main.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850
  1. /*
  2. * Copyright 2008-2014 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * Version 2 as published by the Free Software Foundation.
  7. */
  8. /*
  9. * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
  10. * Based on code from spd_sdram.c
  11. * Author: James Yang [at freescale.com]
  12. */
  13. #include <common.h>
  14. #include <i2c.h>
  15. #include <fsl_ddr_sdram.h>
  16. #include <fsl_ddr.h>
  17. /*
  18. * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
  19. * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
  20. * all Power SoCs. But it could be different for ARM SoCs. For example,
  21. * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
  22. * 0x00_8000_0000 ~ 0x00_ffff_ffff
  23. * 0x80_8000_0000 ~ 0xff_ffff_ffff
  24. */
  25. #ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
  26. #define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
  27. #endif
  28. #ifdef CONFIG_PPC
  29. #include <asm/fsl_law.h>
  30. void fsl_ddr_set_lawbar(
  31. const common_timing_params_t *memctl_common_params,
  32. unsigned int memctl_interleaved,
  33. unsigned int ctrl_num);
  34. #endif
  35. void fsl_ddr_set_intl3r(const unsigned int granule_size);
  36. #if defined(SPD_EEPROM_ADDRESS) || \
  37. defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
  38. defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
  39. #if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
  40. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  41. [0][0] = SPD_EEPROM_ADDRESS,
  42. };
  43. #elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
  44. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  45. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  46. [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
  47. };
  48. #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
  49. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  50. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  51. [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
  52. };
  53. #elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
  54. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  55. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  56. [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
  57. [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
  58. [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
  59. };
  60. #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
  61. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  62. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  63. [1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
  64. [2][0] = SPD_EEPROM_ADDRESS3, /* controller 3 */
  65. };
  66. #elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
  67. u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
  68. [0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
  69. [0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
  70. [1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
  71. [1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
  72. [2][0] = SPD_EEPROM_ADDRESS5, /* controller 3 */
  73. [2][1] = SPD_EEPROM_ADDRESS6, /* controller 3 */
  74. };
  75. #endif
  76. #define SPD_SPA0_ADDRESS 0x36
  77. #define SPD_SPA1_ADDRESS 0x37
  78. static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
  79. {
  80. int ret;
  81. #ifdef CONFIG_SYS_FSL_DDR4
  82. uint8_t dummy = 0;
  83. #endif
  84. i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
  85. #ifdef CONFIG_SYS_FSL_DDR4
  86. /*
  87. * DDR4 SPD has 384 to 512 bytes
  88. * To access the lower 256 bytes, we need to set EE page address to 0
  89. * To access the upper 256 bytes, we need to set EE page address to 1
  90. * See Jedec standar No. 21-C for detail
  91. */
  92. i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
  93. ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
  94. if (!ret) {
  95. i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
  96. ret = i2c_read(i2c_address, 0, 1,
  97. (uchar *)((ulong)spd + 256),
  98. min(256, sizeof(generic_spd_eeprom_t) - 256));
  99. }
  100. #else
  101. ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
  102. sizeof(generic_spd_eeprom_t));
  103. #endif
  104. if (ret) {
  105. if (i2c_address ==
  106. #ifdef SPD_EEPROM_ADDRESS
  107. SPD_EEPROM_ADDRESS
  108. #elif defined(SPD_EEPROM_ADDRESS1)
  109. SPD_EEPROM_ADDRESS1
  110. #endif
  111. ) {
  112. printf("DDR: failed to read SPD from address %u\n",
  113. i2c_address);
  114. } else {
  115. debug("DDR: failed to read SPD from address %u\n",
  116. i2c_address);
  117. }
  118. memset(spd, 0, sizeof(generic_spd_eeprom_t));
  119. }
  120. }
  121. __attribute__((weak, alias("__get_spd")))
  122. void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
  123. void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
  124. unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
  125. {
  126. unsigned int i;
  127. unsigned int i2c_address = 0;
  128. if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
  129. printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
  130. return;
  131. }
  132. for (i = 0; i < dimm_slots_per_ctrl; i++) {
  133. i2c_address = spd_i2c_addr[ctrl_num][i];
  134. get_spd(&(ctrl_dimms_spd[i]), i2c_address);
  135. }
  136. }
  137. #else
  138. void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
  139. unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
  140. {
  141. }
  142. #endif /* SPD_EEPROM_ADDRESSx */
  143. /*
  144. * ASSUMPTIONS:
  145. * - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
  146. * - Same memory data bus width on all controllers
  147. *
  148. * NOTES:
  149. *
  150. * The memory controller and associated documentation use confusing
  151. * terminology when referring to the orgranization of DRAM.
