mxc_spi.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. /*
  2. * Copyright (C) 2008, Guennadi Liakhovetski <lg@denx.de>
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+
  5. */
  6. #include <common.h>
  7. #include <malloc.h>
  8. #include <spi.h>
  9. #include <asm/errno.h>
  10. #include <asm/io.h>
  11. #include <asm/gpio.h>
  12. #include <asm/arch/imx-regs.h>
  13. #include <asm/arch/clock.h>
  14. #ifdef CONFIG_MX27
  15. /* i.MX27 has a completely wrong register layout and register definitions in the
  16. * datasheet, the correct one is in the Freescale's Linux driver */
  17. #error "i.MX27 CSPI not supported due to drastic differences in register definitions" \
  18. "See linux mxc_spi driver from Freescale for details."
  19. #endif
  20. static unsigned long spi_bases[] = {
  21. MXC_SPI_BASE_ADDRESSES
  22. };
  23. #define OUT MXC_GPIO_DIRECTION_OUT
  24. #define reg_read readl
  25. #define reg_write(a, v) writel(v, a)
  26. #if !defined(CONFIG_SYS_SPI_MXC_WAIT)
  27. #define CONFIG_SYS_SPI_MXC_WAIT (CONFIG_SYS_HZ/100) /* 10 ms */
  28. #endif
  29. struct mxc_spi_slave {
  30. struct spi_slave slave;
  31. unsigned long base;
  32. u32 ctrl_reg;
  33. #if defined(MXC_ECSPI)
  34. u32 cfg_reg;
  35. #endif
  36. int gpio;
  37. int ss_pol;
  38. };
  39. static inline struct mxc_spi_slave *to_mxc_spi_slave(struct spi_slave *slave)
  40. {
  41. return container_of(slave, struct mxc_spi_slave, slave);
  42. }
  43. void spi_cs_activate(struct spi_slave *slave)
  44. {
  45. struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
  46. if (mxcs->gpio > 0)
  47. gpio_set_value(mxcs->gpio, mxcs->ss_pol);
  48. }
  49. void spi_cs_deactivate(struct spi_slave *slave)
  50. {
  51. struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
  52. if (mxcs->gpio > 0)
  53. gpio_set_value(mxcs->gpio,
  54. !(mxcs->ss_pol));
  55. }
  56. u32 get_cspi_div(u32 div)
  57. {
  58. int i;
  59. for (i = 0; i < 8; i++) {
  60. if (div <= (4 << i))
  61. return i;
  62. }
  63. return i;
  64. }
  65. #ifdef MXC_CSPI
  66. static s32 spi_cfg_mxc(struct mxc_spi_slave *mxcs, unsigned int cs,
  67. unsigned int max_hz, unsigned int mode)
  68. {
  69. unsigned int ctrl_reg;
  70. u32 clk_src;
  71. u32 div;
  72. clk_src = mxc_get_clock(MXC_CSPI_CLK);
  73. div = DIV_ROUND_UP(clk_src, max_hz);
  74. div = get_cspi_div(div);
  75. debug("clk %d Hz, div %d, real clk %d Hz\n",
  76. max_hz, div, clk_src / (4 << div));
  77. ctrl_reg = MXC_CSPICTRL_CHIPSELECT(cs) |
  78. MXC_CSPICTRL_BITCOUNT(MXC_CSPICTRL_MAXBITS) |
  79. MXC_CSPICTRL_DATARATE(div) |
  80. MXC_CSPICTRL_EN |
  81. #ifdef CONFIG_MX35
  82. MXC_CSPICTRL_SSCTL |
  83. #endif
  84. MXC_CSPICTRL_MODE;
  85. if (mode & SPI_CPHA)
  86. ctrl_reg |= MXC_CSPICTRL_PHA;
  87. if (mode & SPI_CPOL)
  88. ctrl_reg |= MXC_CSPICTRL_POL;
  89. if (mode & SPI_CS_HIGH)
  90. ctrl_reg |= MXC_CSPICTRL_SSPOL;
  91. mxcs->ctrl_reg = ctrl_reg;
  92. return 0;
  93. }
  94. #endif
  95. #ifdef MXC_ECSPI
  96. static s32 spi_cfg_mxc(struct mxc_spi_slave *mxcs, unsigned int cs,
  97. unsigned int max_hz, unsigned int mode)
  98. {
  99. u32 clk_src = mxc_get_clock(MXC_CSPI_CLK);
  100. s32 reg_ctrl, reg_config;
  101. u32 ss_pol = 0, sclkpol = 0, sclkpha = 0, sclkctl = 0;
  102. u32 pre_div = 0, post_div = 0;
  103. struct cspi_regs *regs = (struct cspi_regs *)mxcs->base;
  104. if (max_hz == 0) {
  105. printf("Error: desired clock is 0\n");
