cpu.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694
  1. /*
  2. * (C) Copyright 2008-2011
  3. * Graeme Russ, <graeme.russ@gmail.com>
  4. *
  5. * (C) Copyright 2002
  6. * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
  7. *
  8. * (C) Copyright 2002
  9. * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
  10. * Marius Groeger <mgroeger@sysgo.de>
  11. *
  12. * (C) Copyright 2002
  13. * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
  14. * Alex Zuepke <azu@sysgo.de>
  15. *
  16. * Part of this file is adapted from coreboot
  17. * src/arch/x86/lib/cpu.c
  18. *
  19. * SPDX-License-Identifier: GPL-2.0+
  20. */
  21. #include <common.h>
  22. #include <command.h>
  23. #include <dm.h>
  24. #include <errno.h>
  25. #include <malloc.h>
  26. #include <asm/control_regs.h>
  27. #include <asm/cpu.h>
  28. #include <asm/lapic.h>
  29. #include <asm/mp.h>
  30. #include <asm/msr.h>
  31. #include <asm/mtrr.h>
  32. #include <asm/post.h>
  33. #include <asm/processor.h>
  34. #include <asm/processor-flags.h>
  35. #include <asm/interrupt.h>
  36. #include <asm/tables.h>
  37. #include <linux/compiler.h>
  38. DECLARE_GLOBAL_DATA_PTR;
  39. /*
  40. * Constructor for a conventional segment GDT (or LDT) entry
  41. * This is a macro so it can be used in initialisers
  42. */
  43. #define GDT_ENTRY(flags, base, limit) \
  44. ((((base) & 0xff000000ULL) << (56-24)) | \
  45. (((flags) & 0x0000f0ffULL) << 40) | \
  46. (((limit) & 0x000f0000ULL) << (48-16)) | \
  47. (((base) & 0x00ffffffULL) << 16) | \
  48. (((limit) & 0x0000ffffULL)))
  49. struct gdt_ptr {
  50. u16 len;
  51. u32 ptr;
  52. } __packed;
  53. struct cpu_device_id {
  54. unsigned vendor;
  55. unsigned device;
  56. };
  57. struct cpuinfo_x86 {
  58. uint8_t x86; /* CPU family */
  59. uint8_t x86_vendor; /* CPU vendor */
  60. uint8_t x86_model;
  61. uint8_t x86_mask;
  62. };
  63. /*
  64. * List of cpu vendor strings along with their normalized
  65. * id values.
  66. */
  67. static struct {
  68. int vendor;
  69. const char *name;
  70. } x86_vendors[] = {
  71. { X86_VENDOR_INTEL, "GenuineIntel", },
  72. { X86_VENDOR_CYRIX, "CyrixInstead", },
  73. { X86_VENDOR_AMD, "AuthenticAMD", },
  74. { X86_VENDOR_UMC, "UMC UMC UMC ", },
  75. { X86_VENDOR_NEXGEN, "NexGenDriven", },
  76. { X86_VENDOR_CENTAUR, "CentaurHauls", },
  77. { X86_VENDOR_RISE, "RiseRiseRise", },
  78. { X86_VENDOR_TRANSMETA, "GenuineTMx86", },
  79. { X86_VENDOR_TRANSMETA, "TransmetaCPU", },
  80. { X86_VENDOR_NSC, "Geode by NSC", },
  81. { X86_VENDOR_SIS, "SiS SiS SiS ", },
  82. };
  83. static const char *const x86_vendor_name[] = {
  84. [X86_VENDOR_INTEL] = "Intel",
  85. [X86_VENDOR_CYRIX] = "Cyrix",
  86. [X86_VENDOR_AMD] = "AMD",
  87. [X86_VENDOR_UMC] = "UMC",
  88. [X86_VENDOR_NEXGEN] = "NexGen",
  89. [X86_VENDOR_CENTAUR] = "Centaur",
  90. [X86_VENDOR_RISE] = "Rise",
  91. [X86_VENDOR_TRANSMETA] = "Transmeta",
  92. [X86_VENDOR_NSC] = "NSC",
  93. [X86_VENDOR_SIS] = "SiS",
  94. };
  95. static void load_ds(u32 segment)
  96. {
  97. asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  98. }
  99. static void load_es(u32 segment)
  100. {
  101. asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  102. }
  103. static void load_fs(u32 segment)
  104. {
  105. asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  106. }
  107. static void load_gs(u32 segment)
  108. {
  109. asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  110. }
  111. static void load_ss(u32 segment)
  112. {
  113. asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  114. }
  115. static void load_gdt(const u64 *boot_gdt, u16 num_entries)
  116. {
  117. struct gdt_ptr gdt;
