fsl_qspi.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784
  1. /*
  2. * Copyright 2013-2014 Freescale Semiconductor, Inc.
  3. *
  4. * Freescale Quad Serial Peripheral Interface (QSPI) driver
  5. *
  6. * SPDX-License-Identifier: GPL-2.0+
  7. */
  8. #include <common.h>
  9. #include <malloc.h>
  10. #include <spi.h>
  11. #include <asm/io.h>
  12. #include <linux/sizes.h>
  13. #include "fsl_qspi.h"
  14. #define RX_BUFFER_SIZE 0x80
  15. #ifdef CONFIG_MX6SX
  16. #define TX_BUFFER_SIZE 0x200
  17. #else
  18. #define TX_BUFFER_SIZE 0x40
  19. #endif
  20. #define OFFSET_BITS_MASK 0x00ffffff
  21. #define FLASH_STATUS_WEL 0x02
  22. /* SEQID */
  23. #define SEQID_WREN 1
  24. #define SEQID_FAST_READ 2
  25. #define SEQID_RDSR 3
  26. #define SEQID_SE 4
  27. #define SEQID_CHIP_ERASE 5
  28. #define SEQID_PP 6
  29. #define SEQID_RDID 7
  30. #define SEQID_BE_4K 8
  31. #ifdef CONFIG_SPI_FLASH_BAR
  32. #define SEQID_BRRD 9
  33. #define SEQID_BRWR 10
  34. #define SEQID_RDEAR 11
  35. #define SEQID_WREAR 12
  36. #endif
  37. /* QSPI CMD */
  38. #define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
  39. #define QSPI_CMD_RDSR 0x05 /* Read status register */
  40. #define QSPI_CMD_WREN 0x06 /* Write enable */
  41. #define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
  42. #define QSPI_CMD_BE_4K 0x20 /* 4K erase */
  43. #define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
  44. #define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
  45. #define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */
  46. /* Used for Micron, winbond and Macronix flashes */
  47. #define QSPI_CMD_WREAR 0xc5 /* EAR register write */
  48. #define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
  49. /* Used for Spansion flashes only. */
  50. #define QSPI_CMD_BRRD 0x16 /* Bank register read */
  51. #define QSPI_CMD_BRWR 0x17 /* Bank register write */
  52. /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
  53. #define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
  54. #define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
  55. #define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
  56. #ifdef CONFIG_SYS_FSL_QSPI_LE
  57. #define qspi_read32 in_le32
  58. #define qspi_write32 out_le32
  59. #elif defined(CONFIG_SYS_FSL_QSPI_BE)
  60. #define qspi_read32 in_be32
  61. #define qspi_write32 out_be32
  62. #endif
  63. static unsigned long spi_bases[] = {
  64. QSPI0_BASE_ADDR,
  65. #ifdef CONFIG_MX6SX
  66. QSPI1_BASE_ADDR,
  67. #endif
  68. };
  69. static unsigned long amba_bases[] = {
  70. QSPI0_AMBA_BASE,
  71. #ifdef CONFIG_MX6SX
  72. QSPI1_AMBA_BASE,
  73. #endif
  74. };
  75. struct fsl_qspi {
  76. struct spi_slave slave;
  77. unsigned long reg_base;
  78. unsigned long amba_base;
  79. u32 sf_addr;
  80. u8 cur_seqid;
  81. };
  82. /* QSPI support swapping the flash read/write data
  83. * in hardware for LS102xA, but not for VF610 */
  84. static inline u32 qspi_endian_xchg(u32 data)
  85. {
  86. #ifdef CONFIG_VF610
  87. return swab32(data);
  88. #else
  89. return data;
  90. #endif
  91. }
  92. static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
  93. {
  94. return container_of(slave, struct fsl_qspi, slave);
  95. }
  96. static void qspi_set_lut(struct fsl_qspi *qspi)
  97. {
  98. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  99. u32 lut_base;
  100. /* Unlock the LUT */
  101. qspi_write32(&regs->lutkey, LUT_KEY_VALUE);
  102. qspi_write32(&regs->lckcr, QSPI_LCKCR_UNLOCK);
  103. /* Write Enable */
  104. lut_base = SEQID_WREN * 4;
  105. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
  106. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  107. qspi_write32(&regs->lut[lut_base + 1], 0);
  108. qspi_write32(&regs->lut[lut_base + 2], 0);
  109. qspi_write32(&regs->lut[lut_base + 3], 0);
  110. /* Fast Read */
  111. lut_base = SEQID_FAST_READ * 4;
  112. #ifdef CONFIG_SPI_FLASH_BAR
  113. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) |
  114. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  115. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  116. #else
  117. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  118. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) |
  119. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  120. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  121. else
  122. qspi_write32(&regs->lut[lut_base],
  123. OPRND0(QSPI_CMD_FAST_READ_4B) |
  124. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
  125. OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
  126. INSTR1(LUT_ADDR));
  127. #endif
  128. qspi_write32(&regs->lut[lut_base + 1], OPRND0(8) | PAD0(LUT_PAD1) |
  129. INSTR0(LUT_DUMMY) | OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
  130. INSTR1(LUT_READ));
  131. qspi_write32(&regs->lut[lut_base + 2], 0);
  132. qspi_write32(&regs->lut[lut_base + 3], 0);
  133. /* Read Status */
  134. lut_base = SEQID_RDSR * 4;
