ti_qspi.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615
  1. /*
  2. * TI QSPI driver
  3. *
  4. * Copyright (C) 2013, Texas Instruments, Incorporated
  5. *
  6. * SPDX-License-Identifier: GPL-2.0+
  7. */
  8. #include <common.h>
  9. #include <asm/io.h>
  10. #include <asm/arch/omap.h>
  11. #include <malloc.h>
  12. #include <spi.h>
  13. #include <dm.h>
  14. #include <asm/gpio.h>
  15. #include <asm/omap_gpio.h>
  16. #include <asm/omap_common.h>
  17. #include <asm/ti-common/ti-edma3.h>
  18. #include <linux/kernel.h>
  19. DECLARE_GLOBAL_DATA_PTR;
  20. /* ti qpsi register bit masks */
  21. #define QSPI_TIMEOUT 2000000
  22. #define QSPI_FCLK 192000000
  23. #define QSPI_DRA7XX_FCLK 76800000
  24. #define QSPI_WLEN_MAX_BITS 128
  25. #define QSPI_WLEN_MAX_BYTES (QSPI_WLEN_MAX_BITS >> 3)
  26. #define QSPI_WLEN_MASK QSPI_WLEN(QSPI_WLEN_MAX_BITS)
  27. /* clock control */
  28. #define QSPI_CLK_EN BIT(31)
  29. #define QSPI_CLK_DIV_MAX 0xffff
  30. /* command */
  31. #define QSPI_EN_CS(n) (n << 28)
  32. #define QSPI_WLEN(n) ((n-1) << 19)
  33. #define QSPI_3_PIN BIT(18)
  34. #define QSPI_RD_SNGL BIT(16)
  35. #define QSPI_WR_SNGL (2 << 16)
  36. #define QSPI_INVAL (4 << 16)
  37. #define QSPI_RD_QUAD (7 << 16)
  38. /* device control */
  39. #define QSPI_DD(m, n) (m << (3 + n*8))
  40. #define QSPI_CKPHA(n) (1 << (2 + n*8))
  41. #define QSPI_CSPOL(n) (1 << (1 + n*8))
  42. #define QSPI_CKPOL(n) (1 << (n*8))
  43. /* status */
  44. #define QSPI_WC BIT(1)
  45. #define QSPI_BUSY BIT(0)
  46. #define QSPI_WC_BUSY (QSPI_WC | QSPI_BUSY)
  47. #define QSPI_XFER_DONE QSPI_WC
  48. #define MM_SWITCH 0x01
  49. #define MEM_CS(cs) ((cs + 1) << 8)
  50. #define MEM_CS_UNSELECT 0xfffff8ff
  51. #define MMAP_START_ADDR_DRA 0x5c000000
  52. #define MMAP_START_ADDR_AM43x 0x30000000
  53. #define CORE_CTRL_IO 0x4a002558
  54. #define QSPI_CMD_READ (0x3 << 0)
  55. #define QSPI_CMD_READ_DUAL (0x6b << 0)
  56. #define QSPI_CMD_READ_QUAD (0x6c << 0)
  57. #define QSPI_CMD_READ_FAST (0x0b << 0)
  58. #define QSPI_SETUP0_NUM_A_BYTES (0x3 << 8)
  59. #define QSPI_SETUP0_NUM_D_BYTES_NO_BITS (0x0 << 10)
  60. #define QSPI_SETUP0_NUM_D_BYTES_8_BITS (0x1 << 10)
  61. #define QSPI_SETUP0_READ_NORMAL (0x0 << 12)
  62. #define QSPI_SETUP0_READ_DUAL (0x1 << 12)
  63. #define QSPI_SETUP0_READ_QUAD (0x3 << 12)
  64. #define QSPI_CMD_WRITE (0x12 << 16)
  65. #define QSPI_NUM_DUMMY_BITS (0x0 << 24)
  66. /* ti qspi register set */
  67. struct ti_qspi_regs {
  68. u32 pid;
  69. u32 pad0[3];
  70. u32 sysconfig;
  71. u32 pad1[3];
  72. u32 int_stat_raw;
  73. u32 int_stat_en;
  74. u32 int_en_set;
  75. u32 int_en_ctlr;
  76. u32 intc_eoi;
  77. u32 pad2[3];
  78. u32 clk_ctrl;
  79. u32 dc;
  80. u32 cmd;
  81. u32 status;
  82. u32 data;
  83. u32 setup0;
  84. u32 setup1;
  85. u32 setup2;
  86. u32 setup3;
  87. u32 memswitch;
  88. u32 data1;
  89. u32 data2;
  90. u32 data3;
  91. };
  92. /* ti qspi priv */
  93. struct ti_qspi_priv {
  94. #ifndef CONFIG_DM_SPI
  95. struct spi_slave slave;
  96. #else
  97. void *memory_map;
  98. uint max_hz;
  99. u32 num_cs;
  100. #endif
  101. struct ti_qspi_regs *base;
  102. void *ctrl_mod_mmap;
  103. ulong fclk;
  104. unsigned int mode;
  105. u32 cmd;
  106. u32 dc;
  107. };
  108. static void ti_spi_set_speed(struct ti_qspi_priv *priv, uint hz)
  109. {
  110. uint clk_div;
  111. if (!hz)
  112. clk_div = 0;
  113. else
  114. clk_div = DIV_ROUND_UP(priv->fclk, hz) - 1;
  115. /* truncate clk_div value to QSPI_CLK_DIV_MAX */
  116. if (clk_div > QSPI_CLK_DIV_MAX)
  117. clk_div = QSPI_CLK_DIV_MAX;
  118. debug("ti_spi_set_speed: hz: %d, clock divider %d\n", hz, clk_div);
  119. /* disable SCLK */
  120. writel(readl(&priv->base->clk_ctrl) & ~QSPI_CLK_EN,
  121. &priv->base->clk_ctrl);
  122. /* enable SCLK and program the clk divider */
  123. writel(QSPI_CLK_EN | clk_div, &priv->base->clk_ctrl);
  124. }
  125. static void ti_qspi_cs_deactivate(struct ti_qspi_priv *priv)
  126. {
  127. writel(priv->cmd | QSPI_INVAL, &priv->base->cmd);
  128. /* dummy readl to ensure bus sync */
  129. readl(&priv->base->cmd);
  130. }
  131. static int __ti_qspi_set_mode(struct ti_qspi_priv *priv, unsigned int mode)
  132. {
  133. priv->dc = 0;
  134. if (mode & SPI_CPHA)
  135. priv->dc |= QSPI_CKPHA(0);
  136. if (mode & SPI_CPOL)
  137. priv->dc |= QSPI_CKPOL(0);
  138. if (mode & SPI_CS_HIGH)
  139. priv->dc |= QSPI_CSPOL(0);
  140. return 0;
  141. }
  142. static int __ti_qspi_claim_bus(struct ti_qspi_priv *priv, int cs)
  143. {
  144. writel(priv->dc, &priv->base->dc);
  145. writel(0, &priv->base->cmd);
  146. writel(0, &priv->base->data);
  147. priv->dc <<= cs * 8;
  148. writel(priv->dc, &priv->base->dc);
  149. return 0;
  150. }
  151. static void __ti_qspi_release_bus(struct ti_qspi_priv *priv)
  152. {
  153. writel(0, &priv->base->dc);
  154. writel(0, &priv->base->cmd);
  155. writel(0, &priv->base->data);
  156. }
  157. static void ti_qspi_ctrl_mode_mmap(void *ctrl_mod_mmap, int cs, bool enable)
  158. {
  159. u32 val;
  160. val = readl(ctrl_mod_mmap);
  161. if (enable)
  162. val |= MEM_CS(cs);
  163. else
  164. val &= MEM_CS_UNSELECT;
  165. writel(val, ctrl_mod_mmap);
  166. }
  167. static int __ti_qspi_xfer(struct ti_qspi_priv *priv, unsigned int bitlen,
  168. const void *dout, void *din, unsigned long flags,
  169. u32 cs)
  170. {
  171. uint words = bitlen >> 3; /* fixed 8-bit word length */
  172. const uchar *txp = dout;
  173. uchar *rxp = din;
  174. uint status;
  175. int timeout;
  176. /* Setup mmap flags */
  177. if (flags & SPI_XFER_MMAP) {
  178. writel(MM_SWITCH, &priv->base->memswitch);
  179. if (priv->ctrl_mod_mmap)
  180. ti_qspi_ctrl_mode_mmap(priv->ctrl_mod_mmap, cs, true);
  181. return 0;
  182. } else if (flags & SPI_XFER_MMAP_END) {
  183. writel(~MM_SWITCH, &priv->base->memswitch);
  184. if (priv->ctrl_mod_mmap)
  185. ti_qspi_ctrl_mode_mmap(priv->ctrl_mod_mmap, cs, false);
  186. return 0;
  187. }
  188. if (bitlen == 0)
  189. return -1;
  190. if (bitlen % 8) {
  191. debug("spi_xfer: Non byte aligned SPI transfer\n");
  192. return -1;
  193. }
  194. /* Setup command reg */
  195. priv->cmd = 0;
  196. priv->cmd |= QSPI_WLEN(8);
  197. priv->cmd |= QSPI_EN_CS(cs);
  198. if (priv->mode & SPI_3WIRE)
  199. priv->cmd |= QSPI_3_PIN;
  200. priv->cmd |= 0xfff;
  201. while (words) {
  202. u8 xfer_len = 0;
  203. if (txp) {
  204. u32 cmd = priv->cmd;
  205. if (words >= QSPI_WLEN_MAX_BYTES) {
  206. u32 *txbuf = (u32 *)txp;
  207. u32 data;
  208. data = cpu_to_be32(*txbuf++);
  209. writel(data, &priv->base->data3);
  210. data = cpu_to_be32(*txbuf++);
  211. writel(data, &priv->base->data2);
  212. data = cpu_to_be32(*txbuf++);
  213. writel(data, &priv->base->data1);
  214. data = cpu_to_be32(*txbuf++);
  215. writel(data, &priv->base->data);
  216. cmd &= ~QSPI_WLEN_MASK;
  217. cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS);
  218. xfer_len = QSPI_WLEN_MAX_BYTES;
  219. } else {
  220. writeb(*txp, &priv->base->data);
  221. xfer_len = 1;
  222. }
  223. debug("tx cmd %08x dc %08x\n",
  224. cmd | QSPI_WR_SNGL, priv->dc);
  225. writel(cmd | QSPI_WR_SNGL, &priv->base->cmd);
  226. status = readl(&priv->base->status);
  227. timeout = QSPI_TIMEOUT;
  228. while ((status & QSPI_WC_BUSY) != QSPI_XFER_DONE) {
  229. if (--timeout < 0) {
  230. printf("spi_xfer: TX timeout!\n");
  231. return -1;
  232. }
  233. status = readl(&priv->base->status);
  234. }
  235. txp += xfer_len;
  236. debug("tx done, status %08x\n", status);
  237. }
  238. if (rxp) {
  239. debug("rx cmd %08x dc %08x\n",
  240. ((u32)(priv->cmd | QSPI_RD_SNGL)), priv->dc);
  241. writel(priv->cmd | QSPI_RD_SNGL, &priv->base->cmd);
  242. status = readl(&priv->base->status);
  243. timeout = QSPI_TIMEOUT;
  244. while ((status & QSPI_WC_BUSY) != QSPI_XFER_DONE) {
  245. if (--timeout < 0) {
  246. printf("spi_xfer: RX timeout!\n");
  247. return -1;
  248. }
  249. status = readl(&priv->base->status);
  250. }
  251. *rxp++ = readl(&priv->base->data);
  252. xfer_len = 1;
  253. debug("rx done, status %08x, read %02x\n",
  254. status, *(rxp-1));
  255. }
  256. words -= xfer_len;
  257. }
  258. /* Terminate frame */
  259. if (flags & SPI_XFER_END)
  260. ti_qspi_cs_deactivate(priv);
  261. return 0;
  262. }
  263. /* TODO: control from sf layer to here through dm-spi */
  264. #if defined(CONFIG_TI_EDMA3) && !defined(CONFIG_DMA)
  265. void spi_flash_copy_mmap(void *data, void *offset, size_t len)
  266. {
  267. unsigned int addr = (unsigned int) (data);
  268. unsigned int edma_slot_num = 1;
  269. /* Invalidate the area, so no writeback into the RAM races with DMA */
  270. invalidate_dcache_range(addr, addr + roundup(len, ARCH_DMA_MINALIGN));
  271. /* enable edma3 clocks */
  272. enable_edma3_clocks();
  273. /* Call edma3 api to do actual DMA transfer */
  274. edma3_transfer(EDMA3_BASE, edma_slot_num, data, offset, len);
  275. /* disable edma3 clocks */
  276. disable_edma3_clocks();
  277. *((unsigned int *)offset) += len;
  278. }
  279. #endif
  280. #ifndef CONFIG_DM_SPI
  281. static inline struct ti_qspi_priv *to_ti_qspi_priv(struct spi_slave *slave)
  282. {
  283. return container_of(slave, struct ti_qspi_priv, slave);
  284. }
  285. int spi_cs_is_valid(unsigned int bus, unsigned int cs)
  286. {
  287. return 1;
  288. }
  289. void spi_cs_activate(struct spi_slave *slave)
  290. {
  291. /* CS handled in xfer */
  292. return;
  293. }
  294. void spi_cs_deactivate(struct spi_slave *slave)
  295. {
  296. struct ti_qspi_priv *priv = to_ti_qspi_priv(slave);
  297. ti_qspi_cs_deactivate(priv);
  298. }
  299. void spi_init(void)
  300. {
  301. /* nothing to do */
  302. }
  303. static void ti_spi_setup_spi_register(struct ti_qspi_priv *priv)
  304. {
  305. u32 memval = 0;
  306. #ifdef CONFIG_QSPI_QUAD_SUPPORT
  307. struct spi_slave *slave = &priv->slave;
  308. memval |= (QSPI_CMD_READ_QUAD | QSPI_SETUP0_NUM_A_BYTES |
  309. QSPI_SETUP0_NUM_D_BYTES_8_BITS |
  310. QSPI_SETUP0_READ_QUAD | QSPI_CMD_WRITE |
  311. QSPI_NUM_DUMMY_BITS);
  312. slave->mode |= SPI_RX_QUAD;
  313. #else
  314. memval |= QSPI_CMD_READ | QSPI_SETUP0_NUM_A_BYTES |
  315. QSPI_SETUP0_NUM_D_BYTES_NO_BITS |
  316. QSPI_SETUP0_READ_NORMAL | QSPI_CMD_WRITE |
  317. QSPI_NUM_DUMMY_BITS;
  318. #endif
  319. writel(memval, &priv->base->setup0);
  320. }
  321. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  322. unsigned int max_hz, unsigned int mode)
  323. {
  324. struct ti_qspi_priv *priv;
  325. #ifdef CONFIG_AM43XX
  326. gpio_request(CONFIG_QSPI_SEL_GPIO, "qspi_gpio");
  327. gpio_direction_output(CONFIG_QSPI_SEL_GPIO, 1);
  328. #endif
  329. priv = spi_alloc_slave(struct ti_qspi_priv, bus, cs);
  330. if (!priv) {
  331. printf("SPI_error: Fail to allocate ti_qspi_priv\n");
  332. return NULL;
  333. }
  334. priv->base = (struct ti_qspi_regs *)QSPI_BASE;
  335. priv->mode = mode;
  336. #if defined(CONFIG_DRA7XX)
  337. priv->ctrl_mod_mmap = (void *)CORE_CTRL_IO;
  338. priv->slave.memory_map = (void *)MMAP_START_ADDR_DRA;
  339. priv->fclk = QSPI_DRA7XX_FCLK;
  340. #else
  341. priv->slave.memory_map = (void *)MMAP_START_ADDR_AM43x;
  342. priv->fclk = QSPI_FCLK;
  343. #endif
  344. ti_spi_set_speed(priv, max_hz);
  345. #ifdef CONFIG_TI_SPI_MMAP
  346. ti_spi_setup_spi_register(priv);
  347. #endif
  348. return &priv->slave;
  349. }
  350. void spi_free_slave(struct spi_slave *slave)
  351. {
  352. struct ti_qspi_priv *priv = to_ti_qspi_priv(slave);
  353. free(priv);
  354. }
  355. int spi_claim_bus(struct spi_slave *slave)
  356. {
  357. struct ti_qspi_priv *priv = to_ti_qspi_priv(slave);
  358. debug("%s: bus:%i cs:%i\n", __func__, priv->slave.bus, priv->slave.cs);
  359. __ti_qspi_set_mode(priv, priv->mode);
  360. return __ti_qspi_claim_bus(priv, priv->slave.cs);
  361. }
  362. void spi_release_bus(struct spi_slave *slave)
  363. {
  364. struct ti_qspi_priv *priv = to_ti_qspi_priv(slave);
  365. debug("%s: bus:%i cs:%i\n", __func__, priv->slave.bus, priv->slave.cs);
  366. __ti_qspi_release_bus(priv);
  367. }
  368. int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
  369. void *din, unsigned long flags)
  370. {
  371. struct ti_qspi_priv *priv = to_ti_qspi_priv(slave);
  372. debug("spi_xfer: bus:%i cs:%i bitlen:%i flags:%lx\n",
  373. priv->slave.bus, priv->slave.cs, bitlen, flags);
  374. return __ti_qspi_xfer(priv, bitlen, dout, din, flags, priv->slave.cs);
  375. }
  376. #else /* CONFIG_DM_SPI */
  377. static void __ti_qspi_setup_memorymap(struct ti_qspi_priv *priv,
  378. struct spi_slave *slave,
  379. bool enable)
  380. {
  381. u32 memval;
  382. u32 mode = slave->mode & (SPI_RX_QUAD | SPI_RX_DUAL);
  383. if (!enable) {
  384. writel(0, &priv->base->setup0);
  385. return;
  386. }
  387. memval = QSPI_SETUP0_NUM_A_BYTES | QSPI_CMD_WRITE | QSPI_NUM_DUMMY_BITS;
  388. switch (mode) {
  389. case SPI_RX_QUAD:
  390. memval |= QSPI_CMD_READ_QUAD;
  391. memval |= QSPI_SETUP0_NUM_D_BYTES_8_BITS;
  392. memval |= QSPI_SETUP0_READ_QUAD;
  393. slave->mode |= SPI_RX_QUAD;
  394. break;
  395. case SPI_RX_DUAL:
  396. memval |= QSPI_CMD_READ_DUAL;
  397. memval |= QSPI_SETUP0_NUM_D_BYTES_8_BITS;
  398. memval |= QSPI_SETUP0_READ_DUAL;
  399. break;
  400. default:
  401. memval |= QSPI_CMD_READ;
  402. memval |= QSPI_SETUP0_NUM_D_BYTES_NO_BITS;
  403. memval |= QSPI_SETUP0_READ_NORMAL;
  404. break;
  405. }
  406. writel(memval, &priv->base->setup0);
  407. }
  408. static int ti_qspi_set_speed(struct udevice *bus, uint max_hz)
  409. {
  410. struct ti_qspi_priv *priv = dev_get_priv(bus);
  411. ti_spi_set_speed(priv, max_hz);
  412. return 0;
  413. }
  414. static int ti_qspi_set_mode(struct udevice *bus, uint mode)
  415. {
  416. struct ti_qspi_priv *priv = dev_get_priv(bus);
  417. return __ti_qspi_set_mode(priv, mode);
  418. }
  419. static int ti_qspi_claim_bus(struct udevice *dev)
  420. {
  421. struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
  422. struct spi_slave *slave = dev_get_parent_priv(dev);
  423. struct ti_qspi_priv *priv;
  424. struct udevice *bus;
  425. bus = dev->parent;
  426. priv = dev_get_priv(bus);
  427. if (slave_plat->cs > priv->num_cs) {
  428. debug("invalid qspi chip select\n");
  429. return -EINVAL;
  430. }
  431. __ti_qspi_setup_memorymap(priv, slave, true);
  432. return __ti_qspi_claim_bus(priv, slave_plat->cs);
  433. }
  434. static int ti_qspi_release_bus(struct udevice *dev)
  435. {
  436. struct spi_slave *slave = dev_get_parent_priv(dev);
  437. struct ti_qspi_priv *priv;
  438. struct udevice *bus;
  439. bus = dev->parent;
  440. priv = dev_get_priv(bus);
  441. __ti_qspi_setup_memorymap(priv, slave, false);
  442. __ti_qspi_release_bus(priv);
  443. return 0;
  444. }
  445. static int ti_qspi_xfer(struct udevice *dev, unsigned int bitlen,
  446. const void *dout, void *din, unsigned long flags)
  447. {
  448. struct dm_spi_slave_platdata *slave = dev_get_parent_platdata(dev);
  449. struct ti_qspi_priv *priv;
  450. struct udevice *bus;
  451. bus = dev->parent;
  452. priv = dev_get_priv(bus);
  453. if (slave->cs > priv->num_cs) {
  454. debug("invalid qspi chip select\n");
  455. return -EINVAL;
  456. }
  457. return __ti_qspi_xfer(priv, bitlen, dout, din, flags, slave->cs);
  458. }
  459. static int ti_qspi_probe(struct udevice *bus)
  460. {
  461. struct ti_qspi_priv *priv = dev_get_priv(bus);
  462. priv->fclk = dev_get_driver_data(bus);
  463. return 0;
  464. }
  465. static int ti_qspi_ofdata_to_platdata(struct udevice *bus)
  466. {
  467. struct ti_qspi_priv *priv = dev_get_priv(bus);
  468. const void *blob = gd->fdt_blob;
  469. int node = bus->of_offset;
  470. fdt_addr_t addr;
  471. void *mmap;
  472. priv->base = map_physmem(dev_get_addr(bus), sizeof(struct ti_qspi_regs),
  473. MAP_NOCACHE);
  474. priv->memory_map = map_physmem(dev_get_addr_index(bus, 1), 0,
  475. MAP_NOCACHE);
  476. addr = dev_get_addr_index(bus, 2);
  477. mmap = map_physmem(dev_get_addr_index(bus, 2), 0, MAP_NOCACHE);
  478. priv->ctrl_mod_mmap = (addr == FDT_ADDR_T_NONE) ? NULL : mmap;
  479. priv->max_hz = fdtdec_get_int(blob, node, "spi-max-frequency", -1);
  480. if (priv->max_hz < 0) {
  481. debug("Error: Max frequency missing\n");
  482. return -ENODEV;
  483. }
  484. priv->num_cs = fdtdec_get_int(blob, node, "num-cs", 4);
  485. debug("%s: regs=<0x%x>, max-frequency=%d\n", __func__,
  486. (int)priv->base, priv->max_hz);
  487. return 0;
  488. }
  489. static int ti_qspi_child_pre_probe(struct udevice *dev)
  490. {
  491. struct spi_slave *slave = dev_get_parent_priv(dev);
  492. struct udevice *bus = dev_get_parent(dev);
  493. struct ti_qspi_priv *priv = dev_get_priv(bus);
  494. slave->memory_map = priv->memory_map;
  495. return 0;
  496. }
  497. static const struct dm_spi_ops ti_qspi_ops = {
  498. .claim_bus = ti_qspi_claim_bus,
  499. .release_bus = ti_qspi_release_bus,
  500. .xfer = ti_qspi_xfer,
  501. .set_speed = ti_qspi_set_speed,
  502. .set_mode = ti_qspi_set_mode,
  503. };
  504. static const struct udevice_id ti_qspi_ids[] = {
  505. { .compatible = "ti,dra7xxx-qspi", .data = QSPI_DRA7XX_FCLK},
  506. { .compatible = "ti,am4372-qspi", .data = QSPI_FCLK},
  507. { }
  508. };
  509. U_BOOT_DRIVER(ti_qspi) = {
  510. .name = "ti_qspi",
  511. .id = UCLASS_SPI,
  512. .of_match = ti_qspi_ids,
  513. .ops = &ti_qspi_ops,
  514. .ofdata_to_platdata = ti_qspi_ofdata_to_platdata,
  515. .priv_auto_alloc_size = sizeof(struct ti_qspi_priv),
  516. .probe = ti_qspi_probe,
  517. .child_pre_probe = ti_qspi_child_pre_probe,
  518. };
  519. #endif /* CONFIG_DM_SPI */