  152. *
  153. * Here is a terminology translation table:
  154. *
  155. * memory controller/documention |industry |this code |signals
  156. * -------------------------------|-----------|-----------|-----------------
  157. * physical bank/bank |rank |rank |chip select (CS)
  158. * logical bank/sub-bank |bank |bank |bank address (BA)
  159. * page/row |row |page |row address
  160. * ??? |column |column |column address
  161. *
  162. * The naming confusion is further exacerbated by the descriptions of the
  163. * memory controller interleaving feature, where accesses are interleaved
  164. * _BETWEEN_ two seperate memory controllers. This is configured only in
  165. * CS0_CONFIG[INTLV_CTL] of each memory controller.
  166. *
  167. * memory controller documentation | number of chip selects
  168. * | per memory controller supported
  169. * --------------------------------|-----------------------------------------
  170. * cache line interleaving | 1 (CS0 only)
  171. * page interleaving | 1 (CS0 only)
  172. * bank interleaving | 1 (CS0 only)
  173. * superbank interleraving | depends on bank (chip select)
  174. * | interleraving [rank interleaving]
  175. * | mode used on every memory controller
  176. *
  177. * Even further confusing is the existence of the interleaving feature
  178. * _WITHIN_ each memory controller. The feature is referred to in
  179. * documentation as chip select interleaving or bank interleaving,
  180. * although it is configured in the DDR_SDRAM_CFG field.
  181. *
  182. * Name of field | documentation name | this code
  183. * -----------------------------|-----------------------|------------------
  184. * DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
  185. * | interleaving
  186. */
  187. const char *step_string_tbl[] = {
  188. "STEP_GET_SPD",
  189. "STEP_COMPUTE_DIMM_PARMS",
  190. "STEP_COMPUTE_COMMON_PARMS",
  191. "STEP_GATHER_OPTS",
  192. "STEP_ASSIGN_ADDRESSES",
  193. "STEP_COMPUTE_REGS",
  194. "STEP_PROGRAM_REGS",
  195. "STEP_ALL"
  196. };
  197. const char * step_to_string(unsigned int step) {
  198. unsigned int s = __ilog2(step);
  199. if ((1 << s) != step)
  200. return step_string_tbl[7];
  201. if (s >= ARRAY_SIZE(step_string_tbl)) {
  202. printf("Error for the step in %s\n", __func__);
  203. s = 0;
  204. }
  205. return step_string_tbl[s];
  206. }
  207. static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
  208. unsigned int dbw_cap_adj[])
  209. {
  210. unsigned int i, j;
  211. unsigned long long total_mem, current_mem_base, total_ctlr_mem;
  212. unsigned long long rank_density, ctlr_density = 0;
  213. unsigned int first_ctrl = pinfo->first_ctrl;
  214. unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
  215. /*
  216. * If a reduced data width is requested, but the SPD
  217. * specifies a physically wider device, adjust the
  218. * computed dimm capacities accordingly before
  219. * assigning addresses.
