clock.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. /*
  2. * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+
  5. */
  6. #include <common.h>
  7. #include <asm/io.h>
  8. #include <asm/errno.h>
  9. #include <asm/arch/imx-regs.h>
  10. #include <asm/arch/crm_regs.h>
  11. #include <asm/arch/clock.h>
  12. #include <asm/arch/sys_proto.h>
  13. enum pll_clocks {
  14. PLL_SYS, /* System PLL */
  15. PLL_BUS, /* System Bus PLL*/
  16. PLL_USBOTG, /* OTG USB PLL */
  17. PLL_ENET, /* ENET PLL */
  18. };
  19. struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  20. #ifdef CONFIG_MXC_OCOTP
  21. void enable_ocotp_clk(unsigned char enable)
  22. {
  23. u32 reg;
  24. reg = __raw_readl(&imx_ccm->CCGR2);
  25. if (enable)
  26. reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
  27. else
  28. reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
  29. __raw_writel(reg, &imx_ccm->CCGR2);
  30. }
  31. #endif
  32. void enable_usboh3_clk(unsigned char enable)
  33. {
  34. u32 reg;
  35. reg = __raw_readl(&imx_ccm->CCGR6);
  36. if (enable)
  37. reg |= MXC_CCM_CCGR6_USBOH3_MASK;
  38. else
  39. reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
  40. __raw_writel(reg, &imx_ccm->CCGR6);
  41. }
  42. #ifdef CONFIG_I2C_MXC
  43. /* i2c_num can be from 0 - 2 */
  44. int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
  45. {
  46. u32 reg;
  47. u32 mask;
  48. if (i2c_num > 2)
  49. return -EINVAL;
  50. mask = MXC_CCM_CCGR_CG_MASK
  51. << (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET + (i2c_num << 1));
  52. reg = __raw_readl(&imx_ccm->CCGR2);
  53. if (enable)
  54. reg |= mask;
  55. else
  56. reg &= ~mask;
  57. __raw_writel(reg, &imx_ccm->CCGR2);
  58. return 0;
  59. }
  60. #endif
  61. static u32 decode_pll(enum pll_clocks pll, u32 infreq)
  62. {
  63. u32 div;
  64. switch (pll) {
  65. case PLL_SYS:
  66. div = __raw_readl(&imx_ccm->analog_pll_sys);
  67. div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
  68. return infreq * (div >> 1);
  69. case PLL_BUS:
  70. div = __raw_readl(&imx_ccm->analog_pll_528);
  71. div &= BM_ANADIG_PLL_528_DIV_SELECT;
  72. return infreq * (20 + (div << 1));
  73. case PLL_USBOTG:
  74. div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
  75. div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
  76. return infreq * (20 + (div << 1));
  77. case PLL_ENET:
  78. div = __raw_readl(&imx_ccm->analog_pll_enet);
  79. div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
  80. return (div == 3 ? 125000000 : 25000000 * (div << 1));
  81. default:
  82. return 0;
  83. }
  84. /* NOTREACHED */
  85. }
  86. static u32 get_mcu_main_clk(void)
  87. {
  88. u32 reg, freq;
  89. reg = __raw_readl(&imx_ccm->cacrr);
  90. reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
  91. reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
  92. freq = decode_pll(PLL_SYS, MXC_HCLK);
  93. return freq / (reg + 1);
  94. }
  95. u32 get_periph_clk(void)
  96. {
  97. u32 reg, freq = 0;
  98. reg = __raw_readl(&imx_ccm->cbcdr);
  99. if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
  100. reg = __raw_readl(&imx_ccm->cbcmr);
  101. reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
  102. reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
  103. switch (reg) {
  104. case 0:
  105. freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  106. break;
  107. case 1:
  108. case 2:
  109. freq = MXC_HCLK;
  110. break;
  111. default:
  112. break;
  113. }
  114. } else {
  115. reg = __raw_readl(&imx_ccm->cbcmr);
  116. reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
  117. reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
  118. switch (reg) {
  119. case 0:
  120. freq = decode_pll(PLL_BUS, MXC_HCLK);
  121. break;
  122. case 1:
  123. freq = PLL2_PFD2_FREQ;
  124. break;
  125. case 2:
  126. freq = PLL2_PFD0_FREQ;
  127. break;
  128. case 3:
  129. freq = PLL2_PFD2_DIV_FREQ;
  130. break;
  131. default:
  132. break;
  133. }
  134. }
  135. return freq;
  136. }
  137. static u32 get_ipg_clk(void)
  138. {
  139. u32 reg, ipg_podf;
  140. reg = __raw_readl(&imx_ccm->cbcdr);
  141. reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
  142. ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
  143. return get_ahb_clk() / (ipg_podf + 1);
  144. }
  145. static u32 get_ipg_per_clk(void)