  135. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
  136. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  137. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  138. qspi_write32(&regs->lut[lut_base + 1], 0);
  139. qspi_write32(&regs->lut[lut_base + 2], 0);
  140. qspi_write32(&regs->lut[lut_base + 3], 0);
  141. /* Erase a sector */
  142. lut_base = SEQID_SE * 4;
  143. #ifdef CONFIG_SPI_FLASH_BAR
  144. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
  145. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  146. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  147. #else
  148. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  149. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
  150. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  151. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  152. else
  153. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_SE_4B) |
  154. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  155. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  156. #endif
  157. qspi_write32(&regs->lut[lut_base + 1], 0);
  158. qspi_write32(&regs->lut[lut_base + 2], 0);
  159. qspi_write32(&regs->lut[lut_base + 3], 0);
  160. /* Erase the whole chip */
  161. lut_base = SEQID_CHIP_ERASE * 4;
  162. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_CHIP_ERASE) |
  163. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  164. qspi_write32(&regs->lut[lut_base + 1], 0);
  165. qspi_write32(&regs->lut[lut_base + 2], 0);
  166. qspi_write32(&regs->lut[lut_base + 3], 0);
  167. /* Page Program */
  168. lut_base = SEQID_PP * 4;
  169. #ifdef CONFIG_SPI_FLASH_BAR
  170. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
  171. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  172. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  173. #else
  174. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  175. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
  176. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  177. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  178. else
  179. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_PP_4B) |
  180. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  181. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  182. #endif
  183. #ifdef CONFIG_MX6SX
  184. /*
  185. * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
  186. * So, Use IDATSZ in IPCR to determine the size and here set 0.
  187. */
  188. qspi_write32(&regs->lut[lut_base + 1], OPRND0(0) |
  189. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  190. #else
  191. qspi_write32(&regs->lut[lut_base + 1], OPRND0(TX_BUFFER_SIZE) |
  192. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  193. #endif
  194. qspi_write32(&regs->lut[lut_base + 2], 0);
  195. qspi_write32(&regs->lut[lut_base + 3], 0);
  196. /* READ ID */
  197. lut_base = SEQID_RDID * 4;
  198. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
  199. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
  200. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  201. qspi_write32(&regs->lut[lut_base + 1], 0);
  202. qspi_write32(&regs->lut[lut_base + 2], 0);
  203. qspi_write32(&regs->lut[lut_base + 3], 0);
  204. /* SUB SECTOR 4K ERASE */
  205. lut_base = SEQID_BE_4K * 4;
  206. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
  207. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  208. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  209. #ifdef CONFIG_SPI_FLASH_BAR
  210. /*
  211. * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
  212. * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
  213. * initialization.
  214. */
  215. lut_base = SEQID_BRRD * 4;
  216. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
  217. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  218. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  219. lut_base = SEQID_BRWR * 4;
  220. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
  221. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  222. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  223. lut_base = SEQID_RDEAR * 4;
  224. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
  225. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  226. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  227. lut_base = SEQID_WREAR * 4;
  228. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
  229. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  230. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  231. #endif
  232. /* Lock the LUT */
  233. qspi_write32(&regs->lutkey, LUT_KEY_VALUE);
  234. qspi_write32(&regs->lckcr, QSPI_LCKCR_LOCK);
  235. }
  236. #if defined(CONFIG_SYS_FSL_QSPI_AHB)
  237. /*
  238. * If we have changed the content of the flash by writing or erasing,
  239. * we need to invalidate the AHB buffer. If we do not do so, we may read out
  240. * the wrong data. The spec tells us reset the AHB domain and Serial Flash
  241. * domain at the same time.