  106. return -1;
  107. }
  108. /*
  109. * Reset SPI and set all CSs to master mode, if toggling
  110. * between slave and master mode we might see a glitch
  111. * on the clock line
  112. */
  113. reg_ctrl = MXC_CSPICTRL_MODE_MASK;
  114. reg_write(&regs->ctrl, reg_ctrl);
  115. reg_ctrl |= MXC_CSPICTRL_EN;
  116. reg_write(&regs->ctrl, reg_ctrl);
  117. if (clk_src > max_hz) {
  118. pre_div = (clk_src - 1) / max_hz;
  119. /* fls(1) = 1, fls(0x80000000) = 32, fls(16) = 5 */
  120. post_div = fls(pre_div);
  121. if (post_div > 4) {
  122. post_div -= 4;
  123. if (post_div >= 16) {
  124. printf("Error: no divider for the freq: %d\n",
  125. max_hz);
  126. return -1;
  127. }
  128. pre_div >>= post_div;
  129. } else {
  130. post_div = 0;
  131. }
  132. }
  133. debug("pre_div = %d, post_div=%d\n", pre_div, post_div);
  134. reg_ctrl = (reg_ctrl & ~MXC_CSPICTRL_SELCHAN(3)) |
  135. MXC_CSPICTRL_SELCHAN(cs);
  136. reg_ctrl = (reg_ctrl & ~MXC_CSPICTRL_PREDIV(0x0F)) |
  137. MXC_CSPICTRL_PREDIV(pre_div);
  138. reg_ctrl = (reg_ctrl & ~MXC_CSPICTRL_POSTDIV(0x0F)) |
  139. MXC_CSPICTRL_POSTDIV(post_div);
  140. /* We need to disable SPI before changing registers */
  141. reg_ctrl &= ~MXC_CSPICTRL_EN;
  142. if (mode & SPI_CS_HIGH)
  143. ss_pol = 1;
  144. if (mode & SPI_CPOL) {
  145. sclkpol = 1;
  146. sclkctl = 1;
  147. }
  148. if (mode & SPI_CPHA)
  149. sclkpha = 1;
  150. reg_config = reg_read(&regs->cfg);
  151. /*
  152. * Configuration register setup
  153. * The MX51 supports different setup for each SS
  154. */
  155. reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_SSPOL))) |
  156. (ss_pol << (cs + MXC_CSPICON_SSPOL));
  157. reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_POL))) |
  158. (sclkpol << (cs + MXC_CSPICON_POL));
  159. reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_CTL))) |
  160. (sclkctl << (cs + MXC_CSPICON_CTL));
  161. reg_config = (reg_config & ~(1 << (cs + MXC_CSPICON_PHA))) |
  162. (sclkpha << (cs + MXC_CSPICON_PHA));
  163. debug("reg_ctrl = 0x%x\n", reg_ctrl);
  164. reg_write(&regs->ctrl, reg_ctrl);
  165. debug("reg_config = 0x%x\n", reg_config);
  166. reg_write(&regs->cfg, reg_config);
  167. /* save config register and control register */
  168. mxcs->ctrl_reg = reg_ctrl;
  169. mxcs->cfg_reg = reg_config;
  170. /* clear interrupt reg */
  171. reg_write(&regs->intr, 0);
  172. reg_write(&regs->stat, MXC_CSPICTRL_TC | MXC_CSPICTRL_RXOVF);
  173. return 0;
  174. }
  175. #endif
  176. int spi_xchg_single(struct spi_slave *slave, unsigned int bitlen,
  177. const u8 *dout, u8 *din, unsigned long flags)
  178. {
  179. struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
  180. int nbytes = DIV_ROUND_UP(bitlen, 8);
  181. u32 data, cnt, i;
  182. struct cspi_regs *regs = (struct cspi_regs *)mxcs->base;
  183. u32 ts;
  184. int status;
  185. debug("%s: bitlen %d dout 0x%x din 0x%x\n",
  186. __func__, bitlen, (u32)dout, (u32)din);
  187. mxcs->ctrl_reg = (mxcs->ctrl_reg &
  188. ~MXC_CSPICTRL_BITCOUNT(MXC_CSPICTRL_MAXBITS)) |
  189. MXC_CSPICTRL_BITCOUNT(bitlen - 1);
  190. reg_write(&regs->ctrl, mxcs->ctrl_reg | MXC_CSPICTRL_EN);
  191. #ifdef MXC_ECSPI
  192. reg_write(&regs->cfg, mxcs->cfg_reg);
  193. #endif
  194. /* Clear interrupt register */
  195. reg_write(&regs->stat, MXC_CSPICTRL_TC | MXC_CSPICTRL_RXOVF);
  196. /*
  197. * The SPI controller works only with words,
  198. * check if less than a word is sent.
