bcm-sf2-eth-gmac.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972
  1. /*
  2. * Copyright 2014-2017 Broadcom.
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+
  5. */
  6. #ifdef BCM_GMAC_DEBUG
  7. #ifndef DEBUG
  8. #define DEBUG
  9. #endif
  10. #endif
  11. #include <config.h>
  12. #include <common.h>
  13. #include <malloc.h>
  14. #include <net.h>
  15. #include <asm/io.h>
  16. #include <phy.h>
  17. #include "bcm-sf2-eth.h"
  18. #include "bcm-sf2-eth-gmac.h"
  19. #define SPINWAIT(exp, us) { \
  20. uint countdown = (us) + 9; \
  21. while ((exp) && (countdown >= 10)) {\
  22. udelay(10); \
  23. countdown -= 10; \
  24. } \
  25. }
  26. #define RX_BUF_SIZE_ALIGNED ALIGN(RX_BUF_SIZE, ARCH_DMA_MINALIGN)
  27. #define TX_BUF_SIZE_ALIGNED ALIGN(TX_BUF_SIZE, ARCH_DMA_MINALIGN)
  28. #define DESCP_SIZE_ALIGNED ALIGN(sizeof(dma64dd_t), ARCH_DMA_MINALIGN)
  29. static int gmac_disable_dma(struct eth_dma *dma, int dir);
  30. static int gmac_enable_dma(struct eth_dma *dma, int dir);
  31. /* DMA Descriptor */
  32. typedef struct {
  33. /* misc control bits */
  34. uint32_t ctrl1;
  35. /* buffer count and address extension */
  36. uint32_t ctrl2;
  37. /* memory address of the date buffer, bits 31:0 */
  38. uint32_t addrlow;
  39. /* memory address of the date buffer, bits 63:32 */
  40. uint32_t addrhigh;
  41. } dma64dd_t;
  42. uint32_t g_dmactrlflags;
  43. static uint32_t dma_ctrlflags(uint32_t mask, uint32_t flags)
  44. {
  45. debug("%s enter\n", __func__);
  46. g_dmactrlflags &= ~mask;
  47. g_dmactrlflags |= flags;
  48. /* If trying to enable parity, check if parity is actually supported */
  49. if (g_dmactrlflags & DMA_CTRL_PEN) {
  50. uint32_t control;
  51. control = readl(GMAC0_DMA_TX_CTRL_ADDR);
  52. writel(control | D64_XC_PD, GMAC0_DMA_TX_CTRL_ADDR);
  53. if (readl(GMAC0_DMA_TX_CTRL_ADDR) & D64_XC_PD) {
  54. /*
  55. * We *can* disable it, therefore it is supported;
  56. * restore control register
  57. */
  58. writel(control, GMAC0_DMA_TX_CTRL_ADDR);
  59. } else {
  60. /* Not supported, don't allow it to be enabled */
  61. g_dmactrlflags &= ~DMA_CTRL_PEN;
  62. }
  63. }
  64. return g_dmactrlflags;
  65. }
  66. static inline void reg32_clear_bits(uint32_t reg, uint32_t value)
  67. {
  68. uint32_t v = readl(reg);
  69. v &= ~(value);
  70. writel(v, reg);
  71. }
  72. static inline void reg32_set_bits(uint32_t reg, uint32_t value)
  73. {
  74. uint32_t v = readl(reg);
  75. v |= value;
  76. writel(v, reg);
  77. }
  78. #ifdef BCM_GMAC_DEBUG
  79. static void dma_tx_dump(struct eth_dma *dma)
  80. {
  81. dma64dd_t *descp = NULL;
  82. uint8_t *bufp;
  83. int i;
  84. printf("TX DMA Register:\n");
  85. printf("control:0x%x; ptr:0x%x; addrl:0x%x; addrh:0x%x; stat0:0x%x, stat1:0x%x\n",
  86. readl(GMAC0_DMA_TX_CTRL_ADDR),
  87. readl(GMAC0_DMA_TX_PTR_ADDR),
  88. readl(GMAC0_DMA_TX_ADDR_LOW_ADDR),
  89. readl(GMAC0_DMA_TX_ADDR_HIGH_ADDR),
  90. readl(GMAC0_DMA_TX_STATUS0_ADDR),
  91. readl(GMAC0_DMA_TX_STATUS1_ADDR));
  92. printf("TX Descriptors:\n");
  93. for (i = 0; i < TX_BUF_NUM; i++) {
  94. descp = (dma64dd_t *)(dma->tx_desc_aligned) + i;
  95. printf("ctrl1:0x%08x; ctrl2:0x%08x; addr:0x%x 0x%08x\n",
  96. descp->ctrl1, descp->ctrl2,
  97. descp->addrhigh, descp->addrlow);
  98. }
  99. printf("TX Buffers:\n");
  100. /* Initialize TX DMA descriptor table */
  101. for (i = 0; i < TX_BUF_NUM; i++) {
  102. bufp = (uint8_t *)(dma->tx_buf + i * TX_BUF_SIZE_ALIGNED);
  103. printf("buf%d:0x%x; ", i, (uint32_t)bufp);
  104. }
  105. printf("\n");
  106. }
  107. static void dma_rx_dump(struct eth_dma *dma)
  108. {
  109. dma64dd_t *descp = NULL;
  110. uint8_t *bufp;
  111. int i;
  112. printf("RX DMA Register:\n");
  113. printf("control:0x%x; ptr:0x%x; addrl:0x%x; addrh:0x%x; stat0:0x%x, stat1:0x%x\n",
  114. readl(GMAC0_DMA_RX_CTRL_ADDR),
  115. readl(GMAC0_DMA_RX_PTR_ADDR),
  116. readl(GMAC0_DMA_RX_ADDR_LOW_ADDR),
  117. readl(GMAC0_DMA_RX_ADDR_HIGH_ADDR),