  242. */
  243. static inline void qspi_ahb_invalid(struct fsl_qspi *q)
  244. {
  245. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)q->reg_base;
  246. u32 reg;
  247. reg = qspi_read32(&regs->mcr);
  248. reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
  249. qspi_write32(&regs->mcr, reg);
  250. /*
  251. * The minimum delay : 1 AHB + 2 SFCK clocks.
  252. * Delay 1 us is enough.
  253. */
  254. udelay(1);
  255. reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
  256. qspi_write32(&regs->mcr, reg);
  257. }
  258. /* Read out the data from the AHB buffer. */
  259. static inline void qspi_ahb_read(struct fsl_qspi *q, u8 *rxbuf, int len)
  260. {
  261. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)q->reg_base;
  262. u32 mcr_reg;
  263. mcr_reg = qspi_read32(&regs->mcr);
  264. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  265. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  266. /* Read out the data directly from the AHB buffer. */
  267. memcpy(rxbuf, (u8 *)(q->amba_base + q->sf_addr), len);
  268. qspi_write32(&regs->mcr, mcr_reg);
  269. }
  270. static void qspi_enable_ddr_mode(struct fsl_qspi_regs *regs)
  271. {
  272. u32 reg, reg2;
  273. reg = qspi_read32(&regs->mcr);
  274. /* Disable the module */
  275. qspi_write32(&regs->mcr, reg | QSPI_MCR_MDIS_MASK);
  276. /* Set the Sampling Register for DDR */
  277. reg2 = qspi_read32(&regs->smpr);
  278. reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
  279. reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
  280. qspi_write32(&regs->smpr, reg2);
  281. /* Enable the module again (enable the DDR too) */
  282. reg |= QSPI_MCR_DDR_EN_MASK;
  283. /* Enable bit 29 for imx6sx */
  284. reg |= (1 << 29);
  285. qspi_write32(&regs->mcr, reg);
  286. }
  287. /*
  288. * There are two different ways to read out the data from the flash:
  289. * the "IP Command Read" and the "AHB Command Read".
  290. *
  291. * The IC guy suggests we use the "AHB Command Read" which is faster
  292. * then the "IP Command Read". (What's more is that there is a bug in
  293. * the "IP Command Read" in the Vybrid.)
  294. *
  295. * After we set up the registers for the "AHB Command Read", we can use
  296. * the memcpy to read the data directly. A "missed" access to the buffer
  297. * causes the controller to clear the buffer, and use the sequence pointed
  298. * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
  299. */
  300. static void qspi_init_ahb_read(struct fsl_qspi_regs *regs)
  301. {
  302. /* AHB configuration for access buffer 0/1/2 .*/
  303. qspi_write32(&regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
  304. qspi_write32(&regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
  305. qspi_write32(&regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
  306. qspi_write32(&regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
  307. (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
  308. /* We only use the buffer3 */
  309. qspi_write32(&regs->buf0ind, 0);
  310. qspi_write32(&regs->buf1ind, 0);
  311. qspi_write32(&regs->buf2ind, 0);
  312. /*
  313. * Set the default lut sequence for AHB Read.
  314. * Parallel mode is disabled.
  315. */
  316. qspi_write32(&regs->bfgencr,
  317. SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
  318. /*Enable DDR Mode*/
  319. qspi_enable_ddr_mode(regs);
  320. }
  321. #endif
  322. void spi_init()
  323. {
  324. /* do nothing */
  325. }
  326. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  327. unsigned int max_hz, unsigned int mode)
  328. {
  329. struct fsl_qspi *qspi;
  330. struct fsl_qspi_regs *regs;
  331. u32 smpr_val;
  332. u32 total_size;
  333. if (bus >= ARRAY_SIZE(spi_bases))
  334. return NULL;
  335. if (cs >= FSL_QSPI_FLASH_NUM)
  336. return NULL;
  337. qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
  338. if (!qspi)
  339. return NULL;
  340. qspi->reg_base = spi_bases[bus];
  341. /*
  342. * According cs, use different amba_base to choose the
  343. * corresponding flash devices.
