fsl_esdhc.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661
  1. /*
  2. * Copyright 2007, 2010-2011 Freescale Semiconductor, Inc
  3. * Andy Fleming
  4. *
  5. * Based vaguely on the pxa mmc code:
  6. * (C) Copyright 2003
  7. * Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net
  8. *
  9. * SPDX-License-Identifier: GPL-2.0+
  10. */
  11. #include <config.h>
  12. #include <common.h>
  13. #include <command.h>
  14. #include <hwconfig.h>
  15. #include <mmc.h>
  16. #include <part.h>
  17. #include <malloc.h>
  18. #include <mmc.h>
  19. #include <fsl_esdhc.h>
  20. #include <fdt_support.h>
  21. #include <asm/io.h>
  22. DECLARE_GLOBAL_DATA_PTR;
  23. #define SDHCI_IRQ_EN_BITS (IRQSTATEN_CC | IRQSTATEN_TC | \
  24. IRQSTATEN_CINT | \
  25. IRQSTATEN_CTOE | IRQSTATEN_CCE | IRQSTATEN_CEBE | \
  26. IRQSTATEN_CIE | IRQSTATEN_DTOE | IRQSTATEN_DCE | \
  27. IRQSTATEN_DEBE | IRQSTATEN_BRR | IRQSTATEN_BWR | \
  28. IRQSTATEN_DINT)
  29. struct fsl_esdhc {
  30. uint dsaddr; /* SDMA system address register */
  31. uint blkattr; /* Block attributes register */
  32. uint cmdarg; /* Command argument register */
  33. uint xfertyp; /* Transfer type register */
  34. uint cmdrsp0; /* Command response 0 register */
  35. uint cmdrsp1; /* Command response 1 register */
  36. uint cmdrsp2; /* Command response 2 register */
  37. uint cmdrsp3; /* Command response 3 register */
  38. uint datport; /* Buffer data port register */
  39. uint prsstat; /* Present state register */
  40. uint proctl; /* Protocol control register */
  41. uint sysctl; /* System Control Register */
  42. uint irqstat; /* Interrupt status register */
  43. uint irqstaten; /* Interrupt status enable register */
  44. uint irqsigen; /* Interrupt signal enable register */
  45. uint autoc12err; /* Auto CMD error status register */
  46. uint hostcapblt; /* Host controller capabilities register */
  47. uint wml; /* Watermark level register */
  48. uint mixctrl; /* For USDHC */
  49. char reserved1[4]; /* reserved */
  50. uint fevt; /* Force event register */
  51. uint admaes; /* ADMA error status register */
  52. uint adsaddr; /* ADMA system address register */
  53. char reserved2[160]; /* reserved */
  54. uint hostver; /* Host controller version register */
  55. char reserved3[4]; /* reserved */
  56. uint dmaerraddr; /* DMA error address register */
  57. char reserved4[4]; /* reserved */
  58. uint dmaerrattr; /* DMA error attribute register */
  59. char reserved5[4]; /* reserved */
  60. uint hostcapblt2; /* Host controller capabilities register 2 */
  61. char reserved6[8]; /* reserved */
  62. uint tcr; /* Tuning control register */
  63. char reserved7[28]; /* reserved */
  64. uint sddirctl; /* SD direction control register */
  65. char reserved8[712]; /* reserved */
  66. uint scr; /* eSDHC control register */
  67. };
  68. /* Return the XFERTYP flags for a given command and data packet */
  69. static uint esdhc_xfertyp(struct mmc_cmd *cmd, struct mmc_data *data)
  70. {
  71. uint xfertyp = 0;
  72. if (data) {
  73. xfertyp |= XFERTYP_DPSEL;
  74. #ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
  75. xfertyp |= XFERTYP_DMAEN;
  76. #endif
  77. if (data->blocks > 1) {
  78. xfertyp |= XFERTYP_MSBSEL;
  79. xfertyp |= XFERTYP_BCEN;
  80. #ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC111
  81. xfertyp |= XFERTYP_AC12EN;
  82. #endif
  83. }
  84. if (data->flags & MMC_DATA_READ)
  85. xfertyp |= XFERTYP_DTDSEL;
  86. }
  87. if (cmd->resp_type & MMC_RSP_CRC)
  88. xfertyp |= XFERTYP_CCCEN;
  89. if (cmd->resp_type & MMC_RSP_OPCODE)
  90. xfertyp |= XFERTYP_CICEN;
  91. if (cmd->resp_type & MMC_RSP_136)
  92. xfertyp |= XFERTYP_RSPTYP_136;
  93. else if (cmd->resp_type & MMC_RSP_BUSY)
  94. xfertyp |= XFERTYP_RSPTYP_48_BUSY;
  95. else if (cmd->resp_type & MMC_RSP_PRESENT)
  96. xfertyp |= XFERTYP_RSPTYP_48;
  97. #if defined(CONFIG_MX53) || defined(CONFIG_PPC_T4240) || defined(CONFIG_LS102XA)
  98. if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
  99. xfertyp |= XFERTYP_CMDTYP_ABORT;
  100. #endif
  101. return XFERTYP_CMD(cmd->cmdidx) | xfertyp;
  102. }
  103. #ifdef CONFIG_SYS_FSL_ESDHC_USE_PIO
  104. /*
  105. * PIO Read/Write Mode reduce the performace as DMA is not used in this mode.