  118. readl(GMAC0_DMA_RX_STATUS0_ADDR),
  119. readl(GMAC0_DMA_RX_STATUS1_ADDR));
  120. printf("RX Descriptors:\n");
  121. for (i = 0; i < RX_BUF_NUM; i++) {
  122. descp = (dma64dd_t *)(dma->rx_desc_aligned) + i;
  123. printf("ctrl1:0x%08x; ctrl2:0x%08x; addr:0x%x 0x%08x\n",
  124. descp->ctrl1, descp->ctrl2,
  125. descp->addrhigh, descp->addrlow);
  126. }
  127. printf("RX Buffers:\n");
  128. for (i = 0; i < RX_BUF_NUM; i++) {
  129. bufp = dma->rx_buf + i * RX_BUF_SIZE_ALIGNED;
  130. printf("buf%d:0x%x; ", i, (uint32_t)bufp);
  131. }
  132. printf("\n");
  133. }
  134. #endif
  135. static int dma_tx_init(struct eth_dma *dma)
  136. {
  137. dma64dd_t *descp = NULL;
  138. uint8_t *bufp;
  139. int i;
  140. uint32_t ctrl;
  141. debug("%s enter\n", __func__);
  142. /* clear descriptor memory */
  143. memset((void *)(dma->tx_desc_aligned), 0,
  144. TX_BUF_NUM * DESCP_SIZE_ALIGNED);
  145. memset(dma->tx_buf, 0, TX_BUF_NUM * TX_BUF_SIZE_ALIGNED);
  146. /* Initialize TX DMA descriptor table */
  147. for (i = 0; i < TX_BUF_NUM; i++) {
  148. descp = (dma64dd_t *)(dma->tx_desc_aligned) + i;
  149. bufp = dma->tx_buf + i * TX_BUF_SIZE_ALIGNED;
  150. /* clear buffer memory */
  151. memset((void *)bufp, 0, TX_BUF_SIZE_ALIGNED);
  152. ctrl = 0;
  153. /* if last descr set endOfTable */
  154. if (i == (TX_BUF_NUM-1))
  155. ctrl = D64_CTRL1_EOT;
  156. descp->ctrl1 = ctrl;
  157. descp->ctrl2 = 0;
  158. descp->addrlow = (uint32_t)bufp;
  159. descp->addrhigh = 0;
  160. }
  161. /* flush descriptor and buffer */
  162. descp = dma->tx_desc_aligned;
  163. bufp = dma->tx_buf;
  164. flush_dcache_range((unsigned long)descp,
  165. (unsigned long)descp +
  166. DESCP_SIZE_ALIGNED * TX_BUF_NUM);
  167. flush_dcache_range((unsigned long)bufp,
  168. (unsigned long)bufp +
  169. TX_BUF_SIZE_ALIGNED * TX_BUF_NUM);
  170. /* initialize the DMA channel */
  171. writel((uint32_t)(dma->tx_desc_aligned), GMAC0_DMA_TX_ADDR_LOW_ADDR);
  172. writel(0, GMAC0_DMA_TX_ADDR_HIGH_ADDR);
  173. /* now update the dma last descriptor */
  174. writel(((uint32_t)(dma->tx_desc_aligned)) & D64_XP_LD_MASK,
  175. GMAC0_DMA_TX_PTR_ADDR);
  176. return 0;
  177. }
  178. static int dma_rx_init(struct eth_dma *dma)
  179. {
  180. uint32_t last_desc;
  181. dma64dd_t *descp = NULL;
  182. uint8_t *bufp;
  183. uint32_t ctrl;
  184. int i;
  185. debug("%s enter\n", __func__);
  186. /* clear descriptor memory */
  187. memset((void *)(dma->rx_desc_aligned), 0,
  188. RX_BUF_NUM * DESCP_SIZE_ALIGNED);
  189. /* clear buffer memory */
  190. memset(dma->rx_buf, 0, RX_BUF_NUM * RX_BUF_SIZE_ALIGNED);
  191. /* Initialize RX DMA descriptor table */
  192. for (i = 0; i < RX_BUF_NUM; i++) {
  193. descp = (dma64dd_t *)(dma->rx_desc_aligned) + i;
  194. bufp = dma->rx_buf + i * RX_BUF_SIZE_ALIGNED;
  195. ctrl = 0;
  196. /* if last descr set endOfTable */
  197. if (i == (RX_BUF_NUM - 1))
  198. ctrl = D64_CTRL1_EOT;
  199. descp->ctrl1 = ctrl;
  200. descp->ctrl2 = RX_BUF_SIZE_ALIGNED;
  201. descp->addrlow = (uint32_t)bufp;
  202. descp->addrhigh = 0;
  203. last_desc = ((uint32_t)(descp) & D64_XP_LD_MASK)
  204. + sizeof(dma64dd_t);
  205. }
  206. descp = dma->rx_desc_aligned;
  207. bufp = dma->rx_buf;
  208. /* flush descriptor and buffer */
  209. flush_dcache_range((unsigned long)descp,
  210. (unsigned long)descp +
  211. DESCP_SIZE_ALIGNED * RX_BUF_NUM);
  212. flush_dcache_range((unsigned long)(bufp),
  213. (unsigned long)bufp +
  214. RX_BUF_SIZE_ALIGNED * RX_BUF_NUM);
  215. /* initailize the DMA channel */
  216. writel((uint32_t)descp, GMAC0_DMA_RX_ADDR_LOW_ADDR);
  217. writel(0, GMAC0_DMA_RX_ADDR_HIGH_ADDR);
  218. /* now update the dma last descriptor */
  219. writel(last_desc, GMAC0_DMA_RX_PTR_ADDR);
  220. return 0;
  221. }
  222. static int dma_init(struct eth_dma *dma)
  223. {
  224. debug(" %s enter\n", __func__);
  225. /*
  226. * Default flags: For backwards compatibility both
  227. * Rx Overflow Continue and Parity are DISABLED.
