmcrpmb(cmd_tbl_t *cmdtp, int flag,
  200. int argc, char * const argv[])
  201. {
  202. cmd_tbl_t *cp;
  203. struct mmc *mmc;
  204. char original_part;
  205. int ret;
  206. cp = find_cmd_tbl(argv[1], cmd_rpmb, ARRAY_SIZE(cmd_rpmb));
  207. /* Drop the rpmb subcommand */
  208. argc--;
  209. argv++;
  210. if (cp == NULL || argc > cp->maxargs)
  211. return CMD_RET_USAGE;
  212. if (flag == CMD_FLAG_REPEAT && !cp->repeatable)
  213. return CMD_RET_SUCCESS;
  214. mmc = init_mmc_device(curr_device, false);
  215. if (!mmc)
  216. return CMD_RET_FAILURE;
  217. if (!(mmc->version & MMC_VERSION_MMC)) {
  218. printf("It is not a EMMC device\n");
  219. return CMD_RET_FAILURE;
  220. }
  221. if (mmc->version < MMC_VERSION_4_41) {
  222. printf("RPMB not supported before version 4.41\n");
  223. return CMD_RET_FAILURE;
  224. }
  225. /* Switch to the RPMB partition */
  226. original_part = mmc->part_num;
  227. if (mmc->part_num != MMC_PART_RPMB) {
  228. if (mmc_switch_part(curr_device, MMC_PART_RPMB) != 0)
  229. return CMD_RET_FAILURE;
  230. mmc->part_num = MMC_PART_RPMB;
  231. }
  232. ret = cp->cmd(cmdtp, flag, argc, argv);
  233. /* Return to original partition */
  234. if (mmc->part_num != original_part) {
  235. if (mmc_switch_part(curr_device, original_part) != 0)
  236. return CMD_RET_FAILURE;
  237. mmc->part_num = original_part;
  238. }
  239. return ret;
  240. }
  241. #endif
  242. static int do_mmc_read(cmd_tbl_t *cmdtp, int flag,
  243. int argc, char * const argv[])
  244. {
  245. struct mmc *mmc;
  246. u32 blk, cnt, n;
  247. void *addr;
  248. if (argc != 4)
  249. return CMD_RET_USAGE;
  250. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  251. blk = simple_strtoul(argv[2], NULL, 16);
  252. cnt = simple_strtoul(argv[3], NULL, 16);
  253. mmc = init_mmc_device(curr_device, false);
  254. if (!mmc)
  255. return CMD_RET_FAILURE;
  256. printf("\nMMC read: dev # %d, block # %d, count %d ... ",
  257. curr_device, blk, cnt);
  258. n = mmc->block_dev.block_read(curr_device, blk, cnt, addr);
  259. /* flush cache after read */
  260. flush_cache((ulong)addr, cnt * 512); /* FIXME */
  261. printf("%d blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  262. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  263. }
  264. static int do_mmc_write(cmd_tbl_t *cmdtp, int flag,
  265. int argc, char * const argv[])
  266. {
  267. struct mmc *mmc;
  268. u32 blk, cnt, n;
  269. void *addr;
  270. if (argc != 4)
  271. return CMD_RET_USAGE;
  272. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  273. blk = simple_strtoul(argv[2], NULL, 16);
  274. cnt = simple_strtoul(argv[3], NULL, 16);
  275. mmc = init_mmc_device(curr_device, false);
  276. if (!mmc)
  277. return CMD_RET_FAILURE;
  278. printf("\nMMC write: dev # %d, block # %d, count %d ... ",
  279. curr_device, blk, cnt);
  280. if (mmc_getwp(mmc) == 1) {
  281. printf("Error: card is write protected!\n");
  282. return CMD_RET_FAILURE;
  283. }
  284. n = mmc->block_dev.block_write(curr_device, blk, cnt, addr);
  285. printf("%d blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  286. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  287. }
  288. static int do_mmc_erase(cmd_tbl_t *cmdtp, int flag,
  289. int argc, char * const argv[])
  290. {
  291. struct mmc *mmc;
  292. u32 blk, cnt, n;
  293. if (argc != 3)
  294. return CMD_RET_USAGE;
  295. blk = simple_strtoul(argv[1], NULL, 16);