  344. *
  345. * If not, only one flash device is used even if passing
  346. * different cs using `sf probe`
  347. */
  348. qspi->amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
  349. qspi->slave.max_write_size = TX_BUFFER_SIZE;
  350. regs = (struct fsl_qspi_regs *)qspi->reg_base;
  351. qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);
  352. smpr_val = qspi_read32(&regs->smpr);
  353. qspi_write32(&regs->smpr, smpr_val & ~(QSPI_SMPR_FSDLY_MASK |
  354. QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK));
  355. qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK);
  356. total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
  357. /*
  358. * Any read access to non-implemented addresses will provide
  359. * undefined results.
  360. *
  361. * In case single die flash devices, TOP_ADDR_MEMA2 and
  362. * TOP_ADDR_MEMB2 should be initialized/programmed to
  363. * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
  364. * setting the size of these devices to 0. This would ensure
  365. * that the complete memory map is assigned to only one flash device.
  366. */
  367. qspi_write32(&regs->sfa1ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
  368. qspi_write32(&regs->sfa2ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
  369. qspi_write32(&regs->sfb1ad, total_size | amba_bases[bus]);
  370. qspi_write32(&regs->sfb2ad, total_size | amba_bases[bus]);
  371. qspi_set_lut(qspi);
  372. smpr_val = qspi_read32(&regs->smpr);
  373. smpr_val &= ~QSPI_SMPR_DDRSMP_MASK;
  374. qspi_write32(&regs->smpr, smpr_val);
  375. qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK);
  376. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  377. qspi_init_ahb_read(regs);
  378. #endif
  379. return &qspi->slave;
  380. }
  381. void spi_free_slave(struct spi_slave *slave)
  382. {
  383. struct fsl_qspi *qspi = to_qspi_spi(slave);
  384. free(qspi);
  385. }
  386. int spi_claim_bus(struct spi_slave *slave)
  387. {
  388. return 0;
  389. }
  390. #ifdef CONFIG_SPI_FLASH_BAR
  391. /* Bank register read/write, EAR register read/write */
  392. static void qspi_op_rdbank(struct fsl_qspi *qspi, u8 *rxbuf, u32 len)
  393. {
  394. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  395. u32 reg, mcr_reg, data, seqid;
  396. mcr_reg = qspi_read32(&regs->mcr);
  397. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  398. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  399. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  400. qspi_write32(&regs->sfar, qspi->amba_base);
  401. if (qspi->cur_seqid == QSPI_CMD_BRRD)
  402. seqid = SEQID_BRRD;
  403. else
  404. seqid = SEQID_RDEAR;
  405. qspi_write32(&regs->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
  406. /* Wait previous command complete */
  407. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  408. ;
  409. while (1) {
  410. reg = qspi_read32(&regs->rbsr);
  411. if (reg & QSPI_RBSR_RDBFL_MASK) {
  412. data = qspi_read32(&regs->rbdr[0]);
  413. data = qspi_endian_xchg(data);
  414. memcpy(rxbuf, &data, len);
  415. qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
  416. QSPI_MCR_CLR_RXF_MASK);
  417. break;
  418. }
  419. }
  420. qspi_write32(&regs->mcr, mcr_reg);
  421. }
  422. #endif
  423. static void qspi_op_rdid(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
  424. {
  425. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  426. u32 mcr_reg, rbsr_reg, data;
  427. int i, size;
  428. mcr_reg = qspi_read32(&regs->mcr);
  429. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  430. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  431. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  432. qspi_write32(&regs->sfar, qspi->amba_base);
  433. qspi_write32(&regs->ipcr, (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
  434. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  435. ;
  436. i = 0;
  437. size = len;
  438. while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
  439. rbsr_reg = qspi_read32(&regs->rbsr);
  440. if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
  441. data = qspi_read32(&regs->rbdr[i]);
  442. data = qspi_endian_xchg(data);
  443. memcpy(rxbuf, &data, 4);
  444. rxbuf++;
  445. size -= 4;
  446. i++;
  447. }
  448. }
  449. qspi_write32(&regs->mcr, mcr_reg);
  450. }
  451. #ifndef CONFIG_SYS_FSL_QSPI_AHB
  452. /* If not use AHB read, read data from ip interface */
  453. static void qspi_op_read(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
  454. {
  455. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  456. u32 mcr_reg, data;
  457. int i, size;
  458. u32 to_or_from;
  459. mcr_reg = qspi_read32(&regs->mcr);
  460. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  461. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  462. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  463. to_or_from = qspi->sf_addr + qspi->amba_base;
  464. while (len > 0) {
  465. qspi_write32(&regs->sfar, to_or_from);
  466. size = (len > RX_BUFFER_SIZE) ?