  228. */
  229. dma_ctrlflags(DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
  230. debug("rx burst len 0x%x\n",
  231. (readl(GMAC0_DMA_RX_CTRL_ADDR) & D64_RC_BL_MASK)
  232. >> D64_RC_BL_SHIFT);
  233. debug("tx burst len 0x%x\n",
  234. (readl(GMAC0_DMA_TX_CTRL_ADDR) & D64_XC_BL_MASK)
  235. >> D64_XC_BL_SHIFT);
  236. dma_tx_init(dma);
  237. dma_rx_init(dma);
  238. /* From end of chip_init() */
  239. /* enable the overflow continue feature and disable parity */
  240. dma_ctrlflags(DMA_CTRL_ROC | DMA_CTRL_PEN /* mask */,
  241. DMA_CTRL_ROC /* value */);
  242. return 0;
  243. }
  244. static int dma_deinit(struct eth_dma *dma)
  245. {
  246. debug(" %s enter\n", __func__);
  247. gmac_disable_dma(dma, MAC_DMA_RX);
  248. gmac_disable_dma(dma, MAC_DMA_TX);
  249. free(dma->tx_buf);
  250. dma->tx_buf = NULL;
  251. free(dma->tx_desc_aligned);
  252. dma->tx_desc_aligned = NULL;
  253. free(dma->rx_buf);
  254. dma->rx_buf = NULL;
  255. free(dma->rx_desc_aligned);
  256. dma->rx_desc_aligned = NULL;
  257. return 0;
  258. }
  259. int gmac_tx_packet(struct eth_dma *dma, void *packet, int length)
  260. {
  261. uint8_t *bufp = dma->tx_buf + dma->cur_tx_index * TX_BUF_SIZE_ALIGNED;
  262. /* kick off the dma */
  263. size_t len = length;
  264. int txout = dma->cur_tx_index;
  265. uint32_t flags;
  266. dma64dd_t *descp = NULL;
  267. uint32_t ctrl;
  268. uint32_t last_desc = (((uint32_t)dma->tx_desc_aligned) +
  269. sizeof(dma64dd_t)) & D64_XP_LD_MASK;
  270. size_t buflen;
  271. debug("%s enter\n", __func__);
  272. /* load the buffer */
  273. memcpy(bufp, packet, len);
  274. /* Add 4 bytes for Ethernet FCS/CRC */
  275. buflen = len + 4;
  276. ctrl = (buflen & D64_CTRL2_BC_MASK);
  277. /* the transmit will only be one frame or set SOF, EOF */
  278. /* also set int on completion */
  279. flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
  280. /* txout points to the descriptor to uset */
  281. /* if last descriptor then set EOT */
  282. if (txout == (TX_BUF_NUM - 1)) {
  283. flags |= D64_CTRL1_EOT;
  284. last_desc = ((uint32_t)(dma->tx_desc_aligned)) & D64_XP_LD_MASK;
  285. }
  286. /* write the descriptor */
  287. descp = ((dma64dd_t *)(dma->tx_desc_aligned)) + txout;
  288. descp->addrlow = (uint32_t)bufp;
  289. descp->addrhigh = 0;
  290. descp->ctrl1 = flags;
  291. descp->ctrl2 = ctrl;
  292. /* flush descriptor and buffer */
  293. flush_dcache_range((unsigned long)dma->tx_desc_aligned,
  294. (unsigned long)dma->tx_desc_aligned +
  295. DESCP_SIZE_ALIGNED * TX_BUF_NUM);
  296. flush_dcache_range((unsigned long)bufp,
  297. (unsigned long)bufp + TX_BUF_SIZE_ALIGNED);
  298. /* now update the dma last descriptor */
  299. writel(last_desc, GMAC0_DMA_TX_PTR_ADDR);
  300. /* tx dma should be enabled so packet should go out */
  301. /* update txout */
  302. dma->cur_tx_index = (txout + 1) & (TX_BUF_NUM - 1);
  303. return 0;
  304. }
  305. bool gmac_check_tx_done(struct eth_dma *dma)
  306. {
  307. /* wait for tx to complete */
  308. uint32_t intstatus;
  309. bool xfrdone = false;