  199. * Access to the FIFO is only 32 bit
  200. */
  201. if (bitlen % 32) {
  202. data = 0;
  203. cnt = (bitlen % 32) / 8;
  204. if (dout) {
  205. for (i = 0; i < cnt; i++) {
  206. data = (data << 8) | (*dout++ & 0xFF);
  207. }
  208. }
  209. debug("Sending SPI 0x%x\n", data);
  210. reg_write(&regs->txdata, data);
  211. nbytes -= cnt;
  212. }
  213. data = 0;
  214. while (nbytes > 0) {
  215. data = 0;
  216. if (dout) {
  217. /* Buffer is not 32-bit aligned */
  218. if ((unsigned long)dout & 0x03) {
  219. data = 0;
  220. for (i = 0; i < 4; i++)
  221. data = (data << 8) | (*dout++ & 0xFF);
  222. } else {
  223. data = *(u32 *)dout;
  224. data = cpu_to_be32(data);
  225. dout += 4;
  226. }
  227. }
  228. debug("Sending SPI 0x%x\n", data);
  229. reg_write(&regs->txdata, data);
  230. nbytes -= 4;
  231. }
  232. /* FIFO is written, now starts the transfer setting the XCH bit */
  233. reg_write(&regs->ctrl, mxcs->ctrl_reg |
  234. MXC_CSPICTRL_EN | MXC_CSPICTRL_XCH);
  235. ts = get_timer(0);
  236. status = reg_read(&regs->stat);
  237. /* Wait until the TC (Transfer completed) bit is set */
  238. while ((status & MXC_CSPICTRL_TC) == 0) {
  239. if (get_timer(ts) > CONFIG_SYS_SPI_MXC_WAIT) {
  240. printf("spi_xchg_single: Timeout!\n");
  241. return -1;
  242. }
  243. status = reg_read(&regs->stat);
  244. }
  245. /* Transfer completed, clear any pending request */
  246. reg_write(&regs->stat, MXC_CSPICTRL_TC | MXC_CSPICTRL_RXOVF);
  247. nbytes = DIV_ROUND_UP(bitlen, 8);
  248. cnt = nbytes % 32;
  249. if (bitlen % 32) {
  250. data = reg_read(&regs->rxdata);
  251. cnt = (bitlen % 32) / 8;
  252. data = cpu_to_be32(data) >> ((sizeof(data) - cnt) * 8);
  253. debug("SPI Rx unaligned: 0x%x\n", data);
  254. if (din) {
  255. memcpy(din, &data, cnt);
  256. din += cnt;
  257. }
  258. nbytes -= cnt;
  259. }
  260. while (nbytes > 0) {
  261. u32 tmp;
  262. tmp = reg_read(&regs->rxdata);
  263. data = cpu_to_be32(tmp);
  264. debug("SPI Rx: 0x%x 0x%x\n", tmp, data);
  265. cnt = min(nbytes, sizeof(data));
  266. if (din) {
  267. memcpy(din, &data, cnt);
  268. din += cnt;
  269. }
  270. nbytes -= cnt;
  271. }
  272. return 0;
  273. }
  274. int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
  275. void *din, unsigned long flags)
  276. {
  277. int n_bytes = DIV_ROUND_UP(bitlen, 8);
  278. int n_bits;
  279. int ret;
  280. u32 blk_size;
  281. u8 *p_outbuf = (u8 *)dout;
  282. u8 *p_inbuf = (u8 *)din;
  283. if (!slave)
  284. return -1;
  285. if (flags & SPI_XFER_BEGIN)
  286. spi_cs_activate(slave);
  287. while (n_bytes > 0) {
  288. if (n_bytes < MAX_SPI_BYTES)
  289. blk_size = n_bytes;
  290. else
  291. blk_size = MAX_SPI_BYTES;