  118. gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
  119. gdt.ptr = (u32)boot_gdt;
  120. asm volatile("lgdtl %0\n" : : "m" (gdt));
  121. }
  122. void setup_gdt(gd_t *id, u64 *gdt_addr)
  123. {
  124. id->arch.gdt = gdt_addr;
  125. /* CS: code, read/execute, 4 GB, base 0 */
  126. gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
  127. /* DS: data, read/write, 4 GB, base 0 */
  128. gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
  129. /* FS: data, read/write, 4 GB, base (Global Data Pointer) */
  130. id->arch.gd_addr = id;
  131. gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
  132. (ulong)&id->arch.gd_addr, 0xfffff);
  133. /* 16-bit CS: code, read/execute, 64 kB, base 0 */
  134. gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
  135. /* 16-bit DS: data, read/write, 64 kB, base 0 */
  136. gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
  137. gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
  138. gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
  139. load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
  140. load_ds(X86_GDT_ENTRY_32BIT_DS);
  141. load_es(X86_GDT_ENTRY_32BIT_DS);
  142. load_gs(X86_GDT_ENTRY_32BIT_DS);
  143. load_ss(X86_GDT_ENTRY_32BIT_DS);
  144. load_fs(X86_GDT_ENTRY_32BIT_FS);
  145. }
  146. #ifdef CONFIG_HAVE_FSP
  147. /*
  148. * Setup FSP execution environment GDT
  149. *
  150. * Per Intel FSP external architecture specification, before calling any FSP
  151. * APIs, we need make sure the system is in flat 32-bit mode and both the code
  152. * and data selectors should have full 4GB access range. Here we reuse the one
  153. * we used in arch/x86/cpu/start16.S, and reload the segement registers.
  154. */
  155. void setup_fsp_gdt(void)
  156. {
  157. load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
  158. load_ds(X86_GDT_ENTRY_32BIT_DS);
  159. load_ss(X86_GDT_ENTRY_32BIT_DS);
  160. load_es(X86_GDT_ENTRY_32BIT_DS);
  161. load_fs(X86_GDT_ENTRY_32BIT_DS);
  162. load_gs(X86_GDT_ENTRY_32BIT_DS);
  163. }
  164. #endif
  165. int __weak x86_cleanup_before_linux(void)
  166. {
  167. #ifdef CONFIG_BOOTSTAGE_STASH
  168. bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
  169. CONFIG_BOOTSTAGE_STASH_SIZE);
  170. #endif
  171. return 0;
  172. }
  173. /*
  174. * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
  175. * by the fact that they preserve the flags across the division of 5/2.
  176. * PII and PPro exhibit this behavior too, but they have cpuid available.
  177. */
  178. /*
  179. * Perform the Cyrix 5/2 test. A Cyrix won't change
  180. * the flags, while other 486 chips will.
  181. */
  182. static inline int test_cyrix_52div(void)
  183. {
  184. unsigned int test;
  185. __asm__ __volatile__(
  186. "sahf\n\t" /* clear flags (%eax = 0x0005) */
  187. "div %b2\n\t" /* divide 5 by 2 */
  188. "lahf" /* store flags into %ah */
  189. : "=a" (test)
  190. : "0" (5), "q" (2)
  191. : "cc");
  192. /* AH is 0x02 on Cyrix after the divide.. */
  193. return (unsigned char) (test >> 8) == 0x02;
  194. }
  195. /*
  196. * Detect a NexGen CPU running without BIOS hypercode new enough
  197. * to have CPUID. (Thanks to Herbert Oppmann)
  198. */
  199. static int deep_magic_nexgen_probe(void)
  200. {
  201. int ret;
  202. __asm__ __volatile__ (
  203. " movw $0x5555, %%ax\n"
  204. " xorw %%dx,%%dx\n"
  205. " movw $2, %%cx\n"
  206. " divw %%cx\n"
  207. " movl $0, %%eax\n"
  208. " jnz 1f\n"
  209. " movl $1, %%eax\n"
  210. "1:\n"
  211. : "=a" (ret) : : "cx", "dx");
  212. return ret;
  213. }
  214. static bool has_cpuid(void)
  215. {
  216. return flag_is_changeable_p(X86_EFLAGS_ID);
  217. }
  218. static bool has_mtrr(void)
  219. {