  310. debug("%s enter\n", __func__);
  311. intstatus = readl(GMAC0_INT_STATUS_ADDR);
  312. debug("int(0x%x)\n", intstatus);
  313. if (intstatus & (I_XI0 | I_XI1 | I_XI2 | I_XI3)) {
  314. xfrdone = true;
  315. /* clear the int bits */
  316. intstatus &= ~(I_XI0 | I_XI1 | I_XI2 | I_XI3);
  317. writel(intstatus, GMAC0_INT_STATUS_ADDR);
  318. } else {
  319. debug("Tx int(0x%x)\n", intstatus);
  320. }
  321. return xfrdone;
  322. }
  323. int gmac_check_rx_done(struct eth_dma *dma, uint8_t *buf)
  324. {
  325. void *bufp, *datap;
  326. size_t rcvlen = 0, buflen = 0;
  327. uint32_t stat0 = 0, stat1 = 0;
  328. uint32_t control, offset;
  329. uint8_t statbuf[HWRXOFF*2];
  330. int index, curr, active;
  331. dma64dd_t *descp = NULL;
  332. /* udelay(50); */
  333. /*
  334. * this api will check if a packet has been received.
  335. * If so it will return the address of the buffer and current
  336. * descriptor index will be incremented to the
  337. * next descriptor. Once done with the frame the buffer should be
  338. * added back onto the descriptor and the lastdscr should be updated
  339. * to this descriptor.
  340. */
  341. index = dma->cur_rx_index;
  342. offset = (uint32_t)(dma->rx_desc_aligned);
  343. stat0 = readl(GMAC0_DMA_RX_STATUS0_ADDR) & D64_RS0_CD_MASK;
  344. stat1 = readl(GMAC0_DMA_RX_STATUS1_ADDR) & D64_RS0_CD_MASK;
  345. curr = ((stat0 - offset) & D64_RS0_CD_MASK) / sizeof(dma64dd_t);
  346. active = ((stat1 - offset) & D64_RS0_CD_MASK) / sizeof(dma64dd_t);
  347. /* check if any frame */
  348. if (index == curr)
  349. return -1;
  350. debug("received packet\n");
  351. debug("expect(0x%x) curr(0x%x) active(0x%x)\n", index, curr, active);
  352. /* remove warning */
  353. if (index == active)
  354. ;
  355. /* get the packet pointer that corresponds to the rx descriptor */
  356. bufp = dma->rx_buf + index * RX_BUF_SIZE_ALIGNED;
  357. descp = (dma64dd_t *)(dma->rx_desc_aligned) + index;
  358. /* flush descriptor and buffer */
  359. flush_dcache_range((unsigned long)dma->rx_desc_aligned,
  360. (unsigned long)dma->rx_desc_aligned +
  361. DESCP_SIZE_ALIGNED * RX_BUF_NUM);
  362. flush_dcache_range((unsigned long)bufp,
  363. (unsigned long)bufp + RX_BUF_SIZE_ALIGNED);
  364. buflen = (descp->ctrl2 & D64_CTRL2_BC_MASK);
  365. stat0 = readl(GMAC0_DMA_RX_STATUS0_ADDR);
  366. stat1 = readl(GMAC0_DMA_RX_STATUS1_ADDR);
  367. debug("bufp(0x%x) index(0x%x) buflen(0x%x) stat0(0x%x) stat1(0x%x)\n",
  368. (uint32_t)bufp, index, buflen, stat0, stat1);
  369. dma->cur_rx_index = (index + 1) & (RX_BUF_NUM - 1);
  370. /* get buffer offset */
  371. control = readl(GMAC0_DMA_RX_CTRL_ADDR);
  372. offset = (control & D64_RC_RO_MASK) >> D64_RC_RO_SHIFT;
  373. rcvlen = *(uint16_t *)bufp;
  374. debug("Received %d bytes\n", rcvlen);
  375. /* copy status into temp buf then copy data from rx buffer */
  376. memcpy(statbuf, bufp, offset);
  377. datap = (void *)((uint32_t)bufp + offset);
  378. memcpy(buf, datap, rcvlen);
  379. /* update descriptor that is being added back on ring */