  106. */
  107. static void
  108. esdhc_pio_read_write(struct mmc *mmc, struct mmc_data *data)
  109. {
  110. struct fsl_esdhc_cfg *cfg = mmc->priv;
  111. struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
  112. uint blocks;
  113. char *buffer;
  114. uint databuf;
  115. uint size;
  116. uint irqstat;
  117. uint timeout;
  118. if (data->flags & MMC_DATA_READ) {
  119. blocks = data->blocks;
  120. buffer = data->dest;
  121. while (blocks) {
  122. timeout = PIO_TIMEOUT;
  123. size = data->blocksize;
  124. irqstat = esdhc_read32(&regs->irqstat);
  125. while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BREN)
  126. && --timeout);
  127. if (timeout <= 0) {
  128. printf("\nData Read Failed in PIO Mode.");
  129. return;
  130. }
  131. while (size && (!(irqstat & IRQSTAT_TC))) {
  132. udelay(100); /* Wait before last byte transfer complete */
  133. irqstat = esdhc_read32(&regs->irqstat);
  134. databuf = in_le32(&regs->datport);
  135. *((uint *)buffer) = databuf;
  136. buffer += 4;
  137. size -= 4;
  138. }
  139. blocks--;
  140. }
  141. } else {
  142. blocks = data->blocks;
  143. buffer = (char *)data->src;
  144. while (blocks) {
  145. timeout = PIO_TIMEOUT;
  146. size = data->blocksize;
  147. irqstat = esdhc_read32(&regs->irqstat);
  148. while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BWEN)
  149. && --timeout);
  150. if (timeout <= 0) {
  151. printf("\nData Write Failed in PIO Mode.");
  152. return;
  153. }
  154. while (size && (!(irqstat & IRQSTAT_TC))) {
  155. udelay(100); /* Wait before last byte transfer complete */
  156. databuf = *((uint *)buffer);
  157. buffer += 4;
  158. size -= 4;
  159. irqstat = esdhc_read32(&regs->irqstat);
  160. out_le32(&regs->datport, databuf);
  161. }
  162. blocks--;
  163. }
  164. }
  165. }
  166. #endif
  167. static int esdhc_setup_data(struct mmc *mmc, struct mmc_data *data)
  168. {
  169. int timeout;
  170. struct fsl_esdhc_cfg *cfg = mmc->priv;
  171. struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
  172. uint wml_value;
  173. wml_value = data->blocksize/4;
  174. if (data->flags & MMC_DATA_READ) {
  175. if (wml_value > WML_RD_WML_MAX)
  176. wml_value = WML_RD_WML_MAX_VAL;
  177. esdhc_clrsetbits32(&regs->wml, WML_RD_WML_MASK, wml_value);
  178. #ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
  179. esdhc_write32(&regs->dsaddr, (u32)data->dest);
  180. #endif
  181. } else {
  182. #ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
  183. flush_dcache_range((ulong)data->src,
  184. (ulong)data->src+data->blocks
  185. *data->blocksize);
  186. #endif
  187. if (wml_value > WML_WR_WML_MAX)
  188. wml_value = WML_WR_WML_MAX_VAL;
  189. if ((esdhc_read32(&regs->prsstat) & PRSSTAT_WPSPL) == 0) {
  190. printf("\nThe SD card is locked. Can not write to a locked card.\n\n");
  191. return TIMEOUT;
  192. }
  193. esdhc_clrsetbits32(&regs->wml, WML_WR_WML_MASK,
  194. wml_value << 16);
  195. #ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
  196. esdhc_write32(&regs->dsaddr, (u32)data->src);
  197. #endif
  198. }
  199. esdhc_write32(&regs->blkattr, data->blocks << 16 | data->blocksize);
