altera_qspi.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. /*
  2. * Copyright (C) 2015 Thomas Chou <thomas@wytron.com.tw>
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+
  5. */
  6. #include <common.h>
  7. #include <dm.h>
  8. #include <errno.h>
  9. #include <fdt_support.h>
  10. #include <flash.h>
  11. #include <mtd.h>
  12. #include <asm/io.h>
  13. DECLARE_GLOBAL_DATA_PTR;
  14. /* The STATUS register */
  15. #define QUADSPI_SR_BP0 BIT(2)
  16. #define QUADSPI_SR_BP1 BIT(3)
  17. #define QUADSPI_SR_BP2 BIT(4)
  18. #define QUADSPI_SR_BP2_0 GENMASK(4, 2)
  19. #define QUADSPI_SR_BP3 BIT(6)
  20. #define QUADSPI_SR_TB BIT(5)
  21. /*
  22. * The QUADSPI_MEM_OP register is used to do memory protect and erase operations
  23. */
  24. #define QUADSPI_MEM_OP_BULK_ERASE 0x00000001
  25. #define QUADSPI_MEM_OP_SECTOR_ERASE 0x00000002
  26. #define QUADSPI_MEM_OP_SECTOR_PROTECT 0x00000003
  27. /*
  28. * The QUADSPI_ISR register is used to determine whether an invalid write or
  29. * erase operation trigerred an interrupt
  30. */
  31. #define QUADSPI_ISR_ILLEGAL_ERASE BIT(0)
  32. #define QUADSPI_ISR_ILLEGAL_WRITE BIT(1)
  33. struct altera_qspi_regs {
  34. u32 rd_status;
  35. u32 rd_sid;
  36. u32 rd_rdid;
  37. u32 mem_op;
  38. u32 isr;
  39. u32 imr;
  40. u32 chip_select;
  41. };
  42. struct altera_qspi_platdata {
  43. struct altera_qspi_regs *regs;
  44. void *base;
  45. unsigned long size;
  46. };
  47. flash_info_t flash_info[CONFIG_SYS_MAX_FLASH_BANKS]; /* FLASH chips info */
  48. static void altera_qspi_get_locked_range(struct mtd_info *mtd, loff_t *ofs,
  49. uint64_t *len);
  50. void flash_print_info(flash_info_t *info)
  51. {
  52. struct mtd_info *mtd = info->mtd;
  53. loff_t ofs;
  54. u64 len;
  55. printf("Altera QSPI flash Size: %ld MB in %d Sectors\n",
  56. info->size >> 20, info->sector_count);
  57. altera_qspi_get_locked_range(mtd, &ofs, &len);
  58. printf(" %08lX +%lX", info->start[0], info->size);
  59. if (len) {
  60. printf(", protected %08llX +%llX",
  61. info->start[0] + ofs, len);
  62. }
  63. putc('\n');
  64. }
  65. int flash_erase(flash_info_t *info, int s_first, int s_last)
  66. {
  67. struct mtd_info *mtd = info->mtd;
  68. struct erase_info instr;
  69. int ret;
  70. memset(&instr, 0, sizeof(instr));
  71. instr.mtd = mtd;
  72. instr.addr = mtd->erasesize * s_first;
  73. instr.len = mtd->erasesize * (s_last + 1 - s_first);
  74. ret = mtd_erase(mtd, &instr);
  75. if (ret)
  76. return ERR_PROTECTED;
  77. return 0;
  78. }
  79. int write_buff(flash_info_t *info, uchar *src, ulong addr, ulong cnt)
  80. {
  81. struct mtd_info *mtd = info->mtd;
  82. struct udevice *dev = mtd->dev;
  83. struct altera_qspi_platdata *pdata = dev_get_platdata(dev);
  84. ulong base = (ulong)pdata->base;
  85. loff_t to = addr - base;
  86. size_t retlen;
  87. int ret;
  88. ret = mtd_write(mtd, to, cnt, &retlen, src);
  89. if (ret)
  90. return ERR_PROTECTED;
  91. return 0;
  92. }
  93. unsigned long flash_init(void)
  94. {
  95. struct udevice *dev;
  96. /* probe every MTD device */
  97. for (uclass_first_device(UCLASS_MTD, &dev);
  98. dev;
  99. uclass_next_device(&dev)) {
  100. }
  101. return flash_info[0].size;
  102. }
  103. static int altera_qspi_erase(struct mtd_info *mtd, struct erase_info *instr)
  104. {
  105. struct udevice *dev = mtd->dev;
  106. struct altera_qspi_platdata *pdata = dev_get_platdata(dev);
  107. struct altera_qspi_regs *regs = pdata->regs;
  108. size_t addr = instr->addr;
  109. size_t len = instr->len;
  110. size_t end = addr + len;
  111. u32 sect;
  112. u32 stat;
  113. u32 *flash, *last;
  114. instr->state = MTD_ERASING;
  115. addr &= ~(mtd->erasesize - 1); /* get lower aligned address */