  220. */
  221. for (i = first_ctrl; i <= last_ctrl; i++) {
  222. unsigned int found = 0;
  223. switch (pinfo->memctl_opts[i].data_bus_width) {
  224. case 2:
  225. /* 16-bit */
  226. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  227. unsigned int dw;
  228. if (!pinfo->dimm_params[i][j].n_ranks)
  229. continue;
  230. dw = pinfo->dimm_params[i][j].primary_sdram_width;
  231. if ((dw == 72 || dw == 64)) {
  232. dbw_cap_adj[i] = 2;
  233. break;
  234. } else if ((dw == 40 || dw == 32)) {
  235. dbw_cap_adj[i] = 1;
  236. break;
  237. }
  238. }
  239. break;
  240. case 1:
  241. /* 32-bit */
  242. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  243. unsigned int dw;
  244. dw = pinfo->dimm_params[i][j].data_width;
  245. if (pinfo->dimm_params[i][j].n_ranks
  246. && (dw == 72 || dw == 64)) {
  247. /*
  248. * FIXME: can't really do it
  249. * like this because this just
  250. * further reduces the memory
  251. */
  252. found = 1;
  253. break;
  254. }
  255. }
  256. if (found) {
  257. dbw_cap_adj[i] = 1;
  258. }
  259. break;
  260. case 0:
  261. /* 64-bit */
  262. break;
  263. default:
  264. printf("unexpected data bus width "
  265. "specified controller %u\n", i);
  266. return 1;
  267. }
  268. debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
  269. }
  270. current_mem_base = pinfo->mem_base;
  271. total_mem = 0;
  272. if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
  273. rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
  274. dbw_cap_adj[first_ctrl];
  275. switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
  276. FSL_DDR_CS0_CS1_CS2_CS3) {
  277. case FSL_DDR_CS0_CS1_CS2_CS3:
  278. ctlr_density = 4 * rank_density;
  279. break;
  280. case FSL_DDR_CS0_CS1:
  281. case FSL_DDR_CS0_CS1_AND_CS2_CS3:
  282. ctlr_density = 2 * rank_density;
  283. break;
  284. case FSL_DDR_CS2_CS3:
  285. default:
  286. ctlr_density = rank_density;
  287. break;
  288. }
  289. debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
  290. rank_density, ctlr_density);
  291. for (i = first_ctrl; i <= last_ctrl; i++) {
  292. if (pinfo->memctl_opts[i].memctl_interleaving) {
  293. switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
  294. case FSL_DDR_256B_INTERLEAVING:
  295. case FSL_DDR_CACHE_LINE_INTERLEAVING:
  296. case FSL_DDR_PAGE_INTERLEAVING:
  297. case FSL_DDR_BANK_INTERLEAVING:
  298. case FSL_DDR_SUPERBANK_INTERLEAVING:
  299. total_ctlr_mem = 2 * ctlr_density;
  300. break;
  301. case FSL_DDR_3WAY_1KB_INTERLEAVING:
  302. case FSL_DDR_3WAY_4KB_INTERLEAVING:
  303. case FSL_DDR_3WAY_8KB_INTERLEAVING:
  304. total_ctlr_mem = 3 * ctlr_density;
  305. break;
  306. case FSL_DDR_4WAY_1KB_INTERLEAVING:
  307. case FSL_DDR_4WAY_4KB_INTERLEAVING:
  308. case FSL_DDR_4WAY_8KB_INTERLEAVING:
  309. total_ctlr_mem = 4 * ctlr_density;
  310. break;
  311. default:
  312. panic("Unknown interleaving mode");
  313. }
  314. pinfo->common_timing_params[i].base_address =
  315. current_mem_base;
  316. pinfo->common_timing_params[i].total_mem =
  317. total_ctlr_mem;
  318. total_mem = current_mem_base + total_ctlr_mem;
  319. debug("ctrl %d base 0x%llx\n", i, current_mem_base);
  320. debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
  321. } else {
  322. /* when 3rd controller not interleaved */
  323. current_mem_base = total_mem;
  324. total_ctlr_mem = 0;
  325. pinfo->common_timing_params[i].base_address =
  326. current_mem_base;
  327. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  328. unsigned long long cap =
  329. pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
  330. pinfo->dimm_params[i][j].base_address =
  331. current_mem_base;
  332. debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
  333. current_mem_base += cap;
  334. total_ctlr_mem += cap;
  335. }
  336. debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
  337. pinfo->common_timing_params[i].total_mem =
  338. total_ctlr_mem;
  339. total_mem += total_ctlr_mem;
  340. }
  341. }
  342. } else {
  343. /*
  344. * Simple linear assignment if memory
  345. * controllers are not interleaved.