  220. return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
  221. }
  222. static int build_vendor_name(char *vendor_name)
  223. {
  224. struct cpuid_result result;
  225. result = cpuid(0x00000000);
  226. unsigned int *name_as_ints = (unsigned int *)vendor_name;
  227. name_as_ints[0] = result.ebx;
  228. name_as_ints[1] = result.edx;
  229. name_as_ints[2] = result.ecx;
  230. return result.eax;
  231. }
  232. static void identify_cpu(struct cpu_device_id *cpu)
  233. {
  234. char vendor_name[16];
  235. int i;
  236. vendor_name[0] = '\0'; /* Unset */
  237. cpu->device = 0; /* fix gcc 4.4.4 warning */
  238. /* Find the id and vendor_name */
  239. if (!has_cpuid()) {
  240. /* Its a 486 if we can modify the AC flag */
  241. if (flag_is_changeable_p(X86_EFLAGS_AC))
  242. cpu->device = 0x00000400; /* 486 */
  243. else
  244. cpu->device = 0x00000300; /* 386 */
  245. if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
  246. memcpy(vendor_name, "CyrixInstead", 13);
  247. /* If we ever care we can enable cpuid here */
  248. }
  249. /* Detect NexGen with old hypercode */
  250. else if (deep_magic_nexgen_probe())
  251. memcpy(vendor_name, "NexGenDriven", 13);
  252. }
  253. if (has_cpuid()) {
  254. int cpuid_level;
  255. cpuid_level = build_vendor_name(vendor_name);
  256. vendor_name[12] = '\0';
  257. /* Intel-defined flags: level 0x00000001 */
  258. if (cpuid_level >= 0x00000001) {
  259. cpu->device = cpuid_eax(0x00000001);
  260. } else {
  261. /* Have CPUID level 0 only unheard of */
  262. cpu->device = 0x00000400;
  263. }
  264. }
  265. cpu->vendor = X86_VENDOR_UNKNOWN;
  266. for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
  267. if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
  268. cpu->vendor = x86_vendors[i].vendor;
  269. break;
  270. }
  271. }
  272. }
  273. static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
  274. {
  275. c->x86 = (tfms >> 8) & 0xf;
  276. c->x86_model = (tfms >> 4) & 0xf;
  277. c->x86_mask = tfms & 0xf;
  278. if (c->x86 == 0xf)
  279. c->x86 += (tfms >> 20) & 0xff;
  280. if (c->x86 >= 0x6)
  281. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  282. }
  283. int x86_cpu_init_f(void)
  284. {
  285. const u32 em_rst = ~X86_CR0_EM;
  286. const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
  287. /* initialize FPU, reset EM, set MP and NE */
  288. asm ("fninit\n" \
  289. "movl %%cr0, %%eax\n" \
  290. "andl %0, %%eax\n" \
  291. "orl %1, %%eax\n" \
  292. "movl %%eax, %%cr0\n" \
  293. : : "i" (em_rst), "i" (mp_ne_set) : "eax");
  294. /* identify CPU via cpuid and store the decoded info into gd->arch */
  295. if (has_cpuid()) {
  296. struct cpu_device_id cpu;
  297. struct cpuinfo_x86 c;
  298. identify_cpu(&cpu);
  299. get_fms(&c, cpu.device);
  300. gd->arch.x86 = c.x86;
  301. gd->arch.x86_vendor = cpu.vendor;
  302. gd->arch.x86_model = c.x86_model;
  303. gd->arch.x86_mask = c.x86_mask;
  304. gd->arch.x86_device = cpu.device;
  305. gd->arch.has_mtrr = has_mtrr();
  306. }
  307. /* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
  308. gd->pci_ram_top = 0x80000000U;
  309. /* Configure fixed range MTRRs for some legacy regions */
  310. if (gd->arch.has_mtrr) {
  311. u64 mtrr_cap;
  312. mtrr_cap = native_read_msr(MTRR_CAP_MSR);
  313. if (mtrr_cap & MTRR_CAP_FIX) {
  314. /* Mark the VGA RAM area as uncacheable */
  315. native_write_msr(MTRR_FIX_16K_A0000_MSR, 0, 0);
  316. /* Mark the PCI ROM area as uncacheable */
  317. native_write_msr(MTRR_FIX_4K_C0000_MSR, 0, 0);
  318. native_write_msr(MTRR_FIX_4K_C8000_MSR, 0, 0);
  319. native_write_msr(MTRR_FIX_4K_D0000_MSR, 0, 0);
  320. native_write_msr(MTRR_FIX_4K_D8000_MSR, 0, 0);