  116. while (addr < end) {
  117. flash = pdata->base + addr;
  118. last = pdata->base + addr + mtd->erasesize;
  119. /* skip erase if sector is blank */
  120. while (flash < last) {
  121. if (readl(flash) != 0xffffffff)
  122. break;
  123. flash++;
  124. }
  125. if (flash < last) {
  126. sect = addr / mtd->erasesize;
  127. sect <<= 8;
  128. sect |= QUADSPI_MEM_OP_SECTOR_ERASE;
  129. debug("erase %08x\n", sect);
  130. writel(sect, &regs->mem_op);
  131. stat = readl(&regs->isr);
  132. if (stat & QUADSPI_ISR_ILLEGAL_ERASE) {
  133. /* erase failed, sector might be protected */
  134. debug("erase %08x fail %x\n", sect, stat);
  135. writel(stat, &regs->isr); /* clear isr */
  136. instr->fail_addr = addr;
  137. instr->state = MTD_ERASE_FAILED;
  138. mtd_erase_callback(instr);
  139. return -EIO;
  140. }
  141. }
  142. addr += mtd->erasesize;
  143. }
  144. instr->state = MTD_ERASE_DONE;
  145. mtd_erase_callback(instr);
  146. return 0;
  147. }
  148. static int altera_qspi_read(struct mtd_info *mtd, loff_t from, size_t len,
  149. size_t *retlen, u_char *buf)
  150. {
  151. struct udevice *dev = mtd->dev;
  152. struct altera_qspi_platdata *pdata = dev_get_platdata(dev);
  153. memcpy_fromio(buf, pdata->base + from, len);
  154. *retlen = len;
  155. return 0;
  156. }
  157. static int altera_qspi_write(struct mtd_info *mtd, loff_t to, size_t len,
  158. size_t *retlen, const u_char *buf)
  159. {
  160. struct udevice *dev = mtd->dev;
  161. struct altera_qspi_platdata *pdata = dev_get_platdata(dev);
  162. struct altera_qspi_regs *regs = pdata->regs;
  163. u32 stat;
  164. memcpy_toio(pdata->base + to, buf, len);
  165. /* check whether write triggered a illegal write interrupt */
  166. stat = readl(&regs->isr);
  167. if (stat & QUADSPI_ISR_ILLEGAL_WRITE) {
  168. /* write failed, sector might be protected */
  169. debug("write fail %x\n", stat);
  170. writel(stat, &regs->isr); /* clear isr */
  171. return -EIO;
  172. }
  173. *retlen = len;
  174. return 0;
  175. }
  176. static void altera_qspi_sync(struct mtd_info *mtd)
  177. {
  178. }
  179. static void altera_qspi_get_locked_range(struct mtd_info *mtd, loff_t *ofs,
  180. uint64_t *len)
  181. {
  182. struct udevice *dev = mtd->dev;
  183. struct altera_qspi_platdata *pdata = dev_get_platdata(dev);
  184. struct altera_qspi_regs *regs = pdata->regs;
  185. int shift0 = ffs(QUADSPI_SR_BP2_0) - 1;
  186. int shift3 = ffs(QUADSPI_SR_BP3) - 1 - 3;
  187. u32 stat = readl(&regs->rd_status);
  188. unsigned pow = ((stat & QUADSPI_SR_BP2_0) >> shift0) |
  189. ((stat & QUADSPI_SR_BP3) >> shift3);
  190. *ofs = 0;
  191. *len = 0;
  192. if (pow) {
  193. *len = mtd->erasesize << (pow - 1);
  194. if (*len > mtd->size)
  195. *len = mtd->size;
  196. if (!(stat & QUADSPI_SR_TB))
  197. *ofs = mtd->size - *len;
  198. }
  199. }
  200. static int altera_qspi_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  201. {
  202. struct udevice *dev = mtd->dev;
  203. struct altera_qspi_platdata *pdata = dev_get_platdata(dev);
  204. struct altera_qspi_regs *regs = pdata->regs;
  205. u32 sector_start, sector_end;
  206. u32 num_sectors;
  207. u32 mem_op;
  208. u32 sr_bp;
  209. u32 sr_tb;
  210. num_sectors = mtd->size / mtd->erasesize;
  211. sector_start = ofs / mtd->erasesize;
  212. sector_end = (ofs + len) / mtd->erasesize;
  213. if (sector_start >= num_sectors / 2) {
  214. sr_bp = fls(num_sectors - 1 - sector_start) + 1;
  215. sr_tb = 0;
  216. } else if (sector_end < num_sectors / 2) {
  217. sr_bp = fls(sector_end) + 1;
  218. sr_tb = 1;
  219. } else {
  220. sr_bp = 15;
  221. sr_tb = 0;
  222. }
  223. mem_op = (sr_tb << 12) | (sr_bp << 8);