  346. */
  347. for (i = first_ctrl; i <= last_ctrl; i++) {
  348. total_ctlr_mem = 0;
  349. pinfo->common_timing_params[i].base_address =
  350. current_mem_base;
  351. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  352. /* Compute DIMM base addresses. */
  353. unsigned long long cap =
  354. pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
  355. pinfo->dimm_params[i][j].base_address =
  356. current_mem_base;
  357. debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
  358. current_mem_base += cap;
  359. total_ctlr_mem += cap;
  360. }
  361. debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
  362. pinfo->common_timing_params[i].total_mem =
  363. total_ctlr_mem;
  364. total_mem += total_ctlr_mem;
  365. }
  366. }
  367. debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
  368. return total_mem;
  369. }
  370. /* Use weak function to allow board file to override the address assignment */
  371. __attribute__((weak, alias("__step_assign_addresses")))
  372. unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
  373. unsigned int dbw_cap_adj[]);
  374. unsigned long long
  375. fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
  376. unsigned int size_only)
  377. {
  378. unsigned int i, j;
  379. unsigned long long total_mem = 0;
  380. int assert_reset = 0;
  381. unsigned int first_ctrl = pinfo->first_ctrl;
  382. unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
  383. __maybe_unused int retval;
  384. __maybe_unused bool goodspd = false;
  385. __maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
  386. fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
  387. common_timing_params_t *timing_params = pinfo->common_timing_params;
  388. if (pinfo->board_need_mem_reset)
  389. assert_reset = pinfo->board_need_mem_reset();
  390. /* data bus width capacity adjust shift amount */
  391. unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
  392. for (i = first_ctrl; i <= last_ctrl; i++)
  393. dbw_capacity_adjust[i] = 0;
  394. debug("starting at step %u (%s)\n",
  395. start_step, step_to_string(start_step));
  396. switch (start_step) {
  397. case STEP_GET_SPD:
  398. #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
  399. /* STEP 1: Gather all DIMM SPD data */
  400. for (i = first_ctrl; i <= last_ctrl; i++) {
  401. fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
  402. dimm_slots_per_ctrl);
  403. }
  404. case STEP_COMPUTE_DIMM_PARMS:
  405. /* STEP 2: Compute DIMM parameters from SPD data */
  406. for (i = first_ctrl; i <= last_ctrl; i++) {
  407. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  408. generic_spd_eeprom_t *spd =
  409. &(pinfo->spd_installed_dimms[i][j]);
  410. dimm_params_t *pdimm =
  411. &(pinfo->dimm_params[i][j]);
  412. retval = compute_dimm_parameters(spd, pdimm, i);
  413. #ifdef CONFIG_SYS_DDR_RAW_TIMING
  414. if (!i && !j && retval) {
  415. printf("SPD error on controller %d! "
  416. "Trying fallback to raw timing "
  417. "calculation\n", i);
  418. retval = fsl_ddr_get_dimm_params(pdimm,
  419. i, j);
  420. }
  421. #else
  422. if (retval == 2) {
  423. printf("Error: compute_dimm_parameters"
  424. " non-zero returned FATAL value "
  425. "for memctl=%u dimm=%u\n", i, j);
  426. return 0;
  427. }
  428. #endif
  429. if (retval) {
  430. debug("Warning: compute_dimm_parameters"
  431. " non-zero return value for memctl=%u "
  432. "dimm=%u\n", i, j);
  433. } else {
  434. goodspd = true;
  435. }
  436. }
  437. }
  438. if (!goodspd) {
  439. /*
  440. * No valid SPD found
  441. * Throw an error if this is for main memory, i.e.
  442. * first_ctrl == 0. Otherwise, siliently return 0
  443. * as the memory size.
