ddr1_dimm_params.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright 2008 Freescale Semiconductor, Inc.
  4. */
  5. #include <common.h>
  6. #include <fsl_ddr_sdram.h>
  7. #include <fsl_ddr.h>
  8. /*
  9. * Calculate the Density of each Physical Rank.
  10. * Returned size is in bytes.
  11. *
  12. * Study these table from Byte 31 of JEDEC SPD Spec.
  13. *
  14. * DDR I DDR II
  15. * Bit Size Size
  16. * --- ----- ------
  17. * 7 high 512MB 512MB
  18. * 6 256MB 256MB
  19. * 5 128MB 128MB
  20. * 4 64MB 16GB
  21. * 3 32MB 8GB
  22. * 2 16MB 4GB
  23. * 1 2GB 2GB
  24. * 0 low 1GB 1GB
  25. *
  26. * Reorder Table to be linear by stripping the bottom
  27. * 2 or 5 bits off and shifting them up to the top.
  28. */
  29. static unsigned long long
  30. compute_ranksize(unsigned int mem_type, unsigned char row_dens)
  31. {
  32. unsigned long long bsize;
  33. /* Bottom 2 bits up to the top. */
  34. bsize = ((row_dens >> 2) | ((row_dens & 3) << 6));
  35. bsize <<= 24ULL;
  36. debug("DDR: DDR I rank density = 0x%16llx\n", bsize);
  37. return bsize;
  38. }
  39. /*
  40. * Convert a two-nibble BCD value into a cycle time.
  41. * While the spec calls for nano-seconds, picos are returned.
  42. *
  43. * This implements the tables for bytes 9, 23 and 25 for both
  44. * DDR I and II. No allowance for distinguishing the invalid
  45. * fields absent for DDR I yet present in DDR II is made.
  46. * (That is, cycle times of .25, .33, .66 and .75 ns are
  47. * allowed for both DDR II and I.)
  48. */
  49. static unsigned int
  50. convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
  51. {
  52. /* Table look up the lower nibble, allow DDR I & II. */
  53. unsigned int tenths_ps[16] = {
  54. 0,
  55. 100,
  56. 200,
  57. 300,
  58. 400,
  59. 500,
  60. 600,
  61. 700,
  62. 800,
  63. 900,
  64. 250, /* This and the next 3 entries valid ... */
  65. 330, /* ... only for tCK calculations. */
  66. 660,
  67. 750,
  68. 0, /* undefined */
  69. 0 /* undefined */
  70. };
  71. unsigned int whole_ns = (spd_val & 0xF0) >> 4;
  72. unsigned int tenth_ns = spd_val & 0x0F;
  73. unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
  74. return ps;
  75. }
  76. static unsigned int
  77. convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
  78. {
  79. unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
  80. unsigned int hundredth_ns = spd_val & 0x0F;
  81. unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
  82. return ps;
  83. }
  84. static unsigned int byte40_table_ps[8] = {
  85. 0,
  86. 250,
  87. 330,
  88. 500,
  89. 660,
  90. 750,
  91. 0, /* supposed to be RFC, but not sure what that means */
  92. 0 /* Undefined */
  93. };
  94. static unsigned int
  95. compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
  96. {
  97. return ((trctrfc_ext & 0x1) * 256 + trfc) * 1000
  98. + byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
  99. }
  100. static unsigned int
  101. compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
  102. {
  103. return trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
  104. }
  105. /*
  106. * tCKmax from DDR I SPD Byte 43
  107. *
  108. * Bits 7:2 == whole ns
  109. * Bits 1:0 == quarter ns
  110. * 00 == 0.00 ns
  111. * 01 == 0.25 ns
  112. * 10 == 0.50 ns
  113. * 11 == 0.75 ns
  114. *
  115. * Returns picoseconds.
  116. */
  117. static unsigned int
  118. compute_tckmax_from_spd_ps(unsigned int byte43)
  119. {
  120. return (byte43 >> 2) * 1000 + (byte43 & 0x3) * 250;
  121. }
  122. /*
  123. * Determine Refresh Rate. Ignore self refresh bit on DDR I.
  124. * Table from SPD Spec, Byte 12, converted to picoseconds and
  125. * filled in with "default" normal values.
  126. */
  127. static unsigned int
  128. determine_refresh_rate_ps(const unsigned int spd_refresh)
  129. {
  130. unsigned int refresh_time_ps[8] = {
  131. 15625000, /* 0 Normal 1.00x */
  132. 3900000, /* 1 Reduced .25x */
  133. 7800000, /* 2 Extended .50x */
  134. 31300000, /* 3 Extended 2.00x */
  135. 62500000, /* 4 Extended 4.00x */
  136. 125000000, /* 5 Extended 8.00x */
  137. 15625000, /* 6 Normal 1.00x filler */
  138. 15625000, /* 7 Normal 1.00x filler */
  139. };
  140. return refresh_time_ps[spd_refresh & 0x7];
  141. }
  142. /*
  143. * The purpose of this function is to compute a suitable
  144. * CAS latency given the DRAM clock period. The SPD only
  145. * defines at most 3 CAS latencies. Typically the slower in
  146. * frequency the DIMM runs at, the shorter its CAS latency can be.
  147. * If the DIMM is operating at a sufficiently low frequency,
  148. * it may be able to run at a CAS latency shorter than the
  149. * shortest SPD-defined CAS latency.
  150. *
  151. * If a CAS latency is not found, 0 is returned.
  152. *
  153. * Do this by finding in the standard speed bin table the longest
  154. * tCKmin that doesn't exceed the value of mclk_ps (tCK).
  155. *
  156. * An assumption made is that the SDRAM device allows the
  157. * CL to be programmed for a value that is lower than those
  158. * advertised by the SPD. This is not always the case,
  159. * as those modes not defined in the SPD are optional.
  160. *
  161. * CAS latency de-rating based upon values JEDEC Standard No. 79-E
  162. * Table 11.
  163. *
  164. * ordinal 2, ddr1_speed_bins[1] contains tCK for CL=2
  165. */
  166. /* CL2.0 CL2.5 CL3.0 */
  167. unsigned short ddr1_speed_bins[] = {0, 7500, 6000, 5000 };
  168. unsigned int
  169. compute_derated_DDR1_CAS_latency(unsigned int mclk_ps)
  170. {
  171. const unsigned int num_speed_bins = ARRAY_SIZE(ddr1_speed_bins);
  172. unsigned int lowest_tCKmin_found = 0;
  173. unsigned int lowest_tCKmin_CL = 0;
  174. unsigned int i;
  175. debug("mclk_ps = %u\n", mclk_ps);
  176. for (i = 0; i < num_speed_bins; i++) {
  177. unsigned int x = ddr1_speed_bins[i];
  178. debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
  179. i, x, lowest_tCKmin_found);
  180. if (x && lowest_tCKmin_found <= x && x <= mclk_ps) {
  181. lowest_tCKmin_found = x;
  182. lowest_tCKmin_CL = i + 1;
  183. }
  184. }
  185. debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
  186. return lowest_tCKmin_CL;
  187. }
  188. /*
  189. * ddr_compute_dimm_parameters for DDR1 SPD
  190. *
  191. * Compute DIMM parameters based upon the SPD information in spd.
  192. * Writes the results to the dimm_params_t structure pointed by pdimm.
  193. *
  194. * FIXME: use #define for the retvals
  195. */
  196. unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num,
  197. const ddr1_spd_eeprom_t *spd,
  198. dimm_params_t *pdimm,
  199. unsigned int dimm_number)
  200. {
  201. unsigned int retval;
  202. if (spd->mem_type) {
  203. if (spd->mem_type != SPD_MEMTYPE_DDR) {
  204. printf("DIMM %u: is not a DDR1 SPD.\n", dimm_number);
  205. return 1;
  206. }
  207. } else {
  208. memset(pdimm, 0, sizeof(dimm_params_t));
  209. return 1;
  210. }
  211. retval = ddr1_spd_check(spd);
  212. if (retval) {
  213. printf("DIMM %u: failed checksum\n", dimm_number);
  214. return 2;
  215. }
  216. /*
  217. * The part name in ASCII in the SPD EEPROM is not null terminated.
  218. * Guarantee null termination here by presetting all bytes to 0
  219. * and copying the part name in ASCII from the SPD onto it
  220. */
  221. memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
  222. memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
  223. /* DIMM organization parameters */
  224. pdimm->n_ranks = spd->nrows;
  225. pdimm->rank_density = compute_ranksize(spd->mem_type, spd->bank_dens);
  226. pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
  227. pdimm->data_width = spd->dataw_lsb;
  228. pdimm->primary_sdram_width = spd->primw;
  229. pdimm->ec_sdram_width = spd->ecw;
  230. /*
  231. * FIXME: Need to determine registered_dimm status.
  232. * 1 == register buffered
  233. * 0 == unbuffered
  234. */
  235. pdimm->registered_dimm = 0; /* unbuffered */
  236. /* SDRAM device parameters */
  237. pdimm->n_row_addr = spd->nrow_addr;
  238. pdimm->n_col_addr = spd->ncol_addr;
  239. pdimm->n_banks_per_sdram_device = spd->nbanks;
  240. pdimm->edc_config = spd->config;
  241. pdimm->burst_lengths_bitmask = spd->burstl;
  242. /*
  243. * Calculate the Maximum Data Rate based on the Minimum Cycle time.
  244. * The SPD clk_cycle field (tCKmin) is measured in tenths of
  245. * nanoseconds and represented as BCD.
  246. */
  247. pdimm->tckmin_x_ps
  248. = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
  249. pdimm->tckmin_x_minus_1_ps
  250. = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
  251. pdimm->tckmin_x_minus_2_ps
  252. = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
  253. pdimm->tckmax_ps = compute_tckmax_from_spd_ps(spd->tckmax);
  254. /*
  255. * Compute CAS latencies defined by SPD
  256. * The SPD caslat_x should have at least 1 and at most 3 bits set.
  257. *
  258. * If cas_lat after masking is 0, the __ilog2 function returns
  259. * 255 into the variable. This behavior is abused once.
  260. */
  261. pdimm->caslat_x = __ilog2(spd->cas_lat);
  262. pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
  263. & ~(1 << pdimm->caslat_x));
  264. pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
  265. & ~(1 << pdimm->caslat_x)
  266. & ~(1 << pdimm->caslat_x_minus_1));
  267. /* Compute CAS latencies below that defined by SPD */
  268. pdimm->caslat_lowest_derated = compute_derated_DDR1_CAS_latency(
  269. get_memory_clk_period_ps(ctrl_num));
  270. /* Compute timing parameters */
  271. pdimm->trcd_ps = spd->trcd * 250;
  272. pdimm->trp_ps = spd->trp * 250;
  273. pdimm->tras_ps = spd->tras * 1000;
  274. pdimm->twr_ps = mclk_to_picos(ctrl_num, 3);
  275. pdimm->twtr_ps = mclk_to_picos(ctrl_num, 1);
  276. pdimm->trfc_ps = compute_trfc_ps_from_spd(0, spd->trfc);
  277. pdimm->trrd_ps = spd->trrd * 250;
  278. pdimm->trc_ps = compute_trc_ps_from_spd(0, spd->trc);
  279. pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
  280. pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
  281. pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
  282. pdimm->tds_ps
  283. = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
  284. pdimm->tdh_ps
  285. = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
  286. pdimm->trtp_ps = mclk_to_picos(ctrl_num, 2); /* By the book. */
  287. pdimm->tdqsq_max_ps = spd->tdqsq * 10;
  288. pdimm->tqhs_ps = spd->tqhs * 10;
  289. return 0;
  290. }