  321. /* Enable the fixed range MTRRs */
  322. msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
  323. }
  324. }
  325. return 0;
  326. }
  327. void x86_enable_caches(void)
  328. {
  329. unsigned long cr0;
  330. cr0 = read_cr0();
  331. cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
  332. write_cr0(cr0);
  333. wbinvd();
  334. }
  335. void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
  336. void x86_disable_caches(void)
  337. {
  338. unsigned long cr0;
  339. cr0 = read_cr0();
  340. cr0 |= X86_CR0_NW | X86_CR0_CD;
  341. wbinvd();
  342. write_cr0(cr0);
  343. wbinvd();
  344. }
  345. void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
  346. int x86_init_cache(void)
  347. {
  348. enable_caches();
  349. return 0;
  350. }
  351. int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
  352. int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  353. {
  354. printf("resetting ...\n");
  355. /* wait 50 ms */
  356. udelay(50000);
  357. disable_interrupts();
  358. reset_cpu(0);
  359. /*NOTREACHED*/
  360. return 0;
  361. }
  362. void flush_cache(unsigned long dummy1, unsigned long dummy2)
  363. {
  364. asm("wbinvd\n");
  365. }
  366. __weak void reset_cpu(ulong addr)
  367. {
  368. /* Do a hard reset through the chipset's reset control register */
  369. outb(SYS_RST | RST_CPU, PORT_RESET);
  370. for (;;)
  371. cpu_hlt();
  372. }
  373. void x86_full_reset(void)
  374. {
  375. outb(FULL_RST | SYS_RST | RST_CPU, PORT_RESET);
  376. }
  377. int dcache_status(void)
  378. {
  379. return !(read_cr0() & 0x40000000);
  380. }
  381. /* Define these functions to allow ehch-hcd to function */
  382. void flush_dcache_range(unsigned long start, unsigned long stop)
  383. {
  384. }
  385. void invalidate_dcache_range(unsigned long start, unsigned long stop)
  386. {
  387. }
  388. void dcache_enable(void)
  389. {
  390. enable_caches();
  391. }
  392. void dcache_disable(void)
  393. {
  394. disable_caches();
  395. }
  396. void icache_enable(void)
  397. {
  398. }
  399. void icache_disable(void)
  400. {
  401. }
  402. int icache_status(void)
  403. {
  404. return 1;
  405. }
  406. void cpu_enable_paging_pae(ulong cr3)
  407. {
  408. __asm__ __volatile__(
  409. /* Load the page table address */
  410. "movl %0, %%cr3\n"
  411. /* Enable pae */
  412. "movl %%cr4, %%eax\n"
  413. "orl $0x00000020, %%eax\n"
  414. "movl %%eax, %%cr4\n"
  415. /* Enable paging */
  416. "movl %%cr0, %%eax\n"
  417. "orl $0x80000000, %%eax\n"
  418. "movl %%eax, %%cr0\n"
  419. :
  420. : "r" (cr3)
  421. : "eax");
  422. }
  423. void cpu_disable_paging_pae(void)
  424. {
  425. /* Turn off paging */
  426. __asm__ __volatile__ (
  427. /* Disable paging */
  428. "movl %%cr0, %%eax\n"
  429. "andl $0x7fffffff, %%eax\n"
  430. "movl %%eax, %%cr0\n"
  431. /* Disable pae */
  432. "movl %%cr4, %%eax\n"
  433. "andl $0xffffffdf, %%eax\n"
  434. "movl %%eax, %%cr4\n"
  435. :
  436. :
  437. : "eax");
  438. }
  439. static bool can_detect_long_mode(void)
  440. {
  441. return cpuid_eax(0x80000000) > 0x80000000UL;
  442. }
  443. static bool has_long_mode(void)
  444. {
  445. return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
  446. }
  447. int cpu_has_64bit(void)
  448. {
  449. return has_cpuid() && can_detect_long_mode() &&
  450. has_long_mode();
  451. }
  452. const char *cpu_vendor_name(int vendor)
  453. {
  454. const char *name;
  455. name = "<invalid cpu vendor>";
  456. if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
  457. (x86_vendor_name[vendor] != 0))
  458. name = x86_vendor_name[vendor];
  459. return name;
  460. }
  461. char *cpu_get_name(char *name)
  462. {