  200. /* Calculate the timeout period for data transactions */
  201. /*
  202. * 1)Timeout period = (2^(timeout+13)) SD Clock cycles
  203. * 2)Timeout period should be minimum 0.250sec as per SD Card spec
  204. * So, Number of SD Clock cycles for 0.25sec should be minimum
  205. * (SD Clock/sec * 0.25 sec) SD Clock cycles
  206. * = (mmc->clock * 1/4) SD Clock cycles
  207. * As 1) >= 2)
  208. * => (2^(timeout+13)) >= mmc->clock * 1/4
  209. * Taking log2 both the sides
  210. * => timeout + 13 >= log2(mmc->clock/4)
  211. * Rounding up to next power of 2
  212. * => timeout + 13 = log2(mmc->clock/4) + 1
  213. * => timeout + 13 = fls(mmc->clock/4)
  214. */
  215. timeout = fls(mmc->clock/4);
  216. timeout -= 13;
  217. if (timeout > 14)
  218. timeout = 14;
  219. if (timeout < 0)
  220. timeout = 0;
  221. #ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC_A001
  222. if ((timeout == 4) || (timeout == 8) || (timeout == 12))
  223. timeout++;
  224. #endif
  225. #ifdef ESDHCI_QUIRK_BROKEN_TIMEOUT_VALUE
  226. timeout = 0xE;
  227. #endif
  228. esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, timeout << 16);
  229. return 0;
  230. }
  231. #ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
  232. static void check_and_invalidate_dcache_range
  233. (struct mmc_cmd *cmd,
  234. struct mmc_data *data) {
  235. unsigned start = (unsigned)data->dest ;
  236. unsigned size = roundup(ARCH_DMA_MINALIGN,
  237. data->blocks*data->blocksize);
  238. unsigned end = start+size ;
  239. invalidate_dcache_range(start, end);
  240. }
  241. #endif
  242. /*
  243. * Sends a command out on the bus. Takes the mmc pointer,
  244. * a command pointer, and an optional data pointer.
  245. */
  246. static int
  247. esdhc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
  248. {
  249. int err = 0;
  250. uint xfertyp;
  251. uint irqstat;
  252. struct fsl_esdhc_cfg *cfg = mmc->priv;
  253. volatile struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
  254. #ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC111
  255. if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
  256. return 0;
  257. #endif
  258. esdhc_write32(&regs->irqstat, -1);
  259. sync();
  260. /* Wait for the bus to be idle */
  261. while ((esdhc_read32(&regs->prsstat) & PRSSTAT_CICHB) ||
  262. (esdhc_read32(&regs->prsstat) & PRSSTAT_CIDHB))
  263. ;
  264. while (esdhc_read32(&regs->prsstat) & PRSSTAT_DLA)
  265. ;
  266. /* Wait at least 8 SD clock cycles before the next command */
  267. /*
  268. * Note: This is way more than 8 cycles, but 1ms seems to
  269. * resolve timing issues with some cards
  270. */
  271. udelay(1000);
  272. /* Set up for a data transfer if we have one */
  273. if (data) {
  274. err = esdhc_setup_data(mmc, data);
  275. if(err)
  276. return err;
  277. }
  278. /* Figure out the transfer arguments */
  279. xfertyp = esdhc_xfertyp(cmd, data);
  280. /* Mask all irqs */
  281. esdhc_write32(&regs->irqsigen, 0);
  282. /* Send the command */
  283. esdhc_write32(&regs->cmdarg, cmd->cmdarg);
  284. #if defined(CONFIG_FSL_USDHC)
  285. esdhc_write32(&regs->mixctrl,
  286. (esdhc_read32(&regs->mixctrl) & 0xFFFFFF80) | (xfertyp & 0x7F));
