clock_manager_gen5.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524
  1. /*
  2. * Copyright (C) 2013-2017 Altera Corporation <www.altera.com>
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+
  5. */
  6. #include <common.h>
  7. #include <asm/io.h>
  8. #include <asm/arch/clock_manager.h>
  9. #include <wait_bit.h>
  10. DECLARE_GLOBAL_DATA_PTR;
  11. static const struct socfpga_clock_manager *clock_manager_base =
  12. (struct socfpga_clock_manager *)SOCFPGA_CLKMGR_ADDRESS;
  13. /*
  14. * function to write the bypass register which requires a poll of the
  15. * busy bit
  16. */
  17. static void cm_write_bypass(u32 val)
  18. {
  19. writel(val, &clock_manager_base->bypass);
  20. cm_wait_for_fsm();
  21. }
  22. /* function to write the ctrl register which requires a poll of the busy bit */
  23. static void cm_write_ctrl(u32 val)
  24. {
  25. writel(val, &clock_manager_base->ctrl);
  26. cm_wait_for_fsm();
  27. }
  28. /* function to write a clock register that has phase information */
  29. static int cm_write_with_phase(u32 value, u32 reg_address, u32 mask)
  30. {
  31. int ret;
  32. /* poll until phase is zero */
  33. ret = wait_for_bit(__func__, (const u32 *)reg_address, mask,
  34. false, 20000, false);
  35. if (ret)
  36. return ret;
  37. writel(value, reg_address);
  38. return wait_for_bit(__func__, (const u32 *)reg_address, mask,
  39. false, 20000, false);
  40. }
  41. /*
  42. * Setup clocks while making no assumptions about previous state of the clocks.
  43. *
  44. * Start by being paranoid and gate all sw managed clocks
  45. * Put all plls in bypass
  46. * Put all plls VCO registers back to reset value (bandgap power down).
  47. * Put peripheral and main pll src to reset value to avoid glitch.
  48. * Delay 5 us.
  49. * Deassert bandgap power down and set numerator and denominator
  50. * Start 7 us timer.
  51. * set internal dividers
  52. * Wait for 7 us timer.
  53. * Enable plls
  54. * Set external dividers while plls are locking
  55. * Wait for pll lock
  56. * Assert/deassert outreset all.
  57. * Take all pll's out of bypass
  58. * Clear safe mode
  59. * set source main and peripheral clocks
  60. * Ungate clocks
  61. */
  62. int cm_basic_init(const struct cm_config * const cfg)
  63. {
  64. unsigned long end;
  65. int ret;
  66. /* Start by being paranoid and gate all sw managed clocks */
  67. /*
  68. * We need to disable nandclk
  69. * and then do another apb access before disabling
  70. * gatting off the rest of the periperal clocks.
  71. */
  72. writel(~CLKMGR_PERPLLGRP_EN_NANDCLK_MASK &
  73. readl(&clock_manager_base->per_pll.en),
  74. &clock_manager_base->per_pll.en);
  75. /* DO NOT GATE OFF DEBUG CLOCKS & BRIDGE CLOCKS */
  76. writel(CLKMGR_MAINPLLGRP_EN_DBGTIMERCLK_MASK |
  77. CLKMGR_MAINPLLGRP_EN_DBGTRACECLK_MASK |
  78. CLKMGR_MAINPLLGRP_EN_DBGCLK_MASK |
  79. CLKMGR_MAINPLLGRP_EN_DBGATCLK_MASK |
  80. CLKMGR_MAINPLLGRP_EN_S2FUSER0CLK_MASK |
  81. CLKMGR_MAINPLLGRP_EN_L4MPCLK_MASK,
  82. &clock_manager_base->main_pll.en);
  83. writel(0, &clock_manager_base->sdr_pll.en);
  84. /* now we can gate off the rest of the peripheral clocks */
  85. writel(0, &clock_manager_base->per_pll.en);
  86. /* Put all plls in bypass */
  87. cm_write_bypass(CLKMGR_BYPASS_PERPLL | CLKMGR_BYPASS_SDRPLL |
  88. CLKMGR_BYPASS_MAINPLL);
  89. /* Put all plls VCO registers back to reset value. */
  90. writel(CLKMGR_MAINPLLGRP_VCO_RESET_VALUE &
  91. ~CLKMGR_MAINPLLGRP_VCO_REGEXTSEL_MASK,
  92. &clock_manager_base->main_pll.vco);
  93. writel(CLKMGR_PERPLLGRP_VCO_RESET_VALUE &
  94. ~CLKMGR_PERPLLGRP_VCO_REGEXTSEL_MASK,
  95. &clock_manager_base->per_pll.vco);
  96. writel(CLKMGR_SDRPLLGRP_VCO_RESET_VALUE &
  97. ~CLKMGR_SDRPLLGRP_VCO_REGEXTSEL_MASK,
  98. &clock_manager_base->sdr_pll.vco);
  99. /*
  100. * The clocks to the flash devices and the L4_MAIN clocks can
  101. * glitch when coming out of safe mode if their source values
  102. * are different from their reset value. So the trick it to
  103. * put them back to their reset state, and change input
  104. * after exiting safe mode but before ungating the clocks.
