mxs_spi.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Freescale i.MX28 SPI driver
  4. *
  5. * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
  6. * on behalf of DENX Software Engineering GmbH
  7. *
  8. * NOTE: This driver only supports the SPI-controller chipselects,
  9. * GPIO driven chipselects are not supported.
  10. */
  11. #include <common.h>
  12. #include <malloc.h>
  13. #include <memalign.h>
  14. #include <spi.h>
  15. #include <linux/errno.h>
  16. #include <asm/io.h>
  17. #include <asm/arch/clock.h>
  18. #include <asm/arch/imx-regs.h>
  19. #include <asm/arch/sys_proto.h>
  20. #include <asm/mach-imx/dma.h>
  21. #define MXS_SPI_MAX_TIMEOUT 1000000
  22. #define MXS_SPI_PORT_OFFSET 0x2000
  23. #define MXS_SSP_CHIPSELECT_MASK 0x00300000
  24. #define MXS_SSP_CHIPSELECT_SHIFT 20
  25. #define MXSSSP_SMALL_TRANSFER 512
  26. struct mxs_spi_slave {
  27. struct spi_slave slave;
  28. uint32_t max_khz;
  29. uint32_t mode;
  30. struct mxs_ssp_regs *regs;
  31. };
  32. static inline struct mxs_spi_slave *to_mxs_slave(struct spi_slave *slave)
  33. {
  34. return container_of(slave, struct mxs_spi_slave, slave);
  35. }
  36. int spi_cs_is_valid(unsigned int bus, unsigned int cs)
  37. {
  38. /* MXS SPI: 4 ports and 3 chip selects maximum */
  39. if (!mxs_ssp_bus_id_valid(bus) || cs > 2)
  40. return 0;
  41. else
  42. return 1;
  43. }
  44. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  45. unsigned int max_hz, unsigned int mode)
  46. {
  47. struct mxs_spi_slave *mxs_slave;
  48. if (!spi_cs_is_valid(bus, cs)) {
  49. printf("mxs_spi: invalid bus %d / chip select %d\n", bus, cs);
  50. return NULL;
  51. }
  52. mxs_slave = spi_alloc_slave(struct mxs_spi_slave, bus, cs);
  53. if (!mxs_slave)
  54. return NULL;
  55. if (mxs_dma_init_channel(MXS_DMA_CHANNEL_AHB_APBH_SSP0 + bus))
  56. goto err_init;
  57. mxs_slave->max_khz = max_hz / 1000;
  58. mxs_slave->mode = mode;
  59. mxs_slave->regs = mxs_ssp_regs_by_bus(bus);
  60. return &mxs_slave->slave;
  61. err_init:
  62. free(mxs_slave);
  63. return NULL;
  64. }
  65. void spi_free_slave(struct spi_slave *slave)
  66. {
  67. struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
  68. free(mxs_slave);
  69. }
  70. int spi_claim_bus(struct spi_slave *slave)
  71. {
  72. struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
  73. struct mxs_ssp_regs *ssp_regs = mxs_slave->regs;
  74. uint32_t reg = 0;
  75. mxs_reset_block(&ssp_regs->hw_ssp_ctrl0_reg);
  76. writel((slave->cs << MXS_SSP_CHIPSELECT_SHIFT) |
  77. SSP_CTRL0_BUS_WIDTH_ONE_BIT,
  78. &ssp_regs->hw_ssp_ctrl0);
  79. reg = SSP_CTRL1_SSP_MODE_SPI | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS;
  80. reg |= (mxs_slave->mode & SPI_CPOL) ? SSP_CTRL1_POLARITY : 0;
  81. reg |= (mxs_slave->mode & SPI_CPHA) ? SSP_CTRL1_PHASE : 0;
  82. writel(reg, &ssp_regs->hw_ssp_ctrl1);
  83. writel(0, &ssp_regs->hw_ssp_cmd0);
  84. mxs_set_ssp_busclock(slave->bus, mxs_slave->max_khz);
  85. return 0;
  86. }
  87. void spi_release_bus(struct spi_slave *slave)
  88. {
  89. }
  90. static void mxs_spi_start_xfer(struct mxs_ssp_regs *ssp_regs)
  91. {
  92. writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_set);
  93. writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_clr);
  94. }
  95. static void mxs_spi_end_xfer(struct mxs_ssp_regs *ssp_regs)
  96. {
  97. writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_clr);
  98. writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_set);
  99. }
  100. static int mxs_spi_xfer_pio(struct mxs_spi_slave *slave,
  101. char *data, int length, int write, unsigned long flags)
  102. {
  103. struct mxs_ssp_regs *ssp_regs = slave->regs;
  104. if (flags & SPI_XFER_BEGIN)
  105. mxs_spi_start_xfer(ssp_regs);
  106. while (length--) {
  107. /* We transfer 1 byte */
  108. #if defined(CONFIG_MX23)
  109. writel(SSP_CTRL0_XFER_COUNT_MASK, &ssp_regs->hw_ssp_ctrl0_clr);
  110. writel(1, &ssp_regs->hw_ssp_ctrl0_set);
  111. #elif defined(CONFIG_MX28)
  112. writel(1, &ssp_regs->hw_ssp_xfer_size);
  113. #endif
  114. if ((flags & SPI_XFER_END) && !length)
  115. mxs_spi_end_xfer(ssp_regs);
  116. if (write)
  117. writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_clr);
  118. else
  119. writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_set);
  120. writel(SSP_CTRL0_RUN, &ssp_regs->hw_ssp_ctrl0_set);
  121. if (mxs_wait_mask_set(&ssp_regs->hw_ssp_ctrl0_reg,
  122. SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
  123. printf("MXS SPI: Timeout waiting for start\n");
  124. return -ETIMEDOUT;
  125. }
  126. if (write)
  127. writel(*data++, &ssp_regs->hw_ssp_data);
  128. writel(SSP_CTRL0_DATA_XFER, &ssp_regs->hw_ssp_ctrl0_set);
  129. if (!write) {
  130. if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_status_reg,
  131. SSP_STATUS_FIFO_EMPTY, MXS_SPI_MAX_TIMEOUT)) {
  132. printf("MXS SPI: Timeout waiting for data\n");
  133. return -ETIMEDOUT;
  134. }
  135. *data = readl(&ssp_regs->hw_ssp_data);
  136. data++;
  137. }
  138. if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_ctrl0_reg,
  139. SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
  140. printf("MXS SPI: Timeout waiting for finish\n");
  141. return -ETIMEDOUT;
  142. }
  143. }
  144. return 0;
  145. }
  146. static int mxs_spi_xfer_dma(struct mxs_spi_slave *slave,
  147. char *data, int length, int write, unsigned long flags)
  148. {
  149. const int xfer_max_sz = 0xff00;
  150. const int desc_count = DIV_ROUND_UP(length, xfer_max_sz) + 1;
  151. struct mxs_ssp_regs *ssp_regs = slave->regs;
  152. struct mxs_dma_desc *dp;
  153. uint32_t ctrl0;
  154. uint32_t cache_data_count;
  155. const uint32_t dstart = (uint32_t)data;
  156. int dmach;
  157. int tl;
  158. int ret = 0;
  159. #if defined(CONFIG_MX23)
  160. const int mxs_spi_pio_words = 1;
  161. #elif defined(CONFIG_MX28)
  162. const int mxs_spi_pio_words = 4;
  163. #endif
  164. ALLOC_CACHE_ALIGN_BUFFER(struct mxs_dma_desc, desc, desc_count);
  165. memset(desc, 0, sizeof(struct mxs_dma_desc) * desc_count);
  166. ctrl0 = readl(&ssp_regs->hw_ssp_ctrl0);
  167. ctrl0 |= SSP_CTRL0_DATA_XFER;
  168. if (flags & SPI_XFER_BEGIN)
  169. ctrl0 |= SSP_CTRL0_LOCK_CS;
  170. if (!write)
  171. ctrl0 |= SSP_CTRL0_READ;
  172. if (length % ARCH_DMA_MINALIGN)
  173. cache_data_count = roundup(length, ARCH_DMA_MINALIGN);
  174. else
  175. cache_data_count = length;
  176. /* Flush data to DRAM so DMA can pick them up */
  177. if (write)
  178. flush_dcache_range(dstart, dstart + cache_data_count);
  179. /* Invalidate the area, so no writeback into the RAM races with DMA */
  180. invalidate_dcache_range(dstart, dstart + cache_data_count);
  181. dmach = MXS_DMA_CHANNEL_AHB_APBH_SSP0 + slave->slave.bus;
  182. dp = desc;
  183. while (length) {
  184. dp->address = (dma_addr_t)dp;
  185. dp->cmd.address = (dma_addr_t)data;
  186. /*
  187. * This is correct, even though it does indeed look insane.
  188. * I hereby have to, wholeheartedly, thank Freescale Inc.,
  189. * for always inventing insane hardware and keeping me busy
  190. * and employed ;-)
  191. */
  192. if (write)
  193. dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ;
  194. else
  195. dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE;
  196. /*
  197. * The DMA controller can transfer large chunks (64kB) at
  198. * time by setting the transfer length to 0. Setting tl to
  199. * 0x10000 will overflow below and make .data contain 0.
  200. * Otherwise, 0xff00 is the transfer maximum.
  201. */
  202. if (length >= 0x10000)
  203. tl = 0x10000;
  204. else
  205. tl = min(length, xfer_max_sz);
  206. dp->cmd.data |=
  207. ((tl & 0xffff) << MXS_DMA_DESC_BYTES_OFFSET) |
  208. (mxs_spi_pio_words << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
  209. MXS_DMA_DESC_HALT_ON_TERMINATE |
  210. MXS_DMA_DESC_TERMINATE_FLUSH;
  211. data += tl;
  212. length -= tl;
  213. if (!length) {
  214. dp->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM;
  215. if (flags & SPI_XFER_END) {
  216. ctrl0 &= ~SSP_CTRL0_LOCK_CS;
  217. ctrl0 |= SSP_CTRL0_IGNORE_CRC;
  218. }
  219. }
  220. /*
  221. * Write CTRL0, CMD0, CMD1 and XFER_SIZE registers in
  222. * case of MX28, write only CTRL0 in case of MX23 due
  223. * to the difference in register layout. It is utterly
  224. * essential that the XFER_SIZE register is written on
  225. * a per-descriptor basis with the same size as is the
  226. * descriptor!
  227. */
  228. dp->cmd.pio_words[0] = ctrl0;
  229. #ifdef CONFIG_MX28
  230. dp->cmd.pio_words[1] = 0;
  231. dp->cmd.pio_words[2] = 0;
  232. dp->cmd.pio_words[3] = tl;
  233. #endif
  234. mxs_dma_desc_append(dmach, dp);
  235. dp++;
  236. }
  237. if (mxs_dma_go(dmach))
  238. ret = -EINVAL;
  239. /* The data arrived into DRAM, invalidate cache over them */
  240. if (!write)
  241. invalidate_dcache_range(dstart, dstart + cache_data_count);
  242. return ret;
  243. }
  244. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  245. const void *dout, void *din, unsigned long flags)
  246. {
  247. struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
  248. struct mxs_ssp_regs *ssp_regs = mxs_slave->regs;
  249. int len = bitlen / 8;
  250. char dummy;
  251. int write = 0;
  252. char *data = NULL;
  253. int dma = 1;
  254. if (bitlen == 0) {
  255. if (flags & SPI_XFER_END) {
  256. din = (void *)&dummy;
  257. len = 1;
  258. } else
  259. return 0;
  260. }
  261. /* Half-duplex only */
  262. if (din && dout)
  263. return -EINVAL;
  264. /* No data */
  265. if (!din && !dout)
  266. return 0;
  267. if (dout) {
  268. data = (char *)dout;
  269. write = 1;
  270. } else if (din) {
  271. data = (char *)din;
  272. write = 0;
  273. }
  274. /*
  275. * Check for alignment, if the buffer is aligned, do DMA transfer,
  276. * PIO otherwise. This is a temporary workaround until proper bounce
  277. * buffer is in place.
  278. */
  279. if (dma) {
  280. if (((uint32_t)data) & (ARCH_DMA_MINALIGN - 1))
  281. dma = 0;
  282. if (((uint32_t)len) & (ARCH_DMA_MINALIGN - 1))
  283. dma = 0;
  284. }
  285. if (!dma || (len < MXSSSP_SMALL_TRANSFER)) {
  286. writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr);
  287. return mxs_spi_xfer_pio(mxs_slave, data, len, write, flags);
  288. } else {
  289. writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set);
  290. return mxs_spi_xfer_dma(mxs_slave, data, len, write, flags);
  291. }
  292. }