clk_stm32f.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616
  1. /*
  2. * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
  3. * Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <clk-uclass.h>
  9. #include <dm.h>
  10. #include <stm32_rcc.h>
  11. #include <asm/io.h>
  12. #include <asm/arch/stm32.h>
  13. #include <asm/arch/stm32_pwr.h>
  14. #include <dt-bindings/mfd/stm32f7-rcc.h>
  15. #define RCC_CR_HSION BIT(0)
  16. #define RCC_CR_HSEON BIT(16)
  17. #define RCC_CR_HSERDY BIT(17)
  18. #define RCC_CR_HSEBYP BIT(18)
  19. #define RCC_CR_CSSON BIT(19)
  20. #define RCC_CR_PLLON BIT(24)
  21. #define RCC_CR_PLLRDY BIT(25)
  22. #define RCC_CR_PLLSAION BIT(28)
  23. #define RCC_CR_PLLSAIRDY BIT(29)
  24. #define RCC_PLLCFGR_PLLM_MASK GENMASK(5, 0)
  25. #define RCC_PLLCFGR_PLLN_MASK GENMASK(14, 6)
  26. #define RCC_PLLCFGR_PLLP_MASK GENMASK(17, 16)
  27. #define RCC_PLLCFGR_PLLQ_MASK GENMASK(27, 24)
  28. #define RCC_PLLCFGR_PLLSRC BIT(22)
  29. #define RCC_PLLCFGR_PLLM_SHIFT 0
  30. #define RCC_PLLCFGR_PLLN_SHIFT 6
  31. #define RCC_PLLCFGR_PLLP_SHIFT 16
  32. #define RCC_PLLCFGR_PLLQ_SHIFT 24
  33. #define RCC_CFGR_AHB_PSC_MASK GENMASK(7, 4)
  34. #define RCC_CFGR_APB1_PSC_MASK GENMASK(12, 10)
  35. #define RCC_CFGR_APB2_PSC_MASK GENMASK(15, 13)
  36. #define RCC_CFGR_SW0 BIT(0)
  37. #define RCC_CFGR_SW1 BIT(1)
  38. #define RCC_CFGR_SW_MASK GENMASK(1, 0)
  39. #define RCC_CFGR_SW_HSI 0
  40. #define RCC_CFGR_SW_HSE RCC_CFGR_SW0
  41. #define RCC_CFGR_SW_PLL RCC_CFGR_SW1
  42. #define RCC_CFGR_SWS0 BIT(2)
  43. #define RCC_CFGR_SWS1 BIT(3)
  44. #define RCC_CFGR_SWS_MASK GENMASK(3, 2)
  45. #define RCC_CFGR_SWS_HSI 0
  46. #define RCC_CFGR_SWS_HSE RCC_CFGR_SWS0
  47. #define RCC_CFGR_SWS_PLL RCC_CFGR_SWS1
  48. #define RCC_CFGR_HPRE_SHIFT 4
  49. #define RCC_CFGR_PPRE1_SHIFT 10
  50. #define RCC_CFGR_PPRE2_SHIFT 13
  51. #define RCC_PLLSAICFGR_PLLSAIN_MASK GENMASK(14, 6)
  52. #define RCC_PLLSAICFGR_PLLSAIP_MASK GENMASK(17, 16)
  53. #define RCC_PLLSAICFGR_PLLSAIQ_MASK GENMASK(27, 24)
  54. #define RCC_PLLSAICFGR_PLLSAIR_MASK GENMASK(30, 28)
  55. #define RCC_PLLSAICFGR_PLLSAIN_SHIFT 6
  56. #define RCC_PLLSAICFGR_PLLSAIP_SHIFT 16
  57. #define RCC_PLLSAICFGR_PLLSAIQ_SHIFT 24
  58. #define RCC_PLLSAICFGR_PLLSAIR_SHIFT 28
  59. #define RCC_PLLSAICFGR_PLLSAIP_4 BIT(16)
  60. #define RCC_PLLSAICFGR_PLLSAIQ_4 BIT(26)
  61. #define RCC_PLLSAICFGR_PLLSAIR_3 BIT(29) | BIT(28)
  62. #define RCC_DCKCFGRX_TIMPRE BIT(24)
  63. #define RCC_DCKCFGRX_CK48MSEL BIT(27)
  64. #define RCC_DCKCFGRX_SDMMC1SEL BIT(28)
  65. #define RCC_DCKCFGR2_SDMMC2SEL BIT(29)
  66. #define RCC_DCKCFGR_PLLSAIDIVR_SHIFT 16
  67. #define RCC_DCKCFGR_PLLSAIDIVR_MASK GENMASK(17, 16)
  68. #define RCC_DCKCFGR_PLLSAIDIVR_2 0
  69. /*
  70. * RCC AHB1ENR specific definitions
  71. */
  72. #define RCC_AHB1ENR_ETHMAC_EN BIT(25)
  73. #define RCC_AHB1ENR_ETHMAC_TX_EN BIT(26)
  74. #define RCC_AHB1ENR_ETHMAC_RX_EN BIT(27)
  75. /*
  76. * RCC APB1ENR specific definitions
  77. */
  78. #define RCC_APB1ENR_TIM2EN BIT(0)
  79. #define RCC_APB1ENR_PWREN BIT(28)
  80. /*
  81. * RCC APB2ENR specific definitions
  82. */
  83. #define RCC_APB2ENR_SYSCFGEN BIT(14)
  84. #define RCC_APB2ENR_SAI1EN BIT(22)
  85. enum pllsai_div {
  86. PLLSAIP,
  87. PLLSAIQ,
  88. PLLSAIR,
  89. };
  90. static const struct stm32_clk_info stm32f4_clk_info = {
  91. /* 180 MHz */
  92. .sys_pll_psc = {
  93. .pll_n = 360,
  94. .pll_p = 2,
  95. .pll_q = 8,
  96. .ahb_psc = AHB_PSC_1,
  97. .apb1_psc = APB_PSC_4,
  98. .apb2_psc = APB_PSC_2,
  99. },
  100. .has_overdrive = false,
  101. .v2 = false,
  102. };
  103. static const struct stm32_clk_info stm32f7_clk_info = {
  104. /* 200 MHz */
  105. .sys_pll_psc = {
  106. .pll_n = 400,
  107. .pll_p = 2,
  108. .pll_q = 8,
  109. .ahb_psc = AHB_PSC_1,
  110. .apb1_psc = APB_PSC_4,
  111. .apb2_psc = APB_PSC_2,
  112. },
  113. .has_overdrive = true,
  114. .v2 = true,
  115. };
  116. struct stm32_clk {
  117. struct stm32_rcc_regs *base;
  118. struct stm32_pwr_regs *pwr_regs;
  119. struct stm32_clk_info info;
  120. unsigned long hse_rate;
  121. };
  122. static const u8 pllsaidivr_table[] = { 2, 4, 8, 16 };
  123. static int configure_clocks(struct udevice *dev)
  124. {
  125. struct stm32_clk *priv = dev_get_priv(dev);
  126. struct stm32_rcc_regs *regs = priv->base;
  127. struct stm32_pwr_regs *pwr = priv->pwr_regs;
  128. struct pll_psc *sys_pll_psc = &priv->info.sys_pll_psc;
  129. /* Reset RCC configuration */
  130. setbits_le32(&regs->cr, RCC_CR_HSION);
  131. writel(0, &regs->cfgr); /* Reset CFGR */
  132. clrbits_le32(&regs->cr, (RCC_CR_HSEON | RCC_CR_CSSON
  133. | RCC_CR_PLLON | RCC_CR_PLLSAION));
  134. writel(0x24003010, &regs->pllcfgr); /* Reset value from RM */
  135. clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
  136. writel(0, &regs->cir); /* Disable all interrupts */
  137. /* Configure for HSE+PLL operation */
  138. setbits_le32(&regs->cr, RCC_CR_HSEON);
  139. while (!(readl(&regs->cr) & RCC_CR_HSERDY))
  140. ;
  141. setbits_le32(&regs->cfgr, ((
  142. sys_pll_psc->ahb_psc << RCC_CFGR_HPRE_SHIFT)
  143. | (sys_pll_psc->apb1_psc << RCC_CFGR_PPRE1_SHIFT)
  144. | (sys_pll_psc->apb2_psc << RCC_CFGR_PPRE2_SHIFT)));
  145. /* Configure the main PLL */
  146. setbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLSRC); /* pll source HSE */
  147. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLM_MASK,
  148. sys_pll_psc->pll_m << RCC_PLLCFGR_PLLM_SHIFT);
  149. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLN_MASK,
  150. sys_pll_psc->pll_n << RCC_PLLCFGR_PLLN_SHIFT);
  151. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLP_MASK,
  152. ((sys_pll_psc->pll_p >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT);
  153. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLQ_MASK,
  154. sys_pll_psc->pll_q << RCC_PLLCFGR_PLLQ_SHIFT);
  155. /* configure SDMMC clock */
  156. if (priv->info.v2) { /*stm32f7 case */
  157. /* select PLLQ as 48MHz clock source */
  158. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_CK48MSEL);
  159. /* select 48MHz as SDMMC1 clock source */
  160. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_SDMMC1SEL);
  161. /* select 48MHz as SDMMC2 clock source */
  162. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGR2_SDMMC2SEL);
  163. } else { /* stm32f4 case */
  164. /* select PLLQ as 48MHz clock source */
  165. clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_CK48MSEL);
  166. /* select 48MHz as SDMMC1 clock source */
  167. clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_SDMMC1SEL);
  168. }
  169. #ifdef CONFIG_VIDEO_STM32
  170. /*
  171. * Configure the SAI PLL to generate LTDC pixel clock
  172. */
  173. clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIR_MASK,
  174. RCC_PLLSAICFGR_PLLSAIR_3);
  175. clrsetbits_le32(&regs->pllsaicfgr, RCC_PLLSAICFGR_PLLSAIN_MASK,
  176. 195 << RCC_PLLSAICFGR_PLLSAIN_SHIFT);
  177. clrsetbits_le32(&regs->dckcfgr, RCC_DCKCFGR_PLLSAIDIVR_MASK,
  178. RCC_DCKCFGR_PLLSAIDIVR_2 << RCC_DCKCFGR_PLLSAIDIVR_SHIFT);
  179. #endif
  180. /* Enable the main PLL */
  181. setbits_le32(&regs->cr, RCC_CR_PLLON);
  182. while (!(readl(&regs->cr) & RCC_CR_PLLRDY))
  183. ;
  184. #ifdef CONFIG_VIDEO_STM32
  185. /* Enable the SAI PLL */
  186. setbits_le32(&regs->cr, RCC_CR_PLLSAION);
  187. while (!(readl(&regs->cr) & RCC_CR_PLLSAIRDY))
  188. ;
  189. #endif
  190. setbits_le32(&regs->apb1enr, RCC_APB1ENR_PWREN);
  191. if (priv->info.has_overdrive) {
  192. /*
  193. * Enable high performance mode
  194. * System frequency up to 200 MHz
  195. */
  196. setbits_le32(&pwr->cr1, PWR_CR1_ODEN);
  197. /* Infinite wait! */
  198. while (!(readl(&pwr->csr1) & PWR_CSR1_ODRDY))
  199. ;
  200. /* Enable the Over-drive switch */
  201. setbits_le32(&pwr->cr1, PWR_CR1_ODSWEN);
  202. /* Infinite wait! */
  203. while (!(readl(&pwr->csr1) & PWR_CSR1_ODSWRDY))
  204. ;
  205. }
  206. stm32_flash_latency_cfg(5);
  207. clrbits_le32(&regs->cfgr, (RCC_CFGR_SW0 | RCC_CFGR_SW1));
  208. setbits_le32(&regs->cfgr, RCC_CFGR_SW_PLL);
  209. while ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) !=
  210. RCC_CFGR_SWS_PLL)
  211. ;
  212. #ifdef CONFIG_ETH_DESIGNWARE
  213. /* gate the SYSCFG clock, needed to set RMII ethernet interface */
  214. setbits_le32(&regs->apb2enr, RCC_APB2ENR_SYSCFGEN);
  215. #endif
  216. return 0;
  217. }
  218. static bool stm32_clk_get_ck48msel(struct stm32_clk *priv)
  219. {
  220. struct stm32_rcc_regs *regs = priv->base;
  221. if (priv->info.v2) /*stm32f7 case */
  222. return readl(&regs->dckcfgr2) & RCC_DCKCFGRX_CK48MSEL;
  223. else
  224. return readl(&regs->dckcfgr) & RCC_DCKCFGRX_CK48MSEL;
  225. }
  226. static unsigned long stm32_clk_get_pllsai_vco_rate(struct stm32_clk *priv)
  227. {
  228. struct stm32_rcc_regs *regs = priv->base;
  229. u16 pllm, pllsain;
  230. pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
  231. pllsain = ((readl(&regs->pllsaicfgr) & RCC_PLLSAICFGR_PLLSAIN_MASK)
  232. >> RCC_PLLSAICFGR_PLLSAIN_SHIFT);
  233. return ((priv->hse_rate / pllm) * pllsain);
  234. }
  235. static unsigned long stm32_clk_get_pllsai_rate(struct stm32_clk *priv,
  236. enum pllsai_div output)
  237. {
  238. struct stm32_rcc_regs *regs = priv->base;
  239. u16 pll_div_output;
  240. switch (output) {
  241. case PLLSAIP:
  242. pll_div_output = ((((readl(&regs->pllsaicfgr)
  243. & RCC_PLLSAICFGR_PLLSAIP_MASK)
  244. >> RCC_PLLSAICFGR_PLLSAIP_SHIFT) + 1) << 1);
  245. break;
  246. case PLLSAIQ:
  247. pll_div_output = (readl(&regs->pllsaicfgr)
  248. & RCC_PLLSAICFGR_PLLSAIQ_MASK)
  249. >> RCC_PLLSAICFGR_PLLSAIQ_SHIFT;
  250. break;
  251. case PLLSAIR:
  252. pll_div_output = (readl(&regs->pllsaicfgr)
  253. & RCC_PLLSAICFGR_PLLSAIR_MASK)
  254. >> RCC_PLLSAICFGR_PLLSAIR_SHIFT;
  255. break;
  256. default:
  257. pr_err("incorrect PLLSAI output %d\n", output);
  258. return -EINVAL;
  259. }
  260. return (stm32_clk_get_pllsai_vco_rate(priv) / pll_div_output);
  261. }
  262. static bool stm32_get_timpre(struct stm32_clk *priv)
  263. {
  264. struct stm32_rcc_regs *regs = priv->base;
  265. u32 val;
  266. if (priv->info.v2) /*stm32f7 case */
  267. val = readl(&regs->dckcfgr2);
  268. else
  269. val = readl(&regs->dckcfgr);
  270. /* get timer prescaler */
  271. return !!(val & RCC_DCKCFGRX_TIMPRE);
  272. }
  273. static u32 stm32_get_hclk_rate(struct stm32_rcc_regs *regs, u32 sysclk)
  274. {
  275. u8 shift;
  276. /* Prescaler table lookups for clock computation */
  277. u8 ahb_psc_table[16] = {
  278. 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9
  279. };
  280. shift = ahb_psc_table[(
  281. (readl(&regs->cfgr) & RCC_CFGR_AHB_PSC_MASK)
  282. >> RCC_CFGR_HPRE_SHIFT)];
  283. return sysclk >> shift;
  284. };
  285. static u8 stm32_get_apb_shift(struct stm32_rcc_regs *regs, enum apb apb)
  286. {
  287. /* Prescaler table lookups for clock computation */
  288. u8 apb_psc_table[8] = {
  289. 0, 0, 0, 0, 1, 2, 3, 4
  290. };
  291. if (apb == APB1)
  292. return apb_psc_table[(
  293. (readl(&regs->cfgr) & RCC_CFGR_APB1_PSC_MASK)
  294. >> RCC_CFGR_PPRE1_SHIFT)];
  295. else /* APB2 */
  296. return apb_psc_table[(
  297. (readl(&regs->cfgr) & RCC_CFGR_APB2_PSC_MASK)
  298. >> RCC_CFGR_PPRE2_SHIFT)];
  299. };
  300. static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
  301. enum apb apb)
  302. {
  303. struct stm32_rcc_regs *regs = priv->base;
  304. u8 shift = stm32_get_apb_shift(regs, apb);
  305. if (stm32_get_timpre(priv))
  306. /*
  307. * if APB prescaler is configured to a
  308. * division factor of 1, 2 or 4
  309. */
  310. switch (shift) {
  311. case 0:
  312. case 1:
  313. case 2:
  314. return stm32_get_hclk_rate(regs, sysclk);
  315. default:
  316. return (sysclk >> shift) * 4;
  317. }
  318. else
  319. /*
  320. * if APB prescaler is configured to a
  321. * division factor of 1
  322. */
  323. if (shift == 0)
  324. return sysclk;
  325. else
  326. return (sysclk >> shift) * 2;
  327. };
  328. static ulong stm32_clk_get_rate(struct clk *clk)
  329. {
  330. struct stm32_clk *priv = dev_get_priv(clk->dev);
  331. struct stm32_rcc_regs *regs = priv->base;
  332. u32 sysclk = 0;
  333. u32 vco;
  334. u32 sdmmcxsel_bit;
  335. u32 saidivr;
  336. u32 pllsai_rate;
  337. u16 pllm, plln, pllp, pllq;
  338. if ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) ==
  339. RCC_CFGR_SWS_PLL) {
  340. pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
  341. plln = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLN_MASK)
  342. >> RCC_PLLCFGR_PLLN_SHIFT);
  343. pllp = ((((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLP_MASK)
  344. >> RCC_PLLCFGR_PLLP_SHIFT) + 1) << 1);
  345. pllq = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLQ_MASK)
  346. >> RCC_PLLCFGR_PLLQ_SHIFT);
  347. vco = (priv->hse_rate / pllm) * plln;
  348. sysclk = vco / pllp;
  349. } else {
  350. return -EINVAL;
  351. }
  352. switch (clk->id) {
  353. /*
  354. * AHB CLOCK: 3 x 32 bits consecutive registers are used :
  355. * AHB1, AHB2 and AHB3
  356. */
  357. case STM32F7_AHB1_CLOCK(GPIOA) ... STM32F7_AHB3_CLOCK(QSPI):
  358. return stm32_get_hclk_rate(regs, sysclk);
  359. /* APB1 CLOCK */
  360. case STM32F7_APB1_CLOCK(TIM2) ... STM32F7_APB1_CLOCK(UART8):
  361. /* For timer clock, an additionnal prescaler is used*/
  362. switch (clk->id) {
  363. case STM32F7_APB1_CLOCK(TIM2):
  364. case STM32F7_APB1_CLOCK(TIM3):
  365. case STM32F7_APB1_CLOCK(TIM4):
  366. case STM32F7_APB1_CLOCK(TIM5):
  367. case STM32F7_APB1_CLOCK(TIM6):
  368. case STM32F7_APB1_CLOCK(TIM7):
  369. case STM32F7_APB1_CLOCK(TIM12):
  370. case STM32F7_APB1_CLOCK(TIM13):
  371. case STM32F7_APB1_CLOCK(TIM14):
  372. return stm32_get_timer_rate(priv, sysclk, APB1);
  373. }
  374. return (sysclk >> stm32_get_apb_shift(regs, APB1));
  375. /* APB2 CLOCK */
  376. case STM32F7_APB2_CLOCK(TIM1) ... STM32F7_APB2_CLOCK(LTDC):
  377. switch (clk->id) {
  378. /*
  379. * particular case for SDMMC1 and SDMMC2 :
  380. * 48Mhz source clock can be from main PLL or from
  381. * PLLSAIP
  382. */
  383. case STM32F7_APB2_CLOCK(SDMMC1):
  384. case STM32F7_APB2_CLOCK(SDMMC2):
  385. if (clk->id == STM32F7_APB2_CLOCK(SDMMC1))
  386. sdmmcxsel_bit = RCC_DCKCFGRX_SDMMC1SEL;
  387. else
  388. sdmmcxsel_bit = RCC_DCKCFGR2_SDMMC2SEL;
  389. if (readl(&regs->dckcfgr2) & sdmmcxsel_bit)
  390. /* System clock is selected as SDMMC1 clock */
  391. return sysclk;
  392. /*
  393. * 48 MHz can be generated by either PLLSAIP
  394. * or by PLLQ depending of CK48MSEL bit of RCC_DCKCFGR
  395. */
  396. if (stm32_clk_get_ck48msel(priv))
  397. return stm32_clk_get_pllsai_rate(priv, PLLSAIP);
  398. else
  399. return (vco / pllq);
  400. break;
  401. /* For timer clock, an additionnal prescaler is used*/
  402. case STM32F7_APB2_CLOCK(TIM1):
  403. case STM32F7_APB2_CLOCK(TIM8):
  404. case STM32F7_APB2_CLOCK(TIM9):
  405. case STM32F7_APB2_CLOCK(TIM10):
  406. case STM32F7_APB2_CLOCK(TIM11):
  407. return stm32_get_timer_rate(priv, sysclk, APB2);
  408. break;
  409. /* particular case for LTDC clock */
  410. case STM32F7_APB2_CLOCK(LTDC):
  411. saidivr = readl(&regs->dckcfgr);
  412. saidivr = (saidivr & RCC_DCKCFGR_PLLSAIDIVR_MASK)
  413. >> RCC_DCKCFGR_PLLSAIDIVR_SHIFT;
  414. pllsai_rate = stm32_clk_get_pllsai_rate(priv, PLLSAIR);
  415. return pllsai_rate / pllsaidivr_table[saidivr];
  416. }
  417. return (sysclk >> stm32_get_apb_shift(regs, APB2));
  418. default:
  419. pr_err("clock index %ld out of range\n", clk->id);
  420. return -EINVAL;
  421. }
  422. }
  423. static ulong stm32_set_rate(struct clk *clk, ulong rate)
  424. {
  425. return 0;
  426. }
  427. static int stm32_clk_enable(struct clk *clk)
  428. {
  429. struct stm32_clk *priv = dev_get_priv(clk->dev);
  430. struct stm32_rcc_regs *regs = priv->base;
  431. u32 offset = clk->id / 32;
  432. u32 bit_index = clk->id % 32;
  433. debug("%s: clkid = %ld, offset from AHB1ENR is %d, bit_index = %d\n",
  434. __func__, clk->id, offset, bit_index);
  435. setbits_le32(&regs->ahb1enr + offset, BIT(bit_index));
  436. return 0;
  437. }
  438. static int stm32_clk_probe(struct udevice *dev)
  439. {
  440. struct ofnode_phandle_args args;
  441. struct udevice *fixed_clock_dev = NULL;
  442. struct clk clk;
  443. int err;
  444. debug("%s\n", __func__);
  445. struct stm32_clk *priv = dev_get_priv(dev);
  446. fdt_addr_t addr;
  447. addr = dev_read_addr(dev);
  448. if (addr == FDT_ADDR_T_NONE)
  449. return -EINVAL;
  450. priv->base = (struct stm32_rcc_regs *)addr;
  451. switch (dev_get_driver_data(dev)) {
  452. case STM32F4:
  453. memcpy(&priv->info, &stm32f4_clk_info,
  454. sizeof(struct stm32_clk_info));
  455. break;
  456. case STM32F7:
  457. memcpy(&priv->info, &stm32f7_clk_info,
  458. sizeof(struct stm32_clk_info));
  459. break;
  460. default:
  461. return -EINVAL;
  462. }
  463. /* retrieve HSE frequency (external oscillator) */
  464. err = uclass_get_device_by_name(UCLASS_CLK, "clk-hse",
  465. &fixed_clock_dev);
  466. if (err) {
  467. pr_err("Can't find fixed clock (%d)", err);
  468. return err;
  469. }
  470. err = clk_request(fixed_clock_dev, &clk);
  471. if (err) {
  472. pr_err("Can't request %s clk (%d)", fixed_clock_dev->name,
  473. err);
  474. return err;
  475. }
  476. /*
  477. * set pllm factor accordingly to the external oscillator
  478. * frequency (HSE). For STM32F4 and STM32F7, we want VCO
  479. * freq at 1MHz
  480. * if input PLL frequency is 25Mhz, divide it by 25
  481. */
  482. clk.id = 0;
  483. priv->hse_rate = clk_get_rate(&clk);
  484. if (priv->hse_rate < 1000000) {
  485. pr_err("%s: unexpected HSE clock rate = %ld \"n", __func__,
  486. priv->hse_rate);
  487. return -EINVAL;
  488. }
  489. priv->info.sys_pll_psc.pll_m = priv->hse_rate / 1000000;
  490. if (priv->info.has_overdrive) {
  491. err = dev_read_phandle_with_args(dev, "st,syscfg", NULL, 0, 0,
  492. &args);
  493. if (err) {
  494. debug("%s: can't find syscon device (%d)\n", __func__,
  495. err);
  496. return err;
  497. }
  498. priv->pwr_regs = (struct stm32_pwr_regs *)ofnode_get_addr(args.node);
  499. }
  500. configure_clocks(dev);
  501. return 0;
  502. }
  503. static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args)
  504. {
  505. debug("%s(clk=%p)\n", __func__, clk);
  506. if (args->args_count != 2) {
  507. debug("Invaild args_count: %d\n", args->args_count);
  508. return -EINVAL;
  509. }
  510. if (args->args_count)
  511. clk->id = args->args[1];
  512. else
  513. clk->id = 0;
  514. return 0;
  515. }
  516. static struct clk_ops stm32_clk_ops = {
  517. .of_xlate = stm32_clk_of_xlate,
  518. .enable = stm32_clk_enable,
  519. .get_rate = stm32_clk_get_rate,
  520. .set_rate = stm32_set_rate,
  521. };
  522. U_BOOT_DRIVER(stm32fx_clk) = {
  523. .name = "stm32fx_rcc_clock",
  524. .id = UCLASS_CLK,
  525. .ops = &stm32_clk_ops,
  526. .probe = stm32_clk_probe,
  527. .priv_auto_alloc_size = sizeof(struct stm32_clk),
  528. .flags = DM_FLAG_PRE_RELOC,
  529. };