  287. esdhc_write32(&regs->xfertyp, xfertyp & 0xFFFF0000);
  288. #else
  289. esdhc_write32(&regs->xfertyp, xfertyp);
  290. #endif
  291. /* Wait for the command to complete */
  292. while (!(esdhc_read32(&regs->irqstat) & (IRQSTAT_CC | IRQSTAT_CTOE)))
  293. ;
  294. irqstat = esdhc_read32(&regs->irqstat);
  295. if (irqstat & CMD_ERR) {
  296. err = COMM_ERR;
  297. goto out;
  298. }
  299. if (irqstat & IRQSTAT_CTOE) {
  300. err = TIMEOUT;
  301. goto out;
  302. }
  303. /* Workaround for ESDHC errata ENGcm03648 */
  304. if (!data && (cmd->resp_type & MMC_RSP_BUSY)) {
  305. int timeout = 2500;
  306. /* Poll on DATA0 line for cmd with busy signal for 250 ms */
  307. while (timeout > 0 && !(esdhc_read32(&regs->prsstat) &
  308. PRSSTAT_DAT0)) {
  309. udelay(100);
  310. timeout--;
  311. }
  312. if (timeout <= 0) {
  313. printf("Timeout waiting for DAT0 to go high!\n");
  314. err = TIMEOUT;
  315. goto out;
  316. }
  317. }
  318. /* Copy the response to the response buffer */
  319. if (cmd->resp_type & MMC_RSP_136) {
  320. u32 cmdrsp3, cmdrsp2, cmdrsp1, cmdrsp0;
  321. cmdrsp3 = esdhc_read32(&regs->cmdrsp3);
  322. cmdrsp2 = esdhc_read32(&regs->cmdrsp2);
  323. cmdrsp1 = esdhc_read32(&regs->cmdrsp1);
  324. cmdrsp0 = esdhc_read32(&regs->cmdrsp0);
  325. cmd->response[0] = (cmdrsp3 << 8) | (cmdrsp2 >> 24);
  326. cmd->response[1] = (cmdrsp2 << 8) | (cmdrsp1 >> 24);
  327. cmd->response[2] = (cmdrsp1 << 8) | (cmdrsp0 >> 24);
  328. cmd->response[3] = (cmdrsp0 << 8);
  329. } else
  330. cmd->response[0] = esdhc_read32(&regs->cmdrsp0);
  331. /* Wait until all of the blocks are transferred */
  332. if (data) {
  333. #ifdef CONFIG_SYS_FSL_ESDHC_USE_PIO
  334. esdhc_pio_read_write(mmc, data);
  335. #else
  336. do {
  337. irqstat = esdhc_read32(&regs->irqstat);
  338. if (irqstat & IRQSTAT_DTOE) {
  339. err = TIMEOUT;
  340. goto out;
  341. }
  342. if (irqstat & DATA_ERR) {
  343. err = COMM_ERR;
  344. goto out;
  345. }
  346. } while ((irqstat & DATA_COMPLETE) != DATA_COMPLETE);
  347. if (data->flags & MMC_DATA_READ)
  348. check_and_invalidate_dcache_range(cmd, data);
  349. #endif
  350. }
  351. out:
  352. /* Reset CMD and DATA portions on error */
  353. if (err) {
  354. esdhc_write32(&regs->sysctl, esdhc_read32(&regs->sysctl) |
  355. SYSCTL_RSTC);
  356. while (esdhc_read32(&regs->sysctl) & SYSCTL_RSTC)
  357. ;
  358. if (data) {
  359. esdhc_write32(&regs->sysctl,
  360. esdhc_read32(&regs->sysctl) |
  361. SYSCTL_RSTD);
  362. while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTD))
  363. ;
  364. }
  365. }
  366. esdhc_write32(&regs->irqstat, -1);
  367. return err;
  368. }
  369. static void set_sysctl(struct mmc *mmc, uint clock)
  370. {
  371. int div, pre_div;
  372. struct fsl_esdhc_cfg *cfg = mmc->priv;
  373. volatile struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
  374. int sdhc_clk = cfg->sdhc_clk;
  375. uint clk;
  376. if (clock < mmc->cfg->f_min)
  377. clock = mmc->cfg->f_min;
  378. if (sdhc_clk / 16 > clock) {
  379. for (pre_div = 2; pre_div < 256; pre_div *= 2)
  380. if ((sdhc_clk / pre_div) <= (clock * 16))
  381. break;