  292. n_bits = blk_size * 8;
  293. ret = spi_xchg_single(slave, n_bits, p_outbuf, p_inbuf, 0);
  294. if (ret)
  295. return ret;
  296. if (dout)
  297. p_outbuf += blk_size;
  298. if (din)
  299. p_inbuf += blk_size;
  300. n_bytes -= blk_size;
  301. }
  302. if (flags & SPI_XFER_END) {
  303. spi_cs_deactivate(slave);
  304. }
  305. return 0;
  306. }
  307. void spi_init(void)
  308. {
  309. }
  310. static int decode_cs(struct mxc_spi_slave *mxcs, unsigned int cs)
  311. {
  312. int ret;
  313. /*
  314. * Some SPI devices require active chip-select over multiple
  315. * transactions, we achieve this using a GPIO. Still, the SPI
  316. * controller has to be configured to use one of its own chipselects.
  317. * To use this feature you have to call spi_setup_slave() with
  318. * cs = internal_cs | (gpio << 8), and you have to use some unused
  319. * on this SPI controller cs between 0 and 3.
  320. */
  321. if (cs > 3) {
  322. mxcs->gpio = cs >> 8;
  323. cs &= 3;
  324. ret = gpio_direction_output(mxcs->gpio, !(mxcs->ss_pol));
  325. if (ret) {
  326. printf("mxc_spi: cannot setup gpio %d\n", mxcs->gpio);
  327. return -EINVAL;
  328. }
  329. } else {
  330. mxcs->gpio = -1;
  331. }
  332. return cs;
  333. }
  334. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  335. unsigned int max_hz, unsigned int mode)
  336. {
  337. struct mxc_spi_slave *mxcs;
  338. int ret;
  339. if (bus >= ARRAY_SIZE(spi_bases))
  340. return NULL;
  341. mxcs = spi_alloc_slave(struct mxc_spi_slave, bus, cs);
  342. if (!mxcs) {
  343. puts("mxc_spi: SPI Slave not allocated !\n");
  344. return NULL;
  345. }
  346. mxcs->ss_pol = (mode & SPI_CS_HIGH) ? 1 : 0;
  347. ret = decode_cs(mxcs, cs);
  348. if (ret < 0) {
  349. free(mxcs);
  350. return NULL;
  351. }
  352. cs = ret;
  353. mxcs->base = spi_bases[bus];
  354. ret = spi_cfg_mxc(mxcs, cs, max_hz, mode);
  355. if (ret) {
  356. printf("mxc_spi: cannot setup SPI controller\n");
  357. free(mxcs);
  358. return NULL;
  359. }
  360. return &mxcs->slave;
  361. }
  362. void spi_free_slave(struct spi_slave *slave)
  363. {
  364. struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
  365. free(mxcs);
  366. }
  367. int spi_claim_bus(struct spi_slave *slave)
  368. {
  369. struct mxc_spi_slave *mxcs = to_mxc_spi_slave(slave);
  370. struct cspi_regs *regs = (struct cspi_regs *)mxcs->base;
  371. reg_write(&regs->rxdata, 1);
  372. udelay(1);
  373. reg_write(&regs->ctrl, mxcs->ctrl_reg);
  374. reg_write(&regs->period, MXC_CSPIPERIOD_32KHZ);
  375. reg_write(&regs->intr, 0);
  376. return 0;
  377. }
  378. void spi_release_bus(struct spi_slave *slave)
  379. {
  380. /* TODO: Shut the controller down */
  381. }