  380. descp->ctrl2 = RX_BUF_SIZE_ALIGNED;
  381. descp->addrlow = (uint32_t)bufp;
  382. descp->addrhigh = 0;
  383. /* flush descriptor */
  384. flush_dcache_range((unsigned long)dma->rx_desc_aligned,
  385. (unsigned long)dma->rx_desc_aligned +
  386. DESCP_SIZE_ALIGNED * RX_BUF_NUM);
  387. /* set the lastdscr for the rx ring */
  388. writel(((uint32_t)descp) & D64_XP_LD_MASK, GMAC0_DMA_RX_PTR_ADDR);
  389. return (int)rcvlen;
  390. }
  391. static int gmac_disable_dma(struct eth_dma *dma, int dir)
  392. {
  393. int status;
  394. debug("%s enter\n", __func__);
  395. if (dir == MAC_DMA_TX) {
  396. /* address PR8249/PR7577 issue */
  397. /* suspend tx DMA first */
  398. writel(D64_XC_SE, GMAC0_DMA_TX_CTRL_ADDR);
  399. SPINWAIT(((status = (readl(GMAC0_DMA_TX_STATUS0_ADDR) &
  400. D64_XS0_XS_MASK)) !=
  401. D64_XS0_XS_DISABLED) &&
  402. (status != D64_XS0_XS_IDLE) &&
  403. (status != D64_XS0_XS_STOPPED), 10000);
  404. /*
  405. * PR2414 WAR: DMA engines are not disabled until
  406. * transfer finishes
  407. */
  408. writel(0, GMAC0_DMA_TX_CTRL_ADDR);
  409. SPINWAIT(((status = (readl(GMAC0_DMA_TX_STATUS0_ADDR) &
  410. D64_XS0_XS_MASK)) !=
  411. D64_XS0_XS_DISABLED), 10000);
  412. /* wait for the last transaction to complete */
  413. udelay(2);
  414. status = (status == D64_XS0_XS_DISABLED);
  415. } else {
  416. /*
  417. * PR2414 WAR: DMA engines are not disabled until
  418. * transfer finishes
  419. */
  420. writel(0, GMAC0_DMA_RX_CTRL_ADDR);
  421. SPINWAIT(((status = (readl(GMAC0_DMA_RX_STATUS0_ADDR) &
  422. D64_RS0_RS_MASK)) !=
  423. D64_RS0_RS_DISABLED), 10000);
  424. status = (status == D64_RS0_RS_DISABLED);
  425. }
  426. return status;
  427. }
  428. static int gmac_enable_dma(struct eth_dma *dma, int dir)
  429. {
  430. uint32_t control;
  431. debug("%s enter\n", __func__);
  432. if (dir == MAC_DMA_TX) {
  433. dma->cur_tx_index = 0;
  434. /*
  435. * These bits 20:18 (burstLen) of control register can be
  436. * written but will take effect only if these bits are
  437. * valid. So this will not affect previous versions
  438. * of the DMA. They will continue to have those bits set to 0.
  439. */
  440. control = readl(GMAC0_DMA_TX_CTRL_ADDR);
  441. control |= D64_XC_XE;
  442. if ((g_dmactrlflags & DMA_CTRL_PEN) == 0)
  443. control |= D64_XC_PD;
  444. writel(control, GMAC0_DMA_TX_CTRL_ADDR);
  445. /* initailize the DMA channel */
  446. writel((uint32_t)(dma->tx_desc_aligned),
  447. GMAC0_DMA_TX_ADDR_LOW_ADDR);
  448. writel(0, GMAC0_DMA_TX_ADDR_HIGH_ADDR);
  449. } else {
  450. dma->cur_rx_index = 0;
  451. control = (readl(GMAC0_DMA_RX_CTRL_ADDR) &
  452. D64_RC_AE) | D64_RC_RE;
  453. if ((g_dmactrlflags & DMA_CTRL_PEN) == 0)
  454. control |= D64_RC_PD;
  455. if (g_dmactrlflags & DMA_CTRL_ROC)
  456. control |= D64_RC_OC;
  457. /*
  458. * These bits 20:18 (burstLen) of control register can be
  459. * written but will take effect only if these bits are
  460. * valid. So this will not affect previous versions
  461. * of the DMA. They will continue to have those bits set to 0.