  382. } else
  383. pre_div = 2;
  384. for (div = 1; div <= 16; div++)
  385. if ((sdhc_clk / (div * pre_div)) <= clock)
  386. break;
  387. pre_div >>= 1;
  388. div -= 1;
  389. clk = (pre_div << 8) | (div << 4);
  390. esdhc_clrbits32(&regs->sysctl, SYSCTL_CKEN);
  391. esdhc_clrsetbits32(&regs->sysctl, SYSCTL_CLOCK_MASK, clk);
  392. udelay(10000);
  393. clk = SYSCTL_PEREN | SYSCTL_CKEN;
  394. esdhc_setbits32(&regs->sysctl, clk);
  395. }
  396. static void esdhc_set_ios(struct mmc *mmc)
  397. {
  398. struct fsl_esdhc_cfg *cfg = mmc->priv;
  399. struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
  400. /* Set the clock speed */
  401. set_sysctl(mmc, mmc->clock);
  402. /* Set the bus width */
  403. esdhc_clrbits32(&regs->proctl, PROCTL_DTW_4 | PROCTL_DTW_8);
  404. if (mmc->bus_width == 4)
  405. esdhc_setbits32(&regs->proctl, PROCTL_DTW_4);
  406. else if (mmc->bus_width == 8)
  407. esdhc_setbits32(&regs->proctl, PROCTL_DTW_8);
  408. }
  409. static int esdhc_init(struct mmc *mmc)
  410. {
  411. struct fsl_esdhc_cfg *cfg = mmc->priv;
  412. struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
  413. int timeout = 1000;
  414. /* Reset the entire host controller */
  415. esdhc_setbits32(&regs->sysctl, SYSCTL_RSTA);
  416. /* Wait until the controller is available */
  417. while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTA) && --timeout)
  418. udelay(1000);
  419. #ifndef ARCH_MXC
  420. /* Enable cache snooping */
  421. esdhc_write32(&regs->scr, 0x00000040);
  422. #endif
  423. esdhc_setbits32(&regs->sysctl, SYSCTL_HCKEN | SYSCTL_IPGEN);
  424. /* Set the initial clock speed */
  425. mmc_set_clock(mmc, 400000);
  426. /* Disable the BRR and BWR bits in IRQSTAT */
  427. esdhc_clrbits32(&regs->irqstaten, IRQSTATEN_BRR | IRQSTATEN_BWR);
  428. /* Put the PROCTL reg back to the default */
  429. esdhc_write32(&regs->proctl, PROCTL_INIT);
  430. /* Set timout to the maximum value */
  431. esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, 14 << 16);
  432. return 0;
  433. }
  434. static int esdhc_getcd(struct mmc *mmc)
  435. {
  436. struct fsl_esdhc_cfg *cfg = mmc->priv;
  437. struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
  438. int timeout = 1000;
  439. #ifdef CONFIG_ESDHC_DETECT_QUIRK
  440. if (CONFIG_ESDHC_DETECT_QUIRK)
  441. return 1;
  442. #endif
  443. while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_CINS) && --timeout)
  444. udelay(1000);
  445. return timeout > 0;
  446. }
  447. static void esdhc_reset(struct fsl_esdhc *regs)
  448. {
  449. unsigned long timeout = 100; /* wait max 100 ms */
  450. /* reset the controller */
  451. esdhc_setbits32(&regs->sysctl, SYSCTL_RSTA);
  452. /* hardware clears the bit when it is done */
  453. while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTA) && --timeout)
  454. udelay(1000);
  455. if (!timeout)
  456. printf("MMC/SD: Reset never completed.\n");
  457. }
  458. static const struct mmc_ops esdhc_ops = {
  459. .send_cmd = esdhc_send_cmd,
  460. .set_ios = esdhc_set_ios,
  461. .init = esdhc_init,
  462. .getcd = esdhc_getcd,
  463. };
  464. int fsl_esdhc_initialize(bd_t *bis, struct fsl_esdhc_cfg *cfg)