  224. mem_op |= QUADSPI_MEM_OP_SECTOR_PROTECT;
  225. debug("lock %08x\n", mem_op);
  226. writel(mem_op, &regs->mem_op);
  227. return 0;
  228. }
  229. static int altera_qspi_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  230. {
  231. struct udevice *dev = mtd->dev;
  232. struct altera_qspi_platdata *pdata = dev_get_platdata(dev);
  233. struct altera_qspi_regs *regs = pdata->regs;
  234. u32 mem_op;
  235. mem_op = QUADSPI_MEM_OP_SECTOR_PROTECT;
  236. debug("unlock %08x\n", mem_op);
  237. writel(mem_op, &regs->mem_op);
  238. return 0;
  239. }
  240. static int altera_qspi_probe(struct udevice *dev)
  241. {
  242. struct altera_qspi_platdata *pdata = dev_get_platdata(dev);
  243. struct altera_qspi_regs *regs = pdata->regs;
  244. unsigned long base = (unsigned long)pdata->base;
  245. struct mtd_info *mtd;
  246. flash_info_t *flash = &flash_info[0];
  247. u32 rdid;
  248. int i;
  249. rdid = readl(&regs->rd_rdid);
  250. debug("rdid %x\n", rdid);
  251. mtd = dev_get_uclass_priv(dev);
  252. mtd->dev = dev;
  253. mtd->name = "nor0";
  254. mtd->type = MTD_NORFLASH;
  255. mtd->flags = MTD_CAP_NORFLASH;
  256. mtd->size = 1 << ((rdid & 0xff) - 6);
  257. mtd->writesize = 1;
  258. mtd->writebufsize = mtd->writesize;
  259. mtd->_erase = altera_qspi_erase;
  260. mtd->_read = altera_qspi_read;
  261. mtd->_write = altera_qspi_write;
  262. mtd->_sync = altera_qspi_sync;
  263. mtd->_lock = altera_qspi_lock;
  264. mtd->_unlock = altera_qspi_unlock;
  265. mtd->numeraseregions = 0;
  266. mtd->erasesize = 0x10000;
  267. if (add_mtd_device(mtd))
  268. return -ENOMEM;
  269. flash->mtd = mtd;
  270. flash->size = mtd->size;
  271. flash->sector_count = mtd->size / mtd->erasesize;
  272. flash->flash_id = rdid;
  273. flash->start[0] = base;
  274. for (i = 1; i < flash->sector_count; i++)
  275. flash->start[i] = flash->start[i - 1] + mtd->erasesize;
  276. gd->bd->bi_flashstart = base;
  277. return 0;
  278. }
  279. static int altera_qspi_ofdata_to_platdata(struct udevice *dev)
  280. {
  281. struct altera_qspi_platdata *pdata = dev_get_platdata(dev);
  282. void *blob = (void *)gd->fdt_blob;
  283. int node = dev->of_offset;
  284. const char *list, *end;
  285. const fdt32_t *cell;
  286. void *base;
  287. unsigned long addr, size;
  288. int parent, addrc, sizec;
  289. int len, idx;
  290. /*
  291. * decode regs. there are multiple reg tuples, and they need to
  292. * match with reg-names.
  293. */
  294. parent = fdt_parent_offset(blob, node);
  295. of_bus_default_count_cells(blob, parent, &addrc, &sizec);
  296. list = fdt_getprop(blob, node, "reg-names", &len);
  297. if (!list)
  298. return -ENOENT;
  299. end = list + len;
  300. cell = fdt_getprop(blob, node, "reg", &len);
  301. if (!cell)
  302. return -ENOENT;
  303. idx = 0;
  304. while (list < end) {
  305. addr = fdt_translate_address((void *)blob,
  306. node, cell + idx);
  307. size = fdt_addr_to_cpu(cell[idx + addrc]);
  308. base = map_physmem(addr, size, MAP_NOCACHE);
  309. len = strlen(list);
  310. if (strcmp(list, "avl_csr") == 0) {
  311. pdata->regs = base;
  312. } else if (strcmp(list, "avl_mem") == 0) {
  313. pdata->base = base;
  314. pdata->size = size;
  315. }
  316. idx += addrc + sizec;
  317. list += (len + 1);
  318. }
  319. return 0;
  320. }
  321. static const struct udevice_id altera_qspi_ids[] = {
  322. { .compatible = "altr,quadspi-1.0" },
  323. {}
  324. };
  325. U_BOOT_DRIVER(altera_qspi) = {
  326. .name = "altera_qspi",
  327. .id = UCLASS_MTD,
  328. .of_match = altera_qspi_ids,
  329. .ofdata_to_platdata = altera_qspi_ofdata_to_platdata,
  330. .platdata_auto_alloc_size = sizeof(struct altera_qspi_platdata),
  331. .probe = altera_qspi_probe,
  332. };