  463. unsigned int *name_as_ints = (unsigned int *)name;
  464. struct cpuid_result regs;
  465. char *ptr;
  466. int i;
  467. /* This bit adds up to 48 bytes */
  468. for (i = 0; i < 3; i++) {
  469. regs = cpuid(0x80000002 + i);
  470. name_as_ints[i * 4 + 0] = regs.eax;
  471. name_as_ints[i * 4 + 1] = regs.ebx;
  472. name_as_ints[i * 4 + 2] = regs.ecx;
  473. name_as_ints[i * 4 + 3] = regs.edx;
  474. }
  475. name[CPU_MAX_NAME_LEN - 1] = '\0';
  476. /* Skip leading spaces. */
  477. ptr = name;
  478. while (*ptr == ' ')
  479. ptr++;
  480. return ptr;
  481. }
  482. int default_print_cpuinfo(void)
  483. {
  484. printf("CPU: %s, vendor %s, device %xh\n",
  485. cpu_has_64bit() ? "x86_64" : "x86",
  486. cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
  487. return 0;
  488. }
  489. #define PAGETABLE_SIZE (6 * 4096)
  490. /**
  491. * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
  492. *
  493. * @pgtable: Pointer to a 24iKB block of memory
  494. */
  495. static void build_pagetable(uint32_t *pgtable)
  496. {
  497. uint i;
  498. memset(pgtable, '\0', PAGETABLE_SIZE);
  499. /* Level 4 needs a single entry */
  500. pgtable[0] = (uint32_t)&pgtable[1024] + 7;
  501. /* Level 3 has one 64-bit entry for each GiB of memory */
  502. for (i = 0; i < 4; i++) {
  503. pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
  504. 0x1000 * i + 7;
  505. }
  506. /* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
  507. for (i = 0; i < 2048; i++)
  508. pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
  509. }
  510. int cpu_jump_to_64bit(ulong setup_base, ulong target)
  511. {
  512. uint32_t *pgtable;
  513. pgtable = memalign(4096, PAGETABLE_SIZE);
  514. if (!pgtable)
  515. return -ENOMEM;
  516. build_pagetable(pgtable);
  517. cpu_call64((ulong)pgtable, setup_base, target);
  518. free(pgtable);
  519. return -EFAULT;
  520. }
  521. void show_boot_progress(int val)
  522. {
  523. #if MIN_PORT80_KCLOCKS_DELAY
  524. /*
  525. * Scale the time counter reading to avoid using 64 bit arithmetics.
  526. * Can't use get_timer() here becuase it could be not yet
  527. * initialized or even implemented.
  528. */
  529. if (!gd->arch.tsc_prev) {
  530. gd->arch.tsc_base_kclocks = rdtsc() / 1000;
  531. gd->arch.tsc_prev = 0;
  532. } else {
  533. uint32_t now;
  534. do {
  535. now = rdtsc() / 1000 - gd->arch.tsc_base_kclocks;
  536. } while (now < (gd->arch.tsc_prev + MIN_PORT80_KCLOCKS_DELAY));
  537. gd->arch.tsc_prev = now;
  538. }
  539. #endif
  540. outb(val, POST_PORT);
  541. }
  542. #ifndef CONFIG_SYS_COREBOOT
  543. int last_stage_init(void)
  544. {
  545. write_tables();
  546. return 0;
  547. }
  548. #endif
  549. #ifdef CONFIG_SMP
  550. static int enable_smis(struct udevice *cpu, void *unused)
  551. {
  552. return 0;
  553. }
  554. static struct mp_flight_record mp_steps[] = {
  555. MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
  556. /* Wait for APs to finish initialization before proceeding */
  557. MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
  558. };
  559. static int x86_mp_init(void)
  560. {
  561. struct mp_params mp_params;
  562. mp_params.parallel_microcode_load = 0,
  563. mp_params.flight_plan = &mp_steps[0];
  564. mp_params.num_records = ARRAY_SIZE(mp_steps);
  565. mp_params.microcode_pointer = 0;
  566. if (mp_init(&mp_params)) {
  567. printf("Warning: MP init failure\n");
  568. return -EIO;
  569. }
  570. return 0;
  571. }
  572. #endif
  573. __weak int x86_init_cpus(void)
  574. {
  575. #ifdef CONFIG_SMP
  576. debug("Init additional CPUs\n");
  577. x86_mp_init();
  578. #endif
  579. return 0;
  580. }
  581. int cpu_init_r(void)
  582. {
  583. return x86_init_cpus();
  584. }