  146. {
  147. u32 reg, perclk_podf;
  148. reg = __raw_readl(&imx_ccm->cscmr1);
  149. perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
  150. return get_ipg_clk() / (perclk_podf + 1);
  151. }
  152. static u32 get_uart_clk(void)
  153. {
  154. u32 reg, uart_podf;
  155. u32 freq = PLL3_80M;
  156. reg = __raw_readl(&imx_ccm->cscdr1);
  157. #ifdef CONFIG_MX6SL
  158. if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
  159. freq = MXC_HCLK;
  160. #endif
  161. reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
  162. uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
  163. return freq / (uart_podf + 1);
  164. }
  165. static u32 get_cspi_clk(void)
  166. {
  167. u32 reg, cspi_podf;
  168. reg = __raw_readl(&imx_ccm->cscdr2);
  169. reg &= MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK;
  170. cspi_podf = reg >> MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
  171. return PLL3_60M / (cspi_podf + 1);
  172. }
  173. static u32 get_axi_clk(void)
  174. {
  175. u32 root_freq, axi_podf;
  176. u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
  177. axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
  178. axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
  179. if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
  180. if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
  181. root_freq = PLL2_PFD2_FREQ;
  182. else
  183. root_freq = PLL3_PFD1_FREQ;
  184. } else
  185. root_freq = get_periph_clk();
  186. return root_freq / (axi_podf + 1);
  187. }
  188. static u32 get_emi_slow_clk(void)
  189. {
  190. u32 emi_clk_sel, emi_slow_pof, cscmr1, root_freq = 0;
  191. cscmr1 = __raw_readl(&imx_ccm->cscmr1);
  192. emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
  193. emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
  194. emi_slow_pof = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
  195. emi_slow_pof >>= MXC_CCM_CSCMR1_ACLK_EMI_PODF_OFFSET;
  196. switch (emi_clk_sel) {
  197. case 0:
  198. root_freq = get_axi_clk();
  199. break;
  200. case 1:
  201. root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  202. break;
  203. case 2:
  204. root_freq = PLL2_PFD2_FREQ;
  205. break;
  206. case 3:
  207. root_freq = PLL2_PFD0_FREQ;
  208. break;
  209. }
  210. return root_freq / (emi_slow_pof + 1);
  211. }
  212. #ifdef CONFIG_MX6SL
  213. static u32 get_mmdc_ch0_clk(void)
  214. {
  215. u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
  216. u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
  217. u32 freq, podf;
  218. podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) \
  219. >> MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
  220. switch ((cbcmr & MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
  221. MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
  222. case 0:
  223. freq = decode_pll(PLL_BUS, MXC_HCLK);
  224. break;
  225. case 1:
  226. freq = PLL2_PFD2_FREQ;
  227. break;
  228. case 2:
  229. freq = PLL2_PFD0_FREQ;
  230. break;
  231. case 3:
  232. freq = PLL2_PFD2_DIV_FREQ;
  233. }
  234. return freq / (podf + 1);
  235. }
  236. #else
  237. static u32 get_mmdc_ch0_clk(void)
  238. {
  239. u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
  240. u32 mmdc_ch0_podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
  241. MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
  242. return get_periph_clk() / (mmdc_ch0_podf + 1);
  243. }
  244. #endif
  245. static u32 get_usdhc_clk(u32 port)
  246. {
  247. u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
  248. u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
  249. u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
  250. switch (port) {
  251. case 0:
  252. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
  253. MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
  254. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
  255. break;
  256. case 1:
  257. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
  258. MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
  259. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
  260. break;
  261. case 2:
  262. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
  263. MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
  264. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
  265. break;
  266. case 3:
  267. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
  268. MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
  269. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
  270. break;
  271. default:
  272. break;
  273. }
  274. if (clk_sel)
  275. root_freq = PLL2_PFD0_FREQ;
  276. else
  277. root_freq = PLL2_PFD2_FREQ;
  278. return root_freq / (usdhc_podf + 1);
  279. }
  280. u32 imx_get_uartclk(void)
  281. {
  282. return get_uart_clk();
  283. }
  284. u32 imx_get_fecclk(void)
  285. {
  286. return decode_pll(PLL_ENET, MXC_HCLK);
  287. }
  288. int enable_sata_clock(void)
  289. {
  290. u32 reg = 0;
  291. s32 timeout = 100000;
  292. struct mxc_ccm_reg *const imx_ccm
  293. = (struct mxc_ccm_reg *) CCM_BASE_ADDR;
  294. /* Enable sata clock */
  295. reg = readl(&imx_ccm->CCGR5); /* CCGR5 */
  296. reg |= MXC_CCM_CCGR5_SATA_MASK;
  297. writel(reg, &imx_ccm->CCGR5);
  298. /* Enable PLLs */
  299. reg = readl(&imx_ccm->analog_pll_enet);
  300. reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
  301. writel(reg, &imx_ccm->analog_pll_enet);
  302. reg |= BM_ANADIG_PLL_SYS_ENABLE;
  303. while (timeout--) {
  304. if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
  305. break;
  306. }
  307. if (timeout <= 0)
  308. return -EIO;
  309. reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
  310. writel(reg, &imx_ccm->analog_pll_enet);
  311. reg |= BM_ANADIG_PLL_ENET_ENABLE_SATA;
  312. writel(reg, &imx_ccm->analog_pll_enet);
  313. return 0 ;
  314. }
  315. unsigned int mxc_get_clock(enum mxc_clock clk)
  316. {
  317. switch (clk) {
  318. case MXC_ARM_CLK:
  319. return get_mcu_main_clk();
  320. case MXC_PER_CLK:
  321. return get_periph_clk();
  322. case MXC_AHB_CLK:
  323. return get_ahb_clk();
  324. case MXC_IPG_CLK:
  325. return get_ipg_clk();
  326. case MXC_IPG_PERCLK:
  327. case MXC_I2C_CLK:
  328. return get_ipg_per_clk();
  329. case MXC_UART_CLK:
  330. return get_uart_clk();
  331. case MXC_CSPI_CLK:
  332. return get_cspi_clk();
  333. case MXC_AXI_CLK:
  334. return get_axi_clk();
  335. case MXC_EMI_SLOW_CLK:
  336. return get_emi_slow_clk();
  337. case MXC_DDR_CLK:
  338. return get_mmdc_ch0_clk();
  339. case MXC_ESDHC_CLK:
  340. return get_usdhc_clk(0);
  341. case MXC_ESDHC2_CLK:
  342. return get_usdhc_clk(1);
  343. case MXC_ESDHC3_CLK:
  344. return get_usdhc_clk(2);
  345. case MXC_ESDHC4_CLK:
  346. return get_usdhc_clk(3);
  347. case MXC_SATA_CLK:
  348. return get_ahb_clk();
  349. default:
  350. break;
  351. }
  352. return -1;
  353. }
  354. /*
  355. * Dump some core clockes.
  356. */
  357. int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  358. {
  359. u32 freq;
  360. freq = decode_pll(PLL_SYS, MXC_HCLK);
  361. printf("PLL_SYS %8d MHz\n", freq / 1000000);
  362. freq = decode_pll(PLL_BUS, MXC_HCLK);
  363. printf("PLL_BUS %8d MHz\n", freq / 1000000);
  364. freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  365. printf("PLL_OTG %8d MHz\n", freq / 1000000);
  366. freq = decode_pll(PLL_ENET, MXC_HCLK);
  367. printf("PLL_NET %8d MHz\n", freq / 1000000);
  368. printf("\n");
  369. printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
  370. printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
  371. #ifdef CONFIG_MXC_SPI
  372. printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
  373. #endif
  374. printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
  375. printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
  376. printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
  377. printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
  378. printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
  379. printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
  380. printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
  381. printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
  382. printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
  383. return 0;
  384. }
  385. void enable_ipu_clock(void)
  386. {
  387. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  388. int reg;
  389. reg = readl(&mxc_ccm->CCGR3);
  390. reg |= MXC_CCM_CCGR3_IPU1_IPU_DI0_OFFSET;
  391. writel(reg, &mxc_ccm->CCGR3);
  392. }
  393. /***************************************************/
  394. U_BOOT_CMD(
  395. clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
  396. "display clocks",
  397. ""
  398. );