  467. RX_BUFFER_SIZE : len;
  468. qspi_write32(&regs->ipcr,
  469. (SEQID_FAST_READ << QSPI_IPCR_SEQID_SHIFT) | size);
  470. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  471. ;
  472. to_or_from += size;
  473. len -= size;
  474. i = 0;
  475. while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
  476. data = qspi_read32(&regs->rbdr[i]);
  477. data = qspi_endian_xchg(data);
  478. memcpy(rxbuf, &data, 4);
  479. rxbuf++;
  480. size -= 4;
  481. i++;
  482. }
  483. qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
  484. QSPI_MCR_CLR_RXF_MASK);
  485. }
  486. qspi_write32(&regs->mcr, mcr_reg);
  487. }
  488. #endif
  489. static void qspi_op_write(struct fsl_qspi *qspi, u8 *txbuf, u32 len)
  490. {
  491. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  492. u32 mcr_reg, data, reg, status_reg, seqid;
  493. int i, size, tx_size;
  494. u32 to_or_from = 0;
  495. mcr_reg = qspi_read32(&regs->mcr);
  496. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  497. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  498. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  499. status_reg = 0;
  500. while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
  501. qspi_write32(&regs->ipcr,
  502. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  503. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  504. ;
  505. qspi_write32(&regs->ipcr,
  506. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
  507. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  508. ;
  509. reg = qspi_read32(&regs->rbsr);
  510. if (reg & QSPI_RBSR_RDBFL_MASK) {
  511. status_reg = qspi_read32(&regs->rbdr[0]);
  512. status_reg = qspi_endian_xchg(status_reg);
  513. }
  514. qspi_write32(&regs->mcr,
  515. qspi_read32(&regs->mcr) | QSPI_MCR_CLR_RXF_MASK);
  516. }
  517. /* Default is page programming */
  518. seqid = SEQID_PP;
  519. #ifdef CONFIG_SPI_FLASH_BAR
  520. if (qspi->cur_seqid == QSPI_CMD_BRWR)
  521. seqid = SEQID_BRWR;
  522. else if (qspi->cur_seqid == QSPI_CMD_WREAR)
  523. seqid = SEQID_WREAR;
  524. #endif
  525. to_or_from = qspi->sf_addr + qspi->amba_base;
  526. qspi_write32(&regs->sfar, to_or_from);
  527. tx_size = (len > TX_BUFFER_SIZE) ?