  444. */
  445. if (first_ctrl == 0)
  446. printf("Error: No valid SPD detected.\n");
  447. return 0;
  448. }
  449. #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
  450. case STEP_COMPUTE_DIMM_PARMS:
  451. for (i = first_ctrl; i <= last_ctrl; i++) {
  452. for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
  453. dimm_params_t *pdimm =
  454. &(pinfo->dimm_params[i][j]);
  455. fsl_ddr_get_dimm_params(pdimm, i, j);
  456. }
  457. }
  458. debug("Filling dimm parameters from board specific file\n");
  459. #endif
  460. case STEP_COMPUTE_COMMON_PARMS:
  461. /*
  462. * STEP 3: Compute a common set of timing parameters
  463. * suitable for all of the DIMMs on each memory controller
  464. */
  465. for (i = first_ctrl; i <= last_ctrl; i++) {
  466. debug("Computing lowest common DIMM"
  467. " parameters for memctl=%u\n", i);
  468. compute_lowest_common_dimm_parameters(
  469. pinfo->dimm_params[i],
  470. &timing_params[i],
  471. CONFIG_DIMM_SLOTS_PER_CTLR);
  472. }
  473. case STEP_GATHER_OPTS:
  474. /* STEP 4: Gather configuration requirements from user */
  475. for (i = first_ctrl; i <= last_ctrl; i++) {
  476. debug("Reloading memory controller "
  477. "configuration options for memctl=%u\n", i);
  478. /*
  479. * This "reloads" the memory controller options
  480. * to defaults. If the user "edits" an option,
  481. * next_step points to the step after this,
  482. * which is currently STEP_ASSIGN_ADDRESSES.
  483. */
  484. populate_memctl_options(
  485. timing_params[i].all_dimms_registered,
  486. &pinfo->memctl_opts[i],
  487. pinfo->dimm_params[i], i);
  488. /*
  489. * For RDIMMs, JEDEC spec requires clocks to be stable
  490. * before reset signal is deasserted. For the boards
  491. * using fixed parameters, this function should be
  492. * be called from board init file.
  493. */
  494. if (timing_params[i].all_dimms_registered)
  495. assert_reset = 1;
  496. }
  497. if (assert_reset && !size_only) {
  498. if (pinfo->board_mem_reset) {
  499. debug("Asserting mem reset\n");
  500. pinfo->board_mem_reset();
  501. } else {
  502. debug("Asserting mem reset missing\n");
  503. }
  504. }
  505. case STEP_ASSIGN_ADDRESSES:
  506. /* STEP 5: Assign addresses to chip selects */
  507. check_interleaving_options(pinfo);
  508. total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
  509. debug("Total mem %llu assigned\n", total_mem);
  510. case STEP_COMPUTE_REGS:
  511. /* STEP 6: compute controller register values */
  512. debug("FSL Memory ctrl register computation\n");
  513. for (i = first_ctrl; i <= last_ctrl; i++) {
  514. if (timing_params[i].ndimms_present == 0) {
  515. memset(&ddr_reg[i], 0,
  516. sizeof(fsl_ddr_cfg_regs_t));
  517. continue;
  518. }
  519. compute_fsl_memctl_config_regs(
  520. &pinfo->memctl_opts[i],
  521. &ddr_reg[i], &timing_params[i],
  522. pinfo->dimm_params[i],
  523. dbw_capacity_adjust[i],
  524. size_only);
  525. }
  526. default:
  527. break;
  528. }
  529. {
  530. /*
  531. * Compute the amount of memory available just by
  532. * looking for the highest valid CSn_BNDS value.
  533. * This allows us to also experiment with using
  534. * only CS0 when using dual-rank DIMMs.
  535. */
  536. unsigned int max_end = 0;
  537. for (i = first_ctrl; i <= last_ctrl; i++) {
  538. for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
  539. fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
  540. if (reg->cs[j].config & 0x80000000) {
  541. unsigned int end;
  542. /*
  543. * 0xfffffff is a special value we put
  544. * for unused bnds
  545. */
  546. if (reg->cs[j].bnds == 0xffffffff)
  547. continue;
  548. end = reg->cs[j].bnds & 0xffff;
  549. if (end > max_end) {
  550. max_end = end;
  551. }
  552. }
  553. }
  554. }
  555. total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
  556. 0xFFFFFFULL) - pinfo->mem_base;
  557. }
  558. return total_mem;
  559. }
  560. phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
  561. {
  562. unsigned int i, first_ctrl, last_ctrl;
  563. #ifdef CONFIG_PPC
  564. unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
  565. #endif
  566. unsigned long long total_memory;
  567. int deassert_reset = 0;
  568. first_ctrl = pinfo->first_ctrl;
  569. last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
  570. /* Compute it once normally. */
  571. #ifdef CONFIG_FSL_DDR_INTERACTIVE
  572. if (tstc() && (getc() == 'd')) { /* we got a key press of 'd' */
  573. total_memory = fsl_ddr_interactive(pinfo, 0);
  574. } else if (fsl_ddr_interactive_env_var_exists()) {
  575. total_memory = fsl_ddr_interactive(pinfo, 1);
  576. } else
  577. #endif
  578. total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
  579. /* setup 3-way interleaving before enabling DDRC */
  580. switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
  581. case FSL_DDR_3WAY_1KB_INTERLEAVING:
  582. case FSL_DDR_3WAY_4KB_INTERLEAVING:
  583. case FSL_DDR_3WAY_8KB_INTERLEAVING:
  584. fsl_ddr_set_intl3r(
  585. pinfo->memctl_opts[first_ctrl].