  462. */
  463. control &= ~D64_RC_BL_MASK;
  464. /* Keep default Rx burstlen */
  465. control |= readl(GMAC0_DMA_RX_CTRL_ADDR) & D64_RC_BL_MASK;
  466. control |= HWRXOFF << D64_RC_RO_SHIFT;
  467. writel(control, GMAC0_DMA_RX_CTRL_ADDR);
  468. /*
  469. * the rx descriptor ring should have
  470. * the addresses set properly;
  471. * set the lastdscr for the rx ring
  472. */
  473. writel(((uint32_t)(dma->rx_desc_aligned) +
  474. (RX_BUF_NUM - 1) * RX_BUF_SIZE_ALIGNED) &
  475. D64_XP_LD_MASK, GMAC0_DMA_RX_PTR_ADDR);
  476. }
  477. return 0;
  478. }
  479. bool gmac_mii_busywait(unsigned int timeout)
  480. {
  481. uint32_t tmp = 0;
  482. while (timeout > 10) {
  483. tmp = readl(GMAC_MII_CTRL_ADDR);
  484. if (tmp & (1 << GMAC_MII_BUSY_SHIFT)) {
  485. udelay(10);
  486. timeout -= 10;
  487. } else {
  488. break;
  489. }
  490. }
  491. return tmp & (1 << GMAC_MII_BUSY_SHIFT);
  492. }
  493. int gmac_miiphy_read(struct mii_dev *bus, int phyaddr, int devad, int reg)
  494. {
  495. uint32_t tmp = 0;
  496. u16 value = 0;
  497. /* Busy wait timeout is 1ms */
  498. if (gmac_mii_busywait(1000)) {
  499. pr_err("%s: Prepare MII read: MII/MDIO busy\n", __func__);
  500. return -1;
  501. }
  502. /* Read operation */
  503. tmp = GMAC_MII_DATA_READ_CMD;
  504. tmp |= (phyaddr << GMAC_MII_PHY_ADDR_SHIFT) |
  505. (reg << GMAC_MII_PHY_REG_SHIFT);
  506. debug("MII read cmd 0x%x, phy 0x%x, reg 0x%x\n", tmp, phyaddr, reg);
  507. writel(tmp, GMAC_MII_DATA_ADDR);
  508. if (gmac_mii_busywait(1000)) {
  509. pr_err("%s: MII read failure: MII/MDIO busy\n", __func__);
  510. return -1;
  511. }
  512. value = readl(GMAC_MII_DATA_ADDR) & 0xffff;
  513. debug("MII read data 0x%x\n", value);
  514. return value;
  515. }
  516. int gmac_miiphy_write(struct mii_dev *bus, int phyaddr, int devad, int reg,
  517. u16 value)
  518. {
  519. uint32_t tmp = 0;
  520. /* Busy wait timeout is 1ms */
  521. if (gmac_mii_busywait(1000)) {
  522. pr_err("%s: Prepare MII write: MII/MDIO busy\n", __func__);
  523. return -1;
  524. }
  525. /* Write operation */
  526. tmp = GMAC_MII_DATA_WRITE_CMD | (value & 0xffff);
  527. tmp |= ((phyaddr << GMAC_MII_PHY_ADDR_SHIFT) |
  528. (reg << GMAC_MII_PHY_REG_SHIFT));
  529. debug("MII write cmd 0x%x, phy 0x%x, reg 0x%x, data 0x%x\n",
  530. tmp, phyaddr, reg, value);
  531. writel(tmp, GMAC_MII_DATA_ADDR);
  532. if (gmac_mii_busywait(1000)) {
  533. pr_err("%s: MII write failure: MII/MDIO busy\n", __func__);
  534. return -1;
  535. }
  536. return 0;
  537. }
  538. void gmac_init_reset(void)
  539. {
  540. debug("%s enter\n", __func__);
  541. /* set command config reg CC_SR */
  542. reg32_set_bits(UNIMAC0_CMD_CFG_ADDR, CC_SR);
  543. udelay(GMAC_RESET_DELAY);
  544. }
  545. void gmac_clear_reset(void)
  546. {
  547. debug("%s enter\n", __func__);
  548. /* clear command config reg CC_SR */
  549. reg32_clear_bits(UNIMAC0_CMD_CFG_ADDR, CC_SR);
  550. udelay(GMAC_RESET_DELAY);
  551. }
  552. static void gmac_enable_local(bool en)
  553. {
  554. uint32_t cmdcfg;
  555. debug("%s enter\n", __func__);
  556. /* read command config reg */
  557. cmdcfg = readl(UNIMAC0_CMD_CFG_ADDR);
  558. /* put mac in reset */
  559. gmac_init_reset();
  560. cmdcfg |= CC_SR;
  561. /* first deassert rx_ena and tx_ena while in reset */
  562. cmdcfg &= ~(CC_RE | CC_TE);
  563. /* write command config reg */
  564. writel(cmdcfg, UNIMAC0_CMD_CFG_ADDR);
  565. /* bring mac out of reset */
  566. gmac_clear_reset();
  567. /* if not enable exit now */
  568. if (!en)
  569. return;
  570. /* enable the mac transmit and receive paths now */
  571. udelay(2);
  572. cmdcfg &= ~CC_SR;
  573. cmdcfg |= (CC_RE | CC_TE);
  574. /* assert rx_ena and tx_ena when out of reset to enable the mac */
  575. writel(cmdcfg, UNIMAC0_CMD_CFG_ADDR);
  576. return;
  577. }
  578. int gmac_enable(void)
  579. {