  465. {
  466. struct fsl_esdhc *regs;
  467. struct mmc *mmc;
  468. u32 caps, voltage_caps;
  469. if (!cfg)
  470. return -1;
  471. regs = (struct fsl_esdhc *)cfg->esdhc_base;
  472. /* First reset the eSDHC controller */
  473. esdhc_reset(regs);
  474. esdhc_setbits32(&regs->sysctl, SYSCTL_PEREN | SYSCTL_HCKEN
  475. | SYSCTL_IPGEN | SYSCTL_CKEN);
  476. writel(SDHCI_IRQ_EN_BITS, &regs->irqstaten);
  477. memset(&cfg->cfg, 0, sizeof(cfg->cfg));
  478. voltage_caps = 0;
  479. caps = esdhc_read32(&regs->hostcapblt);
  480. #ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC135
  481. caps = caps & ~(ESDHC_HOSTCAPBLT_SRS |
  482. ESDHC_HOSTCAPBLT_VS18 | ESDHC_HOSTCAPBLT_VS30);
  483. #endif
  484. /* T4240 host controller capabilities register should have VS33 bit */
  485. #ifdef CONFIG_SYS_FSL_MMC_HAS_CAPBLT_VS33
  486. caps = caps | ESDHC_HOSTCAPBLT_VS33;
  487. #endif
  488. if (caps & ESDHC_HOSTCAPBLT_VS18)
  489. voltage_caps |= MMC_VDD_165_195;
  490. if (caps & ESDHC_HOSTCAPBLT_VS30)
  491. voltage_caps |= MMC_VDD_29_30 | MMC_VDD_30_31;
  492. if (caps & ESDHC_HOSTCAPBLT_VS33)
  493. voltage_caps |= MMC_VDD_32_33 | MMC_VDD_33_34;
  494. cfg->cfg.name = "FSL_SDHC";
  495. cfg->cfg.ops = &esdhc_ops;
  496. #ifdef CONFIG_SYS_SD_VOLTAGE
  497. cfg->cfg.voltages = CONFIG_SYS_SD_VOLTAGE;
  498. #else
  499. cfg->cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
  500. #endif
  501. if ((cfg->cfg.voltages & voltage_caps) == 0) {
  502. printf("voltage not supported by controller\n");
  503. return -1;
  504. }
  505. cfg->cfg.host_caps = MMC_MODE_4BIT | MMC_MODE_8BIT | MMC_MODE_HC;
  506. if (cfg->max_bus_width > 0) {
  507. if (cfg->max_bus_width < 8)
  508. cfg->cfg.host_caps &= ~MMC_MODE_8BIT;
  509. if (cfg->max_bus_width < 4)
  510. cfg->cfg.host_caps &= ~MMC_MODE_4BIT;
  511. }
  512. if (caps & ESDHC_HOSTCAPBLT_HSS)
  513. cfg->cfg.host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
  514. #ifdef CONFIG_ESDHC_DETECT_8_BIT_QUIRK
  515. if (CONFIG_ESDHC_DETECT_8_BIT_QUIRK)
  516. cfg->cfg.host_caps &= ~MMC_MODE_8BIT;
  517. #endif
  518. cfg->cfg.f_min = 400000;
  519. cfg->cfg.f_max = min(cfg->sdhc_clk, (u32)52000000);
  520. cfg->cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
  521. mmc = mmc_create(&cfg->cfg, cfg);
  522. if (mmc == NULL)
  523. return -1;
  524. return 0;
  525. }
  526. int fsl_esdhc_mmc_init(bd_t *bis)
  527. {
  528. struct fsl_esdhc_cfg *cfg;
  529. cfg = calloc(sizeof(struct fsl_esdhc_cfg), 1);
  530. cfg->esdhc_base = CONFIG_SYS_FSL_ESDHC_ADDR;
  531. cfg->sdhc_clk = gd->arch.sdhc_clk;
  532. return fsl_esdhc_initialize(bis, cfg);
  533. }
  534. #ifdef CONFIG_OF_LIBFDT
  535. void fdt_fixup_esdhc(void *blob, bd_t *bd)
  536. {
  537. const char *compat = "fsl,esdhc";
  538. #ifdef CONFIG_FSL_ESDHC_PIN_MUX
  539. if (!hwconfig("esdhc")) {
  540. do_fixup_by_compat(blob, compat, "status", "disabled",
  541. 8 + 1, 1);
  542. return;
  543. }
  544. #endif
  545. do_fixup_by_compat_u32(blob, compat, "clock-frequency",
  546. gd->arch.sdhc_clk, 1);
  547. do_fixup_by_compat(blob, compat, "status", "okay",
  548. 4 + 1, 1);
  549. }
  550. #endif