  586. memctl_interleaving_mode);
  587. break;
  588. default:
  589. break;
  590. }
  591. /*
  592. * Program configuration registers.
  593. * JEDEC specs requires clocks to be stable before deasserting reset
  594. * for RDIMMs. Clocks start after chip select is enabled and clock
  595. * control register is set. During step 1, all controllers have their
  596. * registers set but not enabled. Step 2 proceeds after deasserting
  597. * reset through board FPGA or GPIO.
  598. * For non-registered DIMMs, initialization can go through but it is
  599. * also OK to follow the same flow.
  600. */
  601. if (pinfo->board_need_mem_reset)
  602. deassert_reset = pinfo->board_need_mem_reset();
  603. for (i = first_ctrl; i <= last_ctrl; i++) {
  604. if (pinfo->common_timing_params[i].all_dimms_registered)
  605. deassert_reset = 1;
  606. }
  607. for (i = first_ctrl; i <= last_ctrl; i++) {
  608. debug("Programming controller %u\n", i);
  609. if (pinfo->common_timing_params[i].ndimms_present == 0) {
  610. debug("No dimms present on controller %u; "
  611. "skipping programming\n", i);
  612. continue;
  613. }
  614. /*
  615. * The following call with step = 1 returns before enabling
  616. * the controller. It has to finish with step = 2 later.
  617. */
  618. fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
  619. deassert_reset ? 1 : 0);
  620. }
  621. if (deassert_reset) {
  622. /* Use board FPGA or GPIO to deassert reset signal */
  623. if (pinfo->board_mem_de_reset) {
  624. debug("Deasserting mem reset\n");
  625. pinfo->board_mem_de_reset();
  626. } else {
  627. debug("Deasserting mem reset missing\n");
  628. }
  629. for (i = first_ctrl; i <= last_ctrl; i++) {
  630. /* Call with step = 2 to continue initialization */
  631. fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
  632. i, 2);
  633. }
  634. }
  635. #ifdef CONFIG_PPC
  636. /* program LAWs */
  637. for (i = first_ctrl; i <= last_ctrl; i++) {
  638. if (pinfo->memctl_opts[i].memctl_interleaving) {
  639. switch (pinfo->memctl_opts[i].