  580. gmac_enable_local(1);
  581. /* clear interrupts */
  582. writel(I_INTMASK, GMAC0_INT_STATUS_ADDR);
  583. return 0;
  584. }
  585. int gmac_disable(void)
  586. {
  587. gmac_enable_local(0);
  588. return 0;
  589. }
  590. int gmac_set_speed(int speed, int duplex)
  591. {
  592. uint32_t cmdcfg;
  593. uint32_t hd_ena;
  594. uint32_t speed_cfg;
  595. hd_ena = duplex ? 0 : CC_HD;
  596. if (speed == 1000) {
  597. speed_cfg = 2;
  598. } else if (speed == 100) {
  599. speed_cfg = 1;
  600. } else if (speed == 10) {
  601. speed_cfg = 0;
  602. } else {
  603. pr_err("%s: Invalid GMAC speed(%d)!\n", __func__, speed);
  604. return -1;
  605. }
  606. cmdcfg = readl(UNIMAC0_CMD_CFG_ADDR);
  607. cmdcfg &= ~(CC_ES_MASK | CC_HD);
  608. cmdcfg |= ((speed_cfg << CC_ES_SHIFT) | hd_ena);
  609. printf("Change GMAC speed to %dMB\n", speed);
  610. debug("GMAC speed cfg 0x%x\n", cmdcfg);
  611. writel(cmdcfg, UNIMAC0_CMD_CFG_ADDR);
  612. return 0;
  613. }
  614. int gmac_set_mac_addr(unsigned char *mac)
  615. {
  616. /* set our local address */
  617. debug("GMAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
  618. mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
  619. writel(htonl(*(uint32_t *)mac), UNIMAC0_MAC_MSB_ADDR);
  620. writew(htons(*(uint32_t *)&mac[4]), UNIMAC0_MAC_LSB_ADDR);
  621. return 0;
  622. }
  623. int gmac_mac_init(struct eth_device *dev)
  624. {
  625. struct eth_info *eth = (struct eth_info *)(dev->priv);
  626. struct eth_dma *dma = &(eth->dma);
  627. uint32_t tmp;
  628. uint32_t cmdcfg;
  629. int chipid;
  630. debug("%s enter\n", __func__);
  631. /* Always use GMAC0 */
  632. printf("Using GMAC%d\n", 0);
  633. /* Reset AMAC0 core */
  634. writel(0, AMAC0_IDM_RESET_ADDR);
  635. tmp = readl(AMAC0_IO_CTRL_DIRECT_ADDR);
  636. /* Set clock */
  637. tmp &= ~(1 << AMAC0_IO_CTRL_CLK_250_SEL_SHIFT);
  638. tmp |= (1 << AMAC0_IO_CTRL_GMII_MODE_SHIFT);
  639. /* Set Tx clock */
  640. tmp &= ~(1 << AMAC0_IO_CTRL_DEST_SYNC_MODE_EN_SHIFT);
  641. writel(tmp, AMAC0_IO_CTRL_DIRECT_ADDR);
  642. /* reset gmac */
  643. /*
  644. * As AMAC is just reset, NO need?
  645. * set eth_data into loopback mode to ensure no rx traffic
  646. * gmac_loopback(eth_data, TRUE);
  647. * ET_TRACE(("%s gmac loopback\n", __func__));
  648. * udelay(1);
  649. */
  650. cmdcfg = readl(UNIMAC0_CMD_CFG_ADDR);
  651. cmdcfg &= ~(CC_TE | CC_RE | CC_RPI | CC_TAI | CC_HD | CC_ML |
  652. CC_CFE | CC_RL | CC_RED | CC_PE | CC_TPI |
  653. CC_PAD_EN | CC_PF);
  654. cmdcfg |= (CC_PROM | CC_NLC | CC_CFE);
  655. /* put mac in reset */
  656. gmac_init_reset();
  657. writel(cmdcfg, UNIMAC0_CMD_CFG_ADDR);
  658. gmac_clear_reset();
  659. /* enable clear MIB on read */
  660. reg32_set_bits(GMAC0_DEV_CTRL_ADDR, DC_MROR);
  661. /* PHY: set smi_master to drive mdc_clk */
  662. reg32_set_bits(GMAC0_PHY_CTRL_ADDR, PC_MTE);
  663. /* clear persistent sw intstatus */
  664. writel(0, GMAC0_INT_STATUS_ADDR);
  665. if (dma_init(dma) < 0) {
  666. pr_err("%s: GMAC dma_init failed\n", __func__);
  667. goto err_exit;
  668. }
  669. chipid = CHIPID;
  670. printf("%s: Chip ID: 0x%x\n", __func__, chipid);
  671. /* set switch bypass mode */
  672. tmp = readl(SWITCH_GLOBAL_CONFIG_ADDR);
  673. tmp |= (1 << CDRU_SWITCH_BYPASS_SWITCH_SHIFT);
  674. /* Switch mode */
  675. /* tmp &= ~(1 << CDRU_SWITCH_BYPASS_SWITCH_SHIFT); */
  676. writel(tmp, SWITCH_GLOBAL_CONFIG_ADDR);
  677. tmp = readl(CRMU_CHIP_IO_PAD_CONTROL_ADDR);
  678. tmp &= ~(1 << CDRU_IOMUX_FORCE_PAD_IN_SHIFT);
  679. writel(tmp, CRMU_CHIP_IO_PAD_CONTROL_ADDR);
  680. /* Set MDIO to internal GPHY */
  681. tmp = readl(GMAC_MII_CTRL_ADDR);
  682. /* Select internal MDC/MDIO bus*/
  683. tmp &= ~(1 << GMAC_MII_CTRL_BYP_SHIFT);
  684. /* select MDC/MDIO connecting to on-chip internal PHYs */
  685. tmp &= ~(1 << GMAC_MII_CTRL_EXT_SHIFT);
  686. /*