  105. */
  106. writel(CLKMGR_PERPLLGRP_SRC_RESET_VALUE,
  107. &clock_manager_base->per_pll.src);
  108. writel(CLKMGR_MAINPLLGRP_L4SRC_RESET_VALUE,
  109. &clock_manager_base->main_pll.l4src);
  110. /* read back for the required 5 us delay. */
  111. readl(&clock_manager_base->main_pll.vco);
  112. readl(&clock_manager_base->per_pll.vco);
  113. readl(&clock_manager_base->sdr_pll.vco);
  114. /*
  115. * We made sure bgpwr down was assert for 5 us. Now deassert BG PWR DN
  116. * with numerator and denominator.
  117. */
  118. writel(cfg->main_vco_base, &clock_manager_base->main_pll.vco);
  119. writel(cfg->peri_vco_base, &clock_manager_base->per_pll.vco);
  120. writel(cfg->sdram_vco_base, &clock_manager_base->sdr_pll.vco);
  121. /*
  122. * Time starts here. Must wait 7 us from
  123. * BGPWRDN_SET(0) to VCO_ENABLE_SET(1).
  124. */
  125. end = timer_get_us() + 7;
  126. /* main mpu */
  127. writel(cfg->mpuclk, &clock_manager_base->main_pll.mpuclk);
  128. /* altera group mpuclk */
  129. writel(cfg->altera_grp_mpuclk, &clock_manager_base->altera.mpuclk);
  130. /* main main clock */
  131. writel(cfg->mainclk, &clock_manager_base->main_pll.mainclk);
  132. /* main for dbg */
  133. writel(cfg->dbgatclk, &clock_manager_base->main_pll.dbgatclk);
  134. /* main for cfgs2fuser0clk */
  135. writel(cfg->cfg2fuser0clk,
  136. &clock_manager_base->main_pll.cfgs2fuser0clk);
  137. /* Peri emac0 50 MHz default to RMII */
  138. writel(cfg->emac0clk, &clock_manager_base->per_pll.emac0clk);
  139. /* Peri emac1 50 MHz default to RMII */
  140. writel(cfg->emac1clk, &clock_manager_base->per_pll.emac1clk);
  141. /* Peri QSPI */
  142. writel(cfg->mainqspiclk, &clock_manager_base->main_pll.mainqspiclk);
  143. writel(cfg->perqspiclk, &clock_manager_base->per_pll.perqspiclk);
  144. /* Peri pernandsdmmcclk */
  145. writel(cfg->mainnandsdmmcclk,
  146. &clock_manager_base->main_pll.mainnandsdmmcclk);
  147. writel(cfg->pernandsdmmcclk,
  148. &clock_manager_base->per_pll.pernandsdmmcclk);
  149. /* Peri perbaseclk */
  150. writel(cfg->perbaseclk, &clock_manager_base->per_pll.perbaseclk);
  151. /* Peri s2fuser1clk */
  152. writel(cfg->s2fuser1clk, &clock_manager_base->per_pll.s2fuser1clk);
  153. /* 7 us must have elapsed before we can enable the VCO */
  154. while (timer_get_us() < end)
  155. ;
  156. /* Enable vco */
  157. /* main pll vco */
  158. writel(cfg->main_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
  159. &clock_manager_base->main_pll.vco);
  160. /* periferal pll */
  161. writel(cfg->peri_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
  162. &clock_manager_base->per_pll.vco);
  163. /* sdram pll vco */
  164. writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
  165. &clock_manager_base->sdr_pll.vco);
  166. /* L3 MP and L3 SP */
  167. writel(cfg->maindiv, &clock_manager_base->main_pll.maindiv);
  168. writel(cfg->dbgdiv, &clock_manager_base->main_pll.dbgdiv);
  169. writel(cfg->tracediv, &clock_manager_base->main_pll.tracediv);
  170. /* L4 MP, L4 SP, can0, and can1 */
  171. writel(cfg->perdiv, &clock_manager_base->per_pll.div);
  172. writel(cfg->gpiodiv, &clock_manager_base->per_pll.gpiodiv);
  173. cm_wait_for_lock(LOCKED_MASK);
  174. /* write the sdram clock counters before toggling outreset all */