  640. memctl_interleaving_mode) {
  641. case FSL_DDR_CACHE_LINE_INTERLEAVING:
  642. case FSL_DDR_PAGE_INTERLEAVING:
  643. case FSL_DDR_BANK_INTERLEAVING:
  644. case FSL_DDR_SUPERBANK_INTERLEAVING:
  645. if (i % 2)
  646. break;
  647. if (i == 0) {
  648. law_memctl = LAW_TRGT_IF_DDR_INTRLV;
  649. fsl_ddr_set_lawbar(
  650. &pinfo->common_timing_params[i],
  651. law_memctl, i);
  652. }
  653. #if CONFIG_NUM_DDR_CONTROLLERS > 3
  654. else if (i == 2) {
  655. law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
  656. fsl_ddr_set_lawbar(
  657. &pinfo->common_timing_params[i],
  658. law_memctl, i);
  659. }
  660. #endif
  661. break;
  662. case FSL_DDR_3WAY_1KB_INTERLEAVING:
  663. case FSL_DDR_3WAY_4KB_INTERLEAVING:
  664. case FSL_DDR_3WAY_8KB_INTERLEAVING:
  665. law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
  666. if (i == 0) {
  667. fsl_ddr_set_lawbar(
  668. &pinfo->common_timing_params[i],
  669. law_memctl, i);
  670. }
  671. break;
  672. case FSL_DDR_4WAY_1KB_INTERLEAVING:
  673. case FSL_DDR_4WAY_4KB_INTERLEAVING:
  674. case FSL_DDR_4WAY_8KB_INTERLEAVING:
  675. law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
  676. if (i == 0)
  677. fsl_ddr_set_lawbar(
  678. &pinfo->common_timing_params[i],
  679. law_memctl, i);
  680. /* place holder for future 4-way interleaving */
  681. break;
  682. default:
  683. break;
  684. }
  685. } else {
  686. switch (i) {
  687. case 0:
  688. law_memctl = LAW_TRGT_IF_DDR_1;
  689. break;
  690. case 1:
  691. law_memctl = LAW_TRGT_IF_DDR_2;
  692. break;
  693. case 2:
  694. law_memctl = LAW_TRGT_IF_DDR_3;
  695. break;
  696. case 3:
  697. law_memctl = LAW_TRGT_IF_DDR_4;
  698. break;
  699. default:
  700. break;
  701. }
  702. fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
  703. law_memctl, i);
  704. }
  705. }
  706. #endif
  707. debug("total_memory by %s = %llu\n", __func__, total_memory);
  708. #if !defined(CONFIG_PHYS_64BIT)
  709. /* Check for 4G or more. Bad. */
  710. if ((first_ctrl == 0) && (total_memory >= (1ull << 32))) {
  711. puts("Detected ");
  712. print_size(total_memory, " of memory\n");
  713. printf(" This U-Boot only supports < 4G of DDR\n");
  714. printf(" You could rebuild it with CONFIG_PHYS_64BIT\n");
  715. printf(" "); /* re-align to match init_func_ram print */
  716. total_memory = CONFIG_MAX_MEM_MAPPED;
  717. }
  718. #endif
  719. return total_memory;
  720. }
  721. /*
  722. * fsl_ddr_sdram(void) -- this is the main function to be
  723. * called by initdram() in the board file.
  724. *
  725. * It returns amount of memory configured in bytes.
  726. */
  727. phys_size_t fsl_ddr_sdram(void)
  728. {
  729. fsl_ddr_info_t info;
  730. /* Reset info structure. */
  731. memset(&info, 0, sizeof(fsl_ddr_info_t));
  732. info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
  733. info.first_ctrl = 0;
  734. info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
  735. info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
  736. info.board_need_mem_reset = board_need_mem_reset;
  737. info.board_mem_reset = board_assert_mem_reset;
  738. info.board_mem_de_reset = board_deassert_mem_reset;
  739. return __fsl_ddr_sdram(&info);
  740. }
  741. #ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
  742. phys_size_t fsl_other_ddr_sdram(unsigned long long base,
  743. unsigned int first_ctrl,
  744. unsigned int num_ctrls,
  745. unsigned int dimm_slots_per_ctrl,
  746. int (*board_need_reset)(void),
  747. void (*board_reset)(void),
  748. void (*board_de_reset)(void))
  749. {
  750. fsl_ddr_info_t info;
  751. /* Reset info structure. */
  752. memset(&info, 0, sizeof(fsl_ddr_info_t));
  753. info.mem_base = base;
  754. info.first_ctrl = first_ctrl;
  755. info.num_ctrls = num_ctrls;
  756. info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
  757. info.board_need_mem_reset = board_need_reset;
  758. info.board_mem_reset = board_reset;
  759. info.board_mem_de_reset = board_de_reset;
  760. return __fsl_ddr_sdram(&info);
  761. }
  762. #endif
  763. /*
  764. * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
  765. * size of the total memory without setting ddr control registers.
  766. */
  767. phys_size_t
  768. fsl_ddr_sdram_size(void)
  769. {
  770. fsl_ddr_info_t info;
  771. unsigned long long total_memory = 0;
  772. memset(&info, 0 , sizeof(fsl_ddr_info_t));
  773. info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
  774. info.first_ctrl = 0;
  775. info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
  776. info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
  777. info.board_need_mem_reset = NULL;
  778. /* Compute it once normally. */
  779. total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
  780. return total_memory;
  781. }