  687. * give bit[6:0](MDCDIV) with required divisor to set
  688. * the MDC clock frequency, 66MHZ/0x1A=2.5MHZ
  689. */
  690. tmp |= 0x1A;
  691. writel(tmp, GMAC_MII_CTRL_ADDR);
  692. if (gmac_mii_busywait(1000)) {
  693. pr_err("%s: Configure MDIO: MII/MDIO busy\n", __func__);
  694. goto err_exit;
  695. }
  696. /* Configure GMAC0 */
  697. /* enable one rx interrupt per received frame */
  698. writel(1 << GMAC0_IRL_FRAMECOUNT_SHIFT, GMAC0_INTR_RECV_LAZY_ADDR);
  699. /* read command config reg */
  700. cmdcfg = readl(UNIMAC0_CMD_CFG_ADDR);
  701. /* enable 802.3x tx flow control (honor received PAUSE frames) */
  702. cmdcfg &= ~CC_RPI;
  703. /* enable promiscuous mode */
  704. cmdcfg |= CC_PROM;
  705. /* Disable loopback mode */
  706. cmdcfg &= ~CC_ML;
  707. /* set the speed */
  708. cmdcfg &= ~(CC_ES_MASK | CC_HD);
  709. /* Set to 1Gbps and full duplex by default */
  710. cmdcfg |= (2 << CC_ES_SHIFT);
  711. /* put mac in reset */
  712. gmac_init_reset();
  713. /* write register */
  714. writel(cmdcfg, UNIMAC0_CMD_CFG_ADDR);
  715. /* bring mac out of reset */
  716. gmac_clear_reset();
  717. /* set max frame lengths; account for possible vlan tag */
  718. writel(PKTSIZE + 32, UNIMAC0_FRM_LENGTH_ADDR);
  719. return 0;
  720. err_exit:
  721. dma_deinit(dma);
  722. return -1;
  723. }
  724. int gmac_add(struct eth_device *dev)
  725. {
  726. struct eth_info *eth = (struct eth_info *)(dev->priv);
  727. struct eth_dma *dma = &(eth->dma);
  728. void *tmp;
  729. /*
  730. * Desc has to be 16-byte aligned. But for dcache flush it must be
  731. * aligned to ARCH_DMA_MINALIGN.
  732. */
  733. tmp = memalign(ARCH_DMA_MINALIGN, DESCP_SIZE_ALIGNED * TX_BUF_NUM);
  734. if (tmp == NULL) {
  735. printf("%s: Failed to allocate TX desc Buffer\n", __func__);
  736. return -1;
  737. }
  738. dma->tx_desc_aligned = (void *)tmp;
  739. debug("TX Descriptor Buffer: %p; length: 0x%x\n",
  740. dma->tx_desc_aligned, DESCP_SIZE_ALIGNED * TX_BUF_NUM);
  741. tmp = memalign(ARCH_DMA_MINALIGN, TX_BUF_SIZE_ALIGNED * TX_BUF_NUM);
  742. if (tmp == NULL) {
  743. printf("%s: Failed to allocate TX Data Buffer\n", __func__);
  744. free(dma->tx_desc_aligned);
  745. return -1;
  746. }
  747. dma->tx_buf = (uint8_t *)tmp;
  748. debug("TX Data Buffer: %p; length: 0x%x\n",
  749. dma->tx_buf, TX_BUF_SIZE_ALIGNED * TX_BUF_NUM);
  750. /* Desc has to be 16-byte aligned */
  751. tmp = memalign(ARCH_DMA_MINALIGN, DESCP_SIZE_ALIGNED * RX_BUF_NUM);
  752. if (tmp == NULL) {
  753. printf("%s: Failed to allocate RX Descriptor\n", __func__);
  754. free(dma->tx_desc_aligned);
  755. free(dma->tx_buf);
  756. return -1;
  757. }
  758. dma->rx_desc_aligned = (void *)tmp;
  759. debug("RX Descriptor Buffer: %p, length: 0x%x\n",
  760. dma->rx_desc_aligned, DESCP_SIZE_ALIGNED * RX_BUF_NUM);
  761. tmp = memalign(ARCH_DMA_MINALIGN, RX_BUF_SIZE_ALIGNED * RX_BUF_NUM);
  762. if (tmp == NULL) {
  763. printf("%s: Failed to allocate RX Data Buffer\n", __func__);
  764. free(dma->tx_desc_aligned);
  765. free(dma->tx_buf);
  766. free(dma->rx_desc_aligned);
  767. return -1;
  768. }
  769. dma->rx_buf = (uint8_t *)tmp;
  770. debug("RX Data Buffer: %p; length: 0x%x\n",
  771. dma->rx_buf, RX_BUF_SIZE_ALIGNED * RX_BUF_NUM);
  772. g_dmactrlflags = 0;
  773. eth->phy_interface = PHY_INTERFACE_MODE_GMII;
  774. dma->tx_packet = gmac_tx_packet;
  775. dma->check_tx_done = gmac_check_tx_done;
  776. dma->check_rx_done = gmac_check_rx_done;
  777. dma->enable_dma = gmac_enable_dma;
  778. dma->disable_dma = gmac_disable_dma;
  779. eth->miiphy_read = gmac_miiphy_read;
  780. eth->miiphy_write = gmac_miiphy_write;
  781. eth->mac_init = gmac_mac_init;
  782. eth->disable_mac = gmac_disable;
  783. eth->enable_mac = gmac_enable;
  784. eth->set_mac_addr = gmac_set_mac_addr;
  785. eth->set_mac_speed = gmac_set_speed;
  786. return 0;
  787. }