  528. TX_BUFFER_SIZE : len;
  529. size = tx_size / 4;
  530. for (i = 0; i < size; i++) {
  531. memcpy(&data, txbuf, 4);
  532. data = qspi_endian_xchg(data);
  533. qspi_write32(&regs->tbdr, data);
  534. txbuf += 4;
  535. }
  536. size = tx_size % 4;
  537. if (size) {
  538. data = 0;
  539. memcpy(&data, txbuf, size);
  540. data = qspi_endian_xchg(data);
  541. qspi_write32(&regs->tbdr, data);
  542. }
  543. qspi_write32(&regs->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
  544. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  545. ;
  546. qspi_write32(&regs->mcr, mcr_reg);
  547. }
  548. static void qspi_op_rdsr(struct fsl_qspi *qspi, u32 *rxbuf)
  549. {
  550. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  551. u32 mcr_reg, reg, data;
  552. mcr_reg = qspi_read32(&regs->mcr);
  553. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  554. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  555. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  556. qspi_write32(&regs->sfar, qspi->amba_base);
  557. qspi_write32(&regs->ipcr,
  558. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
  559. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  560. ;
  561. while (1) {
  562. reg = qspi_read32(&regs->rbsr);
  563. if (reg & QSPI_RBSR_RDBFL_MASK) {
  564. data = qspi_read32(&regs->rbdr[0]);
  565. data = qspi_endian_xchg(data);
  566. memcpy(rxbuf, &data, 4);
  567. qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
  568. QSPI_MCR_CLR_RXF_MASK);
  569. break;
  570. }
  571. }
  572. qspi_write32(&regs->mcr, mcr_reg);
  573. }
  574. static void qspi_op_erase(struct fsl_qspi *qspi)
  575. {
  576. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  577. u32 mcr_reg;
  578. u32 to_or_from = 0;
  579. mcr_reg = qspi_read32(&regs->mcr);
  580. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  581. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  582. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  583. to_or_from = qspi->sf_addr + qspi->amba_base;
  584. qspi_write32(&regs->sfar, to_or_from);
  585. qspi_write32(&regs->ipcr,
  586. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  587. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  588. ;
  589. if (qspi->cur_seqid == QSPI_CMD_SE) {
  590. qspi_write32(&regs->ipcr,
  591. (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
  592. } else if (qspi->cur_seqid == QSPI_CMD_BE_4K) {
  593. qspi_write32(&regs->ipcr,
  594. (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
  595. }
  596. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  597. ;
  598. qspi_write32(&regs->mcr, mcr_reg);
  599. }
  600. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  601. const void *dout, void *din, unsigned long flags)
  602. {
  603. struct fsl_qspi *qspi = to_qspi_spi(slave);
  604. u32 bytes = DIV_ROUND_UP(bitlen, 8);
  605. static u32 wr_sfaddr;
  606. u32 txbuf;
  607. if (dout) {
  608. if (flags & SPI_XFER_BEGIN) {
  609. qspi->cur_seqid = *(u8 *)dout;
  610. memcpy(&txbuf, dout, 4);
  611. }
  612. if (flags == SPI_XFER_END) {
  613. qspi->sf_addr = wr_sfaddr;
  614. qspi_op_write(qspi, (u8 *)dout, bytes);
  615. return 0;
  616. }
  617. if (qspi->cur_seqid == QSPI_CMD_FAST_READ) {
  618. qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  619. } else if ((qspi->cur_seqid == QSPI_CMD_SE) ||
  620. (qspi->cur_seqid == QSPI_CMD_BE_4K)) {
  621. qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  622. qspi_op_erase(qspi);
  623. } else if (qspi->cur_seqid == QSPI_CMD_PP)
  624. wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
  625. #ifdef CONFIG_SPI_FLASH_BAR
  626. else if ((qspi->cur_seqid == QSPI_CMD_BRWR) ||
  627. (qspi->cur_seqid == QSPI_CMD_WREAR)) {
  628. wr_sfaddr = 0;
  629. }
  630. #endif
  631. }
  632. if (din) {
  633. if (qspi->cur_seqid == QSPI_CMD_FAST_READ) {
  634. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  635. qspi_ahb_read(qspi, din, bytes);
  636. #else
  637. qspi_op_read(qspi, din, bytes);
  638. #endif
  639. }
  640. else if (qspi->cur_seqid == QSPI_CMD_RDID)
  641. qspi_op_rdid(qspi, din, bytes);
  642. else if (qspi->cur_seqid == QSPI_CMD_RDSR)
  643. qspi_op_rdsr(qspi, din);
  644. #ifdef CONFIG_SPI_FLASH_BAR
  645. else if ((qspi->cur_seqid == QSPI_CMD_BRRD) ||
  646. (qspi->cur_seqid == QSPI_CMD_RDEAR)) {
  647. qspi->sf_addr = 0;
  648. qspi_op_rdbank(qspi, din, bytes);
  649. }
  650. #endif
  651. }
  652. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  653. if ((qspi->cur_seqid == QSPI_CMD_SE) ||
  654. (qspi->cur_seqid == QSPI_CMD_PP) ||
  655. (qspi->cur_seqid == QSPI_CMD_BE_4K) ||
  656. (qspi->cur_seqid == QSPI_CMD_WREAR) ||
  657. (qspi->cur_seqid == QSPI_CMD_BRWR))
  658. qspi_ahb_invalid(qspi);
  659. #endif
  660. return 0;
  661. }
  662. void spi_release_bus(struct spi_slave *slave)
  663. {
  664. /* Nothing to do */
  665. }