  175. writel(cfg->ddrdqsclk & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK,
  176. &clock_manager_base->sdr_pll.ddrdqsclk);
  177. writel(cfg->ddr2xdqsclk & CLKMGR_SDRPLLGRP_DDR2XDQSCLK_CNT_MASK,
  178. &clock_manager_base->sdr_pll.ddr2xdqsclk);
  179. writel(cfg->ddrdqclk & CLKMGR_SDRPLLGRP_DDRDQCLK_CNT_MASK,
  180. &clock_manager_base->sdr_pll.ddrdqclk);
  181. writel(cfg->s2fuser2clk & CLKMGR_SDRPLLGRP_S2FUSER2CLK_CNT_MASK,
  182. &clock_manager_base->sdr_pll.s2fuser2clk);
  183. /*
  184. * after locking, but before taking out of bypass
  185. * assert/deassert outresetall
  186. */
  187. u32 mainvco = readl(&clock_manager_base->main_pll.vco);
  188. /* assert main outresetall */
  189. writel(mainvco | CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
  190. &clock_manager_base->main_pll.vco);
  191. u32 periphvco = readl(&clock_manager_base->per_pll.vco);
  192. /* assert pheriph outresetall */
  193. writel(periphvco | CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
  194. &clock_manager_base->per_pll.vco);
  195. /* assert sdram outresetall */
  196. writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN|
  197. CLKMGR_SDRPLLGRP_VCO_OUTRESETALL,
  198. &clock_manager_base->sdr_pll.vco);
  199. /* deassert main outresetall */
  200. writel(mainvco & ~CLKMGR_MAINPLLGRP_VCO_OUTRESETALL_MASK,
  201. &clock_manager_base->main_pll.vco);
  202. /* deassert pheriph outresetall */
  203. writel(periphvco & ~CLKMGR_PERPLLGRP_VCO_OUTRESETALL_MASK,
  204. &clock_manager_base->per_pll.vco);
  205. /* deassert sdram outresetall */
  206. writel(cfg->sdram_vco_base | CLKMGR_MAINPLLGRP_VCO_EN,
  207. &clock_manager_base->sdr_pll.vco);
  208. /*
  209. * now that we've toggled outreset all, all the clocks
  210. * are aligned nicely; so we can change any phase.
  211. */
  212. ret = cm_write_with_phase(cfg->ddrdqsclk,
  213. (u32)&clock_manager_base->sdr_pll.ddrdqsclk,
  214. CLKMGR_SDRPLLGRP_DDRDQSCLK_PHASE_MASK);
  215. if (ret)
  216. return ret;
  217. /* SDRAM DDR2XDQSCLK */
  218. ret = cm_write_with_phase(cfg->ddr2xdqsclk,
  219. (u32)&clock_manager_base->sdr_pll.ddr2xdqsclk,
  220. CLKMGR_SDRPLLGRP_DDR2XDQSCLK_PHASE_MASK);
  221. if (ret)
  222. return ret;
  223. ret = cm_write_with_phase(cfg->ddrdqclk,
  224. (u32)&clock_manager_base->sdr_pll.ddrdqclk,
  225. CLKMGR_SDRPLLGRP_DDRDQCLK_PHASE_MASK);
  226. if (ret)
  227. return ret;
  228. ret = cm_write_with_phase(cfg->s2fuser2clk,
  229. (u32)&clock_manager_base->sdr_pll.s2fuser2clk,
  230. CLKMGR_SDRPLLGRP_S2FUSER2CLK_PHASE_MASK);
  231. if (ret)
  232. return ret;
  233. /* Take all three PLLs out of bypass when safe mode is cleared. */
  234. cm_write_bypass(0);
  235. /* clear safe mode */
  236. cm_write_ctrl(readl(&clock_manager_base->ctrl) | CLKMGR_CTRL_SAFEMODE);
  237. /*
  238. * now that safe mode is clear with clocks gated
  239. * it safe to change the source mux for the flashes the the L4_MAIN
  240. */
  241. writel(cfg->persrc, &clock_manager_base->per_pll.src);
  242. writel(cfg->l4src, &clock_manager_base->main_pll.l4src);
  243. /* Now ungate non-hw-managed clocks */
  244. writel(~0, &clock_manager_base->main_pll.en);
  245. writel(~0, &clock_manager_base->per_pll.en);
  246. writel(~0, &clock_manager_base->sdr_pll.en);
