fsl_i2c.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright 2006,2009 Freescale Semiconductor, Inc.
  4. *
  5. * 2012, Heiko Schocher, DENX Software Engineering, hs@denx.de.
  6. * Changes for multibus/multiadapter I2C support.
  7. */
  8. #include <common.h>
  9. #include <command.h>
  10. #include <i2c.h> /* Functional interface */
  11. #include <asm/io.h>
  12. #include <asm/fsl_i2c.h> /* HW definitions */
  13. #include <clk.h>
  14. #include <dm.h>
  15. #include <mapmem.h>
  16. /* The maximum number of microseconds we will wait until another master has
  17. * released the bus. If not defined in the board header file, then use a
  18. * generic value.
  19. */
  20. #ifndef CONFIG_I2C_MBB_TIMEOUT
  21. #define CONFIG_I2C_MBB_TIMEOUT 100000
  22. #endif
  23. /* The maximum number of microseconds we will wait for a read or write
  24. * operation to complete. If not defined in the board header file, then use a
  25. * generic value.
  26. */
  27. #ifndef CONFIG_I2C_TIMEOUT
  28. #define CONFIG_I2C_TIMEOUT 100000
  29. #endif
  30. #define I2C_READ_BIT 1
  31. #define I2C_WRITE_BIT 0
  32. DECLARE_GLOBAL_DATA_PTR;
  33. #ifndef CONFIG_DM_I2C
  34. static const struct fsl_i2c_base *i2c_base[4] = {
  35. (struct fsl_i2c_base *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C_OFFSET),
  36. #ifdef CONFIG_SYS_FSL_I2C2_OFFSET
  37. (struct fsl_i2c_base *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C2_OFFSET),
  38. #endif
  39. #ifdef CONFIG_SYS_FSL_I2C3_OFFSET
  40. (struct fsl_i2c_base *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C3_OFFSET),
  41. #endif
  42. #ifdef CONFIG_SYS_FSL_I2C4_OFFSET
  43. (struct fsl_i2c_base *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C4_OFFSET)
  44. #endif
  45. };
  46. #endif
  47. /* I2C speed map for a DFSR value of 1 */
  48. #ifdef __M68K__
  49. /*
  50. * Map I2C frequency dividers to FDR and DFSR values
  51. *
  52. * This structure is used to define the elements of a table that maps I2C
  53. * frequency divider (I2C clock rate divided by I2C bus speed) to a value to be
  54. * programmed into the Frequency Divider Ratio (FDR) and Digital Filter
  55. * Sampling Rate (DFSR) registers.
  56. *
  57. * The actual table should be defined in the board file, and it must be called
  58. * fsl_i2c_speed_map[].
  59. *
  60. * The last entry of the table must have a value of {-1, X}, where X is same
  61. * FDR/DFSR values as the second-to-last entry. This guarantees that any
  62. * search through the array will always find a match.
  63. *
  64. * The values of the divider must be in increasing numerical order, i.e.
  65. * fsl_i2c_speed_map[x+1].divider > fsl_i2c_speed_map[x].divider.
  66. *
  67. * For this table, the values are based on a value of 1 for the DFSR
  68. * register. See the application note AN2919 "Determining the I2C Frequency
  69. * Divider Ratio for SCL"
  70. *
  71. * ColdFire I2C frequency dividers for FDR values are different from
  72. * PowerPC. The protocol to use the I2C module is still the same.
  73. * A different table is defined and are based on MCF5xxx user manual.
  74. *
  75. */
  76. static const struct {
  77. unsigned short divider;
  78. u8 fdr;
  79. } fsl_i2c_speed_map[] = {
  80. {20, 32}, {22, 33}, {24, 34}, {26, 35},
  81. {28, 0}, {28, 36}, {30, 1}, {32, 37},
  82. {34, 2}, {36, 38}, {40, 3}, {40, 39},
  83. {44, 4}, {48, 5}, {48, 40}, {56, 6},
  84. {56, 41}, {64, 42}, {68, 7}, {72, 43},
  85. {80, 8}, {80, 44}, {88, 9}, {96, 41},
  86. {104, 10}, {112, 42}, {128, 11}, {128, 43},
  87. {144, 12}, {160, 13}, {160, 48}, {192, 14},
  88. {192, 49}, {224, 50}, {240, 15}, {256, 51},
  89. {288, 16}, {320, 17}, {320, 52}, {384, 18},
  90. {384, 53}, {448, 54}, {480, 19}, {512, 55},
  91. {576, 20}, {640, 21}, {640, 56}, {768, 22},
  92. {768, 57}, {960, 23}, {896, 58}, {1024, 59},
  93. {1152, 24}, {1280, 25}, {1280, 60}, {1536, 26},
  94. {1536, 61}, {1792, 62}, {1920, 27}, {2048, 63},
  95. {2304, 28}, {2560, 29}, {3072, 30}, {3840, 31},
  96. {-1, 31}
  97. };
  98. #endif
  99. /**
  100. * Set the I2C bus speed for a given I2C device
  101. *
  102. * @param base: the I2C device registers
  103. * @i2c_clk: I2C bus clock frequency
  104. * @speed: the desired speed of the bus
  105. *
  106. * The I2C device must be stopped before calling this function.
  107. *
  108. * The return value is the actual bus speed that is set.
  109. */
  110. static uint set_i2c_bus_speed(const struct fsl_i2c_base *base,
  111. uint i2c_clk, uint speed)
  112. {
  113. ushort divider = min(i2c_clk / speed, (uint)USHRT_MAX);
  114. /*
  115. * We want to choose an FDR/DFSR that generates an I2C bus speed that
  116. * is equal to or lower than the requested speed. That means that we
  117. * want the first divider that is equal to or greater than the
  118. * calculated divider.
  119. */
  120. #ifdef __PPC__
  121. u8 dfsr, fdr = 0x31; /* Default if no FDR found */
  122. /* a, b and dfsr matches identifiers A,B and C respectively in AN2919 */
  123. ushort a, b, ga, gb;
  124. ulong c_div, est_div;
  125. #ifdef CONFIG_FSL_I2C_CUSTOM_DFSR
  126. dfsr = CONFIG_FSL_I2C_CUSTOM_DFSR;
  127. #else
  128. /* Condition 1: dfsr <= 50/T */
  129. dfsr = (5 * (i2c_clk / 1000)) / 100000;
  130. #endif
  131. #ifdef CONFIG_FSL_I2C_CUSTOM_FDR
  132. fdr = CONFIG_FSL_I2C_CUSTOM_FDR;
  133. speed = i2c_clk / divider; /* Fake something */
  134. #else
  135. debug("Requested speed:%d, i2c_clk:%d\n", speed, i2c_clk);
  136. if (!dfsr)
  137. dfsr = 1;
  138. est_div = ~0;
  139. for (ga = 0x4, a = 10; a <= 30; ga++, a += 2) {
  140. for (gb = 0; gb < 8; gb++) {
  141. b = 16 << gb;
  142. c_div = b * (a + ((3 * dfsr) / b) * 2);
  143. if (c_div > divider && c_div < est_div) {
  144. ushort bin_gb, bin_ga;
  145. est_div = c_div;
  146. bin_gb = gb << 2;
  147. bin_ga = (ga & 0x3) | ((ga & 0x4) << 3);
  148. fdr = bin_gb | bin_ga;
  149. speed = i2c_clk / est_div;
  150. debug("FDR: 0x%.2x, ", fdr);
  151. debug("div: %ld, ", est_div);
  152. debug("ga: 0x%x, gb: 0x%x, ", ga, gb);
  153. debug("a: %d, b: %d, speed: %d\n", a, b, speed);
  154. /* Condition 2 not accounted for */
  155. debug("Tr <= %d ns\n",
  156. (b - 3 * dfsr) * 1000000 /
  157. (i2c_clk / 1000));
  158. }
  159. }
  160. if (a == 20)
  161. a += 2;
  162. if (a == 24)
  163. a += 4;
  164. }
  165. debug("divider: %d, est_div: %ld, DFSR: %d\n", divider, est_div, dfsr);
  166. debug("FDR: 0x%.2x, speed: %d\n", fdr, speed);
  167. #endif
  168. writeb(dfsr, &base->dfsrr); /* set default filter */
  169. writeb(fdr, &base->fdr); /* set bus speed */
  170. #else
  171. uint i;
  172. for (i = 0; i < ARRAY_SIZE(fsl_i2c_speed_map); i++)
  173. if (fsl_i2c_speed_map[i].divider >= divider) {
  174. u8 fdr;
  175. fdr = fsl_i2c_speed_map[i].fdr;
  176. speed = i2c_clk / fsl_i2c_speed_map[i].divider;
  177. writeb(fdr, &base->fdr); /* set bus speed */
  178. break;
  179. }
  180. #endif
  181. return speed;
  182. }
  183. #ifndef CONFIG_DM_I2C
  184. static uint get_i2c_clock(int bus)
  185. {
  186. if (bus)
  187. return gd->arch.i2c2_clk; /* I2C2 clock */
  188. else
  189. return gd->arch.i2c1_clk; /* I2C1 clock */
  190. }
  191. #endif
  192. static int fsl_i2c_fixup(const struct fsl_i2c_base *base)
  193. {
  194. const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);
  195. unsigned long long timeval = 0;
  196. int ret = -1;
  197. uint flags = 0;
  198. #ifdef CONFIG_SYS_FSL_ERRATUM_I2C_A004447
  199. uint svr = get_svr();
  200. if ((SVR_SOC_VER(svr) == SVR_8548 && IS_SVR_REV(svr, 3, 1)) ||
  201. (SVR_REV(svr) <= CONFIG_SYS_FSL_A004447_SVR_REV))
  202. flags = I2C_CR_BIT6;
  203. #endif
  204. writeb(I2C_CR_MEN | I2C_CR_MSTA, &base->cr);
  205. timeval = get_ticks();
  206. while (!(readb(&base->sr) & I2C_SR_MBB)) {
  207. if ((get_ticks() - timeval) > timeout)
  208. goto err;
  209. }
  210. if (readb(&base->sr) & I2C_SR_MAL) {
  211. /* SDA is stuck low */
  212. writeb(0, &base->cr);
  213. udelay(100);
  214. writeb(I2C_CR_MSTA | flags, &base->cr);
  215. writeb(I2C_CR_MEN | I2C_CR_MSTA | flags, &base->cr);
  216. }
  217. readb(&base->dr);
  218. timeval = get_ticks();
  219. while (!(readb(&base->sr) & I2C_SR_MIF)) {
  220. if ((get_ticks() - timeval) > timeout)
  221. goto err;
  222. }
  223. ret = 0;
  224. err:
  225. writeb(I2C_CR_MEN | flags, &base->cr);
  226. writeb(0, &base->sr);
  227. udelay(100);
  228. return ret;
  229. }
  230. static void __i2c_init(const struct fsl_i2c_base *base, int speed, int
  231. slaveadd, int i2c_clk, int busnum)
  232. {
  233. const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);
  234. unsigned long long timeval;
  235. #ifdef CONFIG_SYS_I2C_INIT_BOARD
  236. /* Call board specific i2c bus reset routine before accessing the
  237. * environment, which might be in a chip on that bus. For details
  238. * about this problem see doc/I2C_Edge_Conditions.
  239. */
  240. i2c_init_board();
  241. #endif
  242. writeb(0, &base->cr); /* stop I2C controller */
  243. udelay(5); /* let it shutdown in peace */
  244. set_i2c_bus_speed(base, i2c_clk, speed);
  245. writeb(slaveadd << 1, &base->adr);/* write slave address */
  246. writeb(0x0, &base->sr); /* clear status register */
  247. writeb(I2C_CR_MEN, &base->cr); /* start I2C controller */
  248. timeval = get_ticks();
  249. while (readb(&base->sr) & I2C_SR_MBB) {
  250. if ((get_ticks() - timeval) < timeout)
  251. continue;
  252. if (fsl_i2c_fixup(base))
  253. debug("i2c_init: BUS#%d failed to init\n",
  254. busnum);
  255. break;
  256. }
  257. }
  258. static int i2c_wait4bus(const struct fsl_i2c_base *base)
  259. {
  260. unsigned long long timeval = get_ticks();
  261. const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);
  262. while (readb(&base->sr) & I2C_SR_MBB) {
  263. if ((get_ticks() - timeval) > timeout)
  264. return -1;
  265. }
  266. return 0;
  267. }
  268. static int i2c_wait(const struct fsl_i2c_base *base, int write)
  269. {
  270. u32 csr;
  271. unsigned long long timeval = get_ticks();
  272. const unsigned long long timeout = usec2ticks(CONFIG_I2C_TIMEOUT);
  273. do {
  274. csr = readb(&base->sr);
  275. if (!(csr & I2C_SR_MIF))
  276. continue;
  277. /* Read again to allow register to stabilise */
  278. csr = readb(&base->sr);
  279. writeb(0x0, &base->sr);
  280. if (csr & I2C_SR_MAL) {
  281. debug("%s: MAL\n", __func__);
  282. return -1;
  283. }
  284. if (!(csr & I2C_SR_MCF)) {
  285. debug("%s: unfinished\n", __func__);
  286. return -1;
  287. }
  288. if (write == I2C_WRITE_BIT && (csr & I2C_SR_RXAK)) {
  289. debug("%s: No RXACK\n", __func__);
  290. return -1;
  291. }
  292. return 0;
  293. } while ((get_ticks() - timeval) < timeout);
  294. debug("%s: timed out\n", __func__);
  295. return -1;
  296. }
  297. static int i2c_write_addr(const struct fsl_i2c_base *base, u8 dev,
  298. u8 dir, int rsta)
  299. {
  300. writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX
  301. | (rsta ? I2C_CR_RSTA : 0),
  302. &base->cr);
  303. writeb((dev << 1) | dir, &base->dr);
  304. if (i2c_wait(base, I2C_WRITE_BIT) < 0)
  305. return 0;
  306. return 1;
  307. }
  308. static int __i2c_write_data(const struct fsl_i2c_base *base, u8 *data,
  309. int length)
  310. {
  311. int i;
  312. for (i = 0; i < length; i++) {
  313. writeb(data[i], &base->dr);
  314. if (i2c_wait(base, I2C_WRITE_BIT) < 0)
  315. break;
  316. }
  317. return i;
  318. }
  319. static int __i2c_read_data(const struct fsl_i2c_base *base, u8 *data,
  320. int length)
  321. {
  322. int i;
  323. writeb(I2C_CR_MEN | I2C_CR_MSTA | ((length == 1) ? I2C_CR_TXAK : 0),
  324. &base->cr);
  325. /* dummy read */
  326. readb(&base->dr);
  327. for (i = 0; i < length; i++) {
  328. if (i2c_wait(base, I2C_READ_BIT) < 0)
  329. break;
  330. /* Generate ack on last next to last byte */
  331. if (i == length - 2)
  332. writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_TXAK,
  333. &base->cr);
  334. /* Do not generate stop on last byte */
  335. if (i == length - 1)
  336. writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX,
  337. &base->cr);
  338. data[i] = readb(&base->dr);
  339. }
  340. return i;
  341. }
  342. static int __i2c_read(const struct fsl_i2c_base *base, u8 chip_addr, u8 *offset,
  343. int olen, u8 *data, int dlen)
  344. {
  345. int ret = -1; /* signal error */
  346. if (i2c_wait4bus(base) < 0)
  347. return -1;
  348. /* Some drivers use offset lengths in excess of 4 bytes. These drivers
  349. * adhere to the following convention:
  350. * - the offset length is passed as negative (that is, the absolute
  351. * value of olen is the actual offset length)
  352. * - the offset itself is passed in data, which is overwritten by the
  353. * subsequent read operation
  354. */
  355. if (olen < 0) {
  356. if (i2c_write_addr(base, chip_addr, I2C_WRITE_BIT, 0) != 0)
  357. ret = __i2c_write_data(base, data, -olen);
  358. if (ret != -olen)
  359. return -1;
  360. if (dlen && i2c_write_addr(base, chip_addr,
  361. I2C_READ_BIT, 1) != 0)
  362. ret = __i2c_read_data(base, data, dlen);
  363. } else {
  364. if ((!dlen || olen > 0) &&
  365. i2c_write_addr(base, chip_addr, I2C_WRITE_BIT, 0) != 0 &&
  366. __i2c_write_data(base, offset, olen) == olen)
  367. ret = 0; /* No error so far */
  368. if (dlen && i2c_write_addr(base, chip_addr, I2C_READ_BIT,
  369. olen ? 1 : 0) != 0)
  370. ret = __i2c_read_data(base, data, dlen);
  371. }
  372. writeb(I2C_CR_MEN, &base->cr);
  373. if (i2c_wait4bus(base)) /* Wait until STOP */
  374. debug("i2c_read: wait4bus timed out\n");
  375. if (ret == dlen)
  376. return 0;
  377. return -1;
  378. }
  379. static int __i2c_write(const struct fsl_i2c_base *base, u8 chip_addr,
  380. u8 *offset, int olen, u8 *data, int dlen)
  381. {
  382. int ret = -1; /* signal error */
  383. if (i2c_wait4bus(base) < 0)
  384. return -1;
  385. if (i2c_write_addr(base, chip_addr, I2C_WRITE_BIT, 0) != 0 &&
  386. __i2c_write_data(base, offset, olen) == olen) {
  387. ret = __i2c_write_data(base, data, dlen);
  388. }
  389. writeb(I2C_CR_MEN, &base->cr);
  390. if (i2c_wait4bus(base)) /* Wait until STOP */
  391. debug("i2c_write: wait4bus timed out\n");
  392. if (ret == dlen)
  393. return 0;
  394. return -1;
  395. }
  396. static int __i2c_probe_chip(const struct fsl_i2c_base *base, uchar chip)
  397. {
  398. /* For unknown reason the controller will ACK when
  399. * probing for a slave with the same address, so skip
  400. * it.
  401. */
  402. if (chip == (readb(&base->adr) >> 1))
  403. return -1;
  404. return __i2c_read(base, chip, 0, 0, NULL, 0);
  405. }
  406. static uint __i2c_set_bus_speed(const struct fsl_i2c_base *base,
  407. uint speed, int i2c_clk)
  408. {
  409. writeb(0, &base->cr); /* stop controller */
  410. set_i2c_bus_speed(base, i2c_clk, speed);
  411. writeb(I2C_CR_MEN, &base->cr); /* start controller */
  412. return 0;
  413. }
  414. #ifndef CONFIG_DM_I2C
  415. static void fsl_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd)
  416. {
  417. __i2c_init(i2c_base[adap->hwadapnr], speed, slaveadd,
  418. get_i2c_clock(adap->hwadapnr), adap->hwadapnr);
  419. }
  420. static int fsl_i2c_probe_chip(struct i2c_adapter *adap, uchar chip)
  421. {
  422. return __i2c_probe_chip(i2c_base[adap->hwadapnr], chip);
  423. }
  424. static int fsl_i2c_read(struct i2c_adapter *adap, u8 chip_addr, uint offset,
  425. int olen, u8 *data, int dlen)
  426. {
  427. u8 *o = (u8 *)&offset;
  428. return __i2c_read(i2c_base[adap->hwadapnr], chip_addr, &o[4 - olen],
  429. olen, data, dlen);
  430. }
  431. static int fsl_i2c_write(struct i2c_adapter *adap, u8 chip_addr, uint offset,
  432. int olen, u8 *data, int dlen)
  433. {
  434. u8 *o = (u8 *)&offset;
  435. return __i2c_write(i2c_base[adap->hwadapnr], chip_addr, &o[4 - olen],
  436. olen, data, dlen);
  437. }
  438. static uint fsl_i2c_set_bus_speed(struct i2c_adapter *adap, uint speed)
  439. {
  440. return __i2c_set_bus_speed(i2c_base[adap->hwadapnr], speed,
  441. get_i2c_clock(adap->hwadapnr));
  442. }
  443. /*
  444. * Register fsl i2c adapters
  445. */
  446. U_BOOT_I2C_ADAP_COMPLETE(fsl_0, fsl_i2c_init, fsl_i2c_probe_chip, fsl_i2c_read,
  447. fsl_i2c_write, fsl_i2c_set_bus_speed,
  448. CONFIG_SYS_FSL_I2C_SPEED, CONFIG_SYS_FSL_I2C_SLAVE,
  449. 0)
  450. #ifdef CONFIG_SYS_FSL_I2C2_OFFSET
  451. U_BOOT_I2C_ADAP_COMPLETE(fsl_1, fsl_i2c_init, fsl_i2c_probe_chip, fsl_i2c_read,
  452. fsl_i2c_write, fsl_i2c_set_bus_speed,
  453. CONFIG_SYS_FSL_I2C2_SPEED, CONFIG_SYS_FSL_I2C2_SLAVE,
  454. 1)
  455. #endif
  456. #ifdef CONFIG_SYS_FSL_I2C3_OFFSET
  457. U_BOOT_I2C_ADAP_COMPLETE(fsl_2, fsl_i2c_init, fsl_i2c_probe_chip, fsl_i2c_read,
  458. fsl_i2c_write, fsl_i2c_set_bus_speed,
  459. CONFIG_SYS_FSL_I2C3_SPEED, CONFIG_SYS_FSL_I2C3_SLAVE,
  460. 2)
  461. #endif
  462. #ifdef CONFIG_SYS_FSL_I2C4_OFFSET
  463. U_BOOT_I2C_ADAP_COMPLETE(fsl_3, fsl_i2c_init, fsl_i2c_probe_chip, fsl_i2c_read,
  464. fsl_i2c_write, fsl_i2c_set_bus_speed,
  465. CONFIG_SYS_FSL_I2C4_SPEED, CONFIG_SYS_FSL_I2C4_SLAVE,
  466. 3)
  467. #endif
  468. #else /* CONFIG_DM_I2C */
  469. static int fsl_i2c_probe_chip(struct udevice *bus, u32 chip_addr,
  470. u32 chip_flags)
  471. {
  472. struct fsl_i2c_dev *dev = dev_get_priv(bus);
  473. return __i2c_probe_chip(dev->base, chip_addr);
  474. }
  475. static int fsl_i2c_set_bus_speed(struct udevice *bus, uint speed)
  476. {
  477. struct fsl_i2c_dev *dev = dev_get_priv(bus);
  478. return __i2c_set_bus_speed(dev->base, speed, dev->i2c_clk);
  479. }
  480. static int fsl_i2c_ofdata_to_platdata(struct udevice *bus)
  481. {
  482. struct fsl_i2c_dev *dev = dev_get_priv(bus);
  483. struct clk clock;
  484. dev->base = map_sysmem(dev_read_addr(bus), sizeof(struct fsl_i2c_base));
  485. if (!dev->base)
  486. return -ENOMEM;
  487. dev->index = dev_read_u32_default(bus, "cell-index", -1);
  488. dev->slaveadd = dev_read_u32_default(bus, "u-boot,i2c-slave-addr",
  489. 0x7f);
  490. dev->speed = dev_read_u32_default(bus, "clock-frequency", 400000);
  491. if (!clk_get_by_index(bus, 0, &clock))
  492. dev->i2c_clk = clk_get_rate(&clock);
  493. else
  494. dev->i2c_clk = dev->index ? gd->arch.i2c2_clk :
  495. gd->arch.i2c1_clk;
  496. return 0;
  497. }
  498. static int fsl_i2c_probe(struct udevice *bus)
  499. {
  500. struct fsl_i2c_dev *dev = dev_get_priv(bus);
  501. __i2c_init(dev->base, dev->speed, dev->slaveadd, dev->i2c_clk,
  502. dev->index);
  503. return 0;
  504. }
  505. static int fsl_i2c_xfer(struct udevice *bus, struct i2c_msg *msg, int nmsgs)
  506. {
  507. struct fsl_i2c_dev *dev = dev_get_priv(bus);
  508. struct i2c_msg *dmsg, *omsg, dummy;
  509. memset(&dummy, 0, sizeof(struct i2c_msg));
  510. /* We expect either two messages (one with an offset and one with the
  511. * actual data) or one message (just data)
  512. */
  513. if (nmsgs > 2 || nmsgs == 0) {
  514. debug("%s: Only one or two messages are supported.", __func__);
  515. return -1;
  516. }
  517. omsg = nmsgs == 1 ? &dummy : msg;
  518. dmsg = nmsgs == 1 ? msg : msg + 1;
  519. if (dmsg->flags & I2C_M_RD)
  520. return __i2c_read(dev->base, dmsg->addr, omsg->buf, omsg->len,
  521. dmsg->buf, dmsg->len);
  522. else
  523. return __i2c_write(dev->base, dmsg->addr, omsg->buf, omsg->len,
  524. dmsg->buf, dmsg->len);
  525. }
  526. static const struct dm_i2c_ops fsl_i2c_ops = {
  527. .xfer = fsl_i2c_xfer,
  528. .probe_chip = fsl_i2c_probe_chip,
  529. .set_bus_speed = fsl_i2c_set_bus_speed,
  530. };
  531. static const struct udevice_id fsl_i2c_ids[] = {
  532. { .compatible = "fsl-i2c", },
  533. { /* sentinel */ }
  534. };
  535. U_BOOT_DRIVER(i2c_fsl) = {
  536. .name = "i2c_fsl",
  537. .id = UCLASS_I2C,
  538. .of_match = fsl_i2c_ids,
  539. .probe = fsl_i2c_probe,
  540. .ofdata_to_platdata = fsl_i2c_ofdata_to_platdata,
  541. .priv_auto_alloc_size = sizeof(struct fsl_i2c_dev),
  542. .ops = &fsl_i2c_ops,
  543. };
  544. #endif /* CONFIG_DM_I2C */