  296. cnt = simple_strtoul(argv[2], NULL, 16);
  297. mmc = init_mmc_device(curr_device, false);
  298. if (!mmc)
  299. return CMD_RET_FAILURE;
  300. printf("\nMMC erase: dev # %d, block # %d, count %d ... ",
  301. curr_device, blk, cnt);
  302. if (mmc_getwp(mmc) == 1) {
  303. printf("Error: card is write protected!\n");
  304. return CMD_RET_FAILURE;
  305. }
  306. n = mmc->block_dev.block_erase(curr_device, blk, cnt);
  307. printf("%d blocks erased: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  308. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  309. }
  310. static int do_mmc_rescan(cmd_tbl_t *cmdtp, int flag,
  311. int argc, char * const argv[])
  312. {
  313. struct mmc *mmc;
  314. mmc = init_mmc_device(curr_device, true);
  315. if (!mmc)
  316. return CMD_RET_FAILURE;
  317. return CMD_RET_SUCCESS;
  318. }
  319. static int do_mmc_part(cmd_tbl_t *cmdtp, int flag,
  320. int argc, char * const argv[])
  321. {
  322. block_dev_desc_t *mmc_dev;
  323. struct mmc *mmc;
  324. mmc = init_mmc_device(curr_device, false);
  325. if (!mmc)
  326. return CMD_RET_FAILURE;
  327. mmc_dev = mmc_get_dev(curr_device);
  328. if (mmc_dev != NULL && mmc_dev->type != DEV_TYPE_UNKNOWN) {
  329. print_part(mmc_dev);
  330. return CMD_RET_SUCCESS;
  331. }
  332. puts("get mmc type error!\n");
  333. return CMD_RET_FAILURE;
  334. }
  335. static int do_mmc_dev(cmd_tbl_t *cmdtp, int flag,
  336. int argc, char * const argv[])
  337. {
  338. int dev, part = 0, ret;
  339. struct mmc *mmc;
  340. if (argc == 1) {
  341. dev = curr_device;
  342. } else if (argc == 2) {
  343. dev = simple_strtoul(argv[1], NULL, 10);
  344. } else if (argc == 3) {
  345. dev = (int)simple_strtoul(argv[1], NULL, 10);
  346. part = (int)simple_strtoul(argv[2], NULL, 10);
  347. if (part > PART_ACCESS_MASK) {
  348. printf("#part_num shouldn't be larger than %d\n",
  349. PART_ACCESS_MASK);
  350. return CMD_RET_FAILURE;
  351. }
  352. } else {
  353. return CMD_RET_USAGE;
  354. }
  355. mmc = init_mmc_device(dev, true);
  356. if (!mmc)
  357. return CMD_RET_FAILURE;
  358. ret = mmc_select_hwpart(dev, part);
  359. printf("switch to partitions #%d, %s\n",
  360. part, (!ret) ? "OK" : "ERROR");
  361. if (ret)
  362. return 1;
  363. curr_device = dev;
  364. if (mmc->part_config == MMCPART_NOAVAILABLE)
  365. printf("mmc%d is current device\n", curr_device);
  366. else
  367. printf("mmc%d(part %d) is current device\n",
  368. curr_device, mmc->part_num);
  369. return CMD_RET_SUCCESS;
  370. }
  371. static int do_mmc_list(cmd_tbl_t *cmdtp, int flag,
  372. int argc, char * const argv[])
  373. {
  374. print_mmc_devices('\n');
  375. return CMD_RET_SUCCESS;
  376. }
  377. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  378. static int do_mmc_bootbus(cmd_tbl_t *cmdtp, int flag,
  379. int argc, char * const argv[])
  380. {
  381. int dev;
  382. struct mmc *mmc;
  383. u8 width, reset, mode;
  384. if (argc != 5)
  385. return CMD_RET_USAGE;
  386. dev = simple_strtoul(argv[1], NULL, 10);
  387. width = simple_strtoul(argv[2], NULL, 10);
  388. reset = simple_strtoul(argv[3], NULL, 10);
  389. mode = simple_strtoul(argv[4], NULL, 10);
  390. mmc = init_mmc_device(dev, false);
  391. if (!mmc)
  392. return CMD_RET_FAILURE;
  393. if (IS_SD(mmc)) {
  394. puts("BOOT_BUS_WIDTH only exists on eMMC\n");
  395. return CMD_RET_FAILURE;
  396. }
  397. /* acknowledge to be sent during boot operation */
  398. return mmc_set_boot_bus_width(mmc, width, reset, mode);
  399. }
  400. static int do_mmc_boot_resize(cmd_tbl_t *cmdtp, int flag,
  401. int argc, char * const argv[])
  402. {
  403. int dev;
  404. struct mmc *mmc;
  405. u32 bootsize, rpmbsize;
  406. if (argc != 4)
  407. return CMD_RET_USAGE;
  408. dev = simple_strtoul(argv[1], NULL, 10);
  409. bootsize = simple_strtoul(argv[2], NULL, 10);
  410. rpmbsize = simple_strtoul(argv[3], NULL, 10);
  411. mmc = init_mmc_device(dev, false);
  412. if (!mmc)
  413. return CMD_RET_FAILURE;
  414. if (IS_SD(mmc)) {
  415. printf("It is not a EMMC device\n");
  416. return CMD_RET_FAILURE;
  417. }
  418. if (mmc_boot_partition_size_change(mmc, bootsize, rpmbsize)) {
  419. printf("EMMC boot partition Size change Failed.\n");
  420. return CMD_RET_FAILURE;
  421. }
  422. printf("EMMC boot partition Size %d MB\n", bootsize);
  423. printf("EMMC RPMB partition Size %d MB\n", rpmbsize);
  424. return CMD_RET_SUCCESS;
  425. }
  426. static int do_mmc_partconf(cmd_tbl_t *cmdtp, int flag,
  427. int argc, char * const argv[])
  428. {
  429. int dev;
  430. struct mmc *mmc;
  431. u8 ack, part_num, access;
  432. if (argc != 5)
  433. return CMD_RET_USAGE;
  434. dev = simple_strtoul(argv[1], NULL, 10);
  435. ack = simple_strtoul(argv[2], NULL, 10);
  436. part_num = simple_strtoul(argv[3], NULL, 10);
  437. access = simple_strtoul(argv[4], NULL, 10);
  438. mmc = init_mmc_device(dev, false);
  439. if (!mmc)
  440. return CMD_RET_FAILURE;
  441. if (IS_SD(mmc)) {
  442. puts("PARTITION_CONFIG only exists on eMMC\n");
  443. return CMD_RET_FAILURE;
  444. }
  445. /* acknowledge to be sent during boot operation */
  446. return mmc_set_part_conf(mmc, ack, part_num, access);
  447. }
  448. static int do_mmc_rst_func(cmd_tbl_t *cmdtp, int flag,
  449. int argc, char * const argv[])
  450. {
  451. int dev;
  452. struct mmc *mmc;
  453. u8 enable;
  454. /*
  455. * Set the RST_n_ENABLE bit of RST_n_FUNCTION
  456. * The only valid values are 0x0, 0x1 and 0x2 and writing
  457. * a value of 0x1 or 0x2 sets the value permanently.
  458. */
  459. if (argc != 3)
  460. return CMD_RET_USAGE;
  461. dev = simple_strtoul(argv[1], NULL, 10);
  462. enable = simple_strtoul(argv[2], NULL, 10);
  463. if (enable > 2 || enable < 0) {
  464. puts("Invalid RST_n_ENABLE value\n");
  465. return CMD_RET_USAGE;
  466. }
  467. mmc = init_mmc_device(dev, false);
  468. if (!mmc)
  469. return CMD_RET_FAILURE;
  470. if (IS_SD(mmc)) {
  471. puts("RST_n_FUNCTION only exists on eMMC\n");
  472. return CMD_RET_FAILURE;
  473. }
  474. return mmc_set_rst_n_function(mmc, enable);
  475. }
  476. #endif
  477. static int do_mmc_setdsr(cmd_tbl_t *cmdtp, int flag,
  478. int argc, char * const argv[])
  479. {
  480. struct mmc *mmc;
  481. u32 val;
  482. int ret;
  483. if (argc != 2)
  484. return CMD_RET_USAGE;
  485. val = simple_strtoul(argv[2], NULL, 16);
  486. mmc = find_mmc_device(curr_device);
  487. if (!mmc) {
  488. printf("no mmc device at slot %x\n", curr_device);
  489. return CMD_RET_FAILURE;
  490. }
  491. ret = mmc_set_dsr(mmc, val);
  492. printf("set dsr %s\n", (!ret) ? "OK, force rescan" : "ERROR");
  493. if (!ret) {
  494. mmc->has_init = 0;
  495. if (mmc_init(mmc))
  496. return CMD_RET_FAILURE;
  497. else
  498. return CMD_RET_SUCCESS;
  499. }
  500. return ret;
  501. }
  502. static cmd_tbl_t cmd_mmc[] = {
  503. U_BOOT_CMD_MKENT(info, 1, 0, do_mmcinfo, "", ""),
  504. U_BOOT_CMD_MKENT(read, 4, 1, do_mmc_read, "", ""),
  505. U_BOOT_CMD_MKENT(write, 4, 0, do_mmc_write, "", ""),
  506. U_BOOT_CMD_MKENT(erase, 3, 0, do_mmc_erase, "", ""),
  507. U_BOOT_CMD_MKENT(rescan, 1, 1, do_mmc_rescan, "", ""),
  508. U_BOOT_CMD_MKENT(part, 1, 1, do_mmc_part, "", ""),
  509. U_BOOT_CMD_MKENT(dev, 3, 0, do_mmc_dev, "", ""),
  510. U_BOOT_CMD_MKENT(list, 1, 1, do_mmc_list, "", ""),
  511. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  512. U_BOOT_CMD_MKENT(bootbus, 5, 0, do_mmc_bootbus, "", ""),
  513. U_BOOT_CMD_MKENT(bootpart-resize, 4, 0, do_mmc_boot_resize, "", ""),
  514. U_BOOT_CMD_MKENT(partconf, 5, 0, do_mmc_partconf, "", ""),
  515. U_BOOT_CMD_MKENT(rst-function, 3, 0, do_mmc_rst_func, "", ""),
  516. #endif
  517. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  518. U_BOOT_CMD_MKENT(rpmb, CONFIG_SYS_MAXARGS, 1, do_mmcrpmb, "", ""),
  519. #endif
  520. U_BOOT_CMD_MKENT(setdsr, 2, 0, do_mmc_setdsr, "", ""),
  521. };
  522. static int do_mmcops(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  523. {
  524. cmd_tbl_t *cp;
  525. cp = find_cmd_tbl(argv[1], cmd_mmc, ARRAY_SIZE(cmd_mmc));
  526. /* Drop the mmc command */
  527. argc--;
  528. argv++;
  529. if (cp == NULL || argc > cp->maxargs)
  530. return CMD_RET_USAGE;
  531. if (flag == CMD_FLAG_REPEAT && !cp->repeatable)
  532. return CMD_RET_SUCCESS;
  533. if (curr_device < 0) {
  534. if (get_mmc_num() > 0) {
  535. curr_device = 0;
  536. } else {
  537. puts("No MMC device available\n");
  538. return CMD_RET_FAILURE;
  539. }
  540. }
  541. return cp->cmd(cmdtp, flag, argc, argv);
  542. }
  543. U_BOOT_CMD(
  544. mmc, 7, 1, do_mmcops,
  545. "MMC sub system",
  546. "info - display info of the current MMC device\n"
  547. "mmc read addr blk# cnt\n"
  548. "mmc write addr blk# cnt\n"
  549. "mmc erase blk# cnt\n"
  550. "mmc rescan\n"
  551. "mmc part - lists available partition on current mmc device\n"
  552. "mmc dev [dev] [part] - show or set current mmc device [partition]\n"
  553. "mmc list - lists available devices\n"
  554. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  555. "mmc bootbus dev boot_bus_width reset_boot_bus_width boot_mode\n"
  556. " - Set the BOOT_BUS_WIDTH field of the specified device\n"
  557. "mmc bootpart-resize <dev> <boot part size MB> <RPMB part size MB>\n"
  558. " - Change sizes of boot and RPMB partitions of specified device\n"
  559. "mmc partconf dev boot_ack boot_partition partition_access\n"
  560. " - Change the bits of the PARTITION_CONFIG field of the specified device\n"
  561. "mmc rst-function dev value\n"
  562. " - Change the RST_n_FUNCTION field of the specified device\n"
  563. " WARNING: This is a write-once field and 0 / 1 / 2 are the only valid values.\n"
  564. #endif
  565. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  566. "mmc rpmb read addr blk# cnt [address of auth-key] - block size is 256 bytes\n"
  567. "mmc rpmb write addr blk# cnt <address of auth-key> - block size is 256 bytes\n"
  568. "mmc rpmb key <address of auth-key> - program the RPMB authentication key.\n"
  569. "mmc rpmb counter - read the value of the write counter\n"
  570. #endif
  571. "mmc setdsr <value> - set DSR register value\n"
  572. );
  573. /* Old command kept for compatibility. Same as 'mmc info' */
  574. U_BOOT_CMD(
  575. mmcinfo, 1, 0, do_mmcinfo,
  576. "display MMC info",
  577. "- display info of the current MMC device"
  578. );
  579. #endif /* !CONFIG_GENERIC_MMC */