  247. /* Clear the loss of lock bits (write 1 to clear) */
  248. writel(CLKMGR_INTER_SDRPLLLOST_MASK | CLKMGR_INTER_PERPLLLOST_MASK |
  249. CLKMGR_INTER_MAINPLLLOST_MASK,
  250. &clock_manager_base->inter);
  251. return 0;
  252. }
  253. static unsigned int cm_get_main_vco_clk_hz(void)
  254. {
  255. u32 reg, clock;
  256. /* get the main VCO clock */
  257. reg = readl(&clock_manager_base->main_pll.vco);
  258. clock = cm_get_osc_clk_hz(1);
  259. clock /= ((reg & CLKMGR_MAINPLLGRP_VCO_DENOM_MASK) >>
  260. CLKMGR_MAINPLLGRP_VCO_DENOM_OFFSET) + 1;
  261. clock *= ((reg & CLKMGR_MAINPLLGRP_VCO_NUMER_MASK) >>
  262. CLKMGR_MAINPLLGRP_VCO_NUMER_OFFSET) + 1;
  263. return clock;
  264. }
  265. static unsigned int cm_get_per_vco_clk_hz(void)
  266. {
  267. u32 reg, clock = 0;
  268. /* identify PER PLL clock source */
  269. reg = readl(&clock_manager_base->per_pll.vco);
  270. reg = (reg & CLKMGR_PERPLLGRP_VCO_SSRC_MASK) >>
  271. CLKMGR_PERPLLGRP_VCO_SSRC_OFFSET;
  272. if (reg == CLKMGR_VCO_SSRC_EOSC1)
  273. clock = cm_get_osc_clk_hz(1);
  274. else if (reg == CLKMGR_VCO_SSRC_EOSC2)
  275. clock = cm_get_osc_clk_hz(2);
  276. else if (reg == CLKMGR_VCO_SSRC_F2S)
  277. clock = cm_get_f2s_per_ref_clk_hz();
  278. /* get the PER VCO clock */
  279. reg = readl(&clock_manager_base->per_pll.vco);
  280. clock /= ((reg & CLKMGR_PERPLLGRP_VCO_DENOM_MASK) >>
  281. CLKMGR_PERPLLGRP_VCO_DENOM_OFFSET) + 1;
  282. clock *= ((reg & CLKMGR_PERPLLGRP_VCO_NUMER_MASK) >>
  283. CLKMGR_PERPLLGRP_VCO_NUMER_OFFSET) + 1;
  284. return clock;
  285. }
  286. unsigned long cm_get_mpu_clk_hz(void)
  287. {
  288. u32 reg, clock;
  289. clock = cm_get_main_vco_clk_hz();
  290. /* get the MPU clock */
  291. reg = readl(&clock_manager_base->altera.mpuclk);
  292. clock /= (reg + 1);
  293. reg = readl(&clock_manager_base->main_pll.mpuclk);
  294. clock /= (reg + 1);
  295. return clock;
  296. }
  297. unsigned long cm_get_sdram_clk_hz(void)
  298. {
  299. u32 reg, clock = 0;
  300. /* identify SDRAM PLL clock source */
  301. reg = readl(&clock_manager_base->sdr_pll.vco);
  302. reg = (reg & CLKMGR_SDRPLLGRP_VCO_SSRC_MASK) >>
  303. CLKMGR_SDRPLLGRP_VCO_SSRC_OFFSET;
  304. if (reg == CLKMGR_VCO_SSRC_EOSC1)
  305. clock = cm_get_osc_clk_hz(1);
  306. else if (reg == CLKMGR_VCO_SSRC_EOSC2)
  307. clock = cm_get_osc_clk_hz(2);
  308. else if (reg == CLKMGR_VCO_SSRC_F2S)
  309. clock = cm_get_f2s_sdr_ref_clk_hz();
  310. /* get the SDRAM VCO clock */
  311. reg = readl(&clock_manager_base->sdr_pll.vco);
  312. clock /= ((reg & CLKMGR_SDRPLLGRP_VCO_DENOM_MASK) >>
  313. CLKMGR_SDRPLLGRP_VCO_DENOM_OFFSET) + 1;
  314. clock *= ((reg & CLKMGR_SDRPLLGRP_VCO_NUMER_MASK) >>
  315. CLKMGR_SDRPLLGRP_VCO_NUMER_OFFSET) + 1;
  316. /* get the SDRAM (DDR_DQS) clock */
  317. reg = readl(&clock_manager_base->sdr_pll.ddrdqsclk);
  318. reg = (reg & CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_MASK) >>
  319. CLKMGR_SDRPLLGRP_DDRDQSCLK_CNT_OFFSET;
  320. clock /= (reg + 1);
  321. return clock;
  322. }
  323. unsigned int cm_get_l4_sp_clk_hz(void)
  324. {
  325. u32 reg, clock = 0;
  326. /* identify the source of L4 SP clock */
  327. reg = readl(&clock_manager_base->main_pll.l4src);
  328. reg = (reg & CLKMGR_MAINPLLGRP_L4SRC_L4SP) >>
  329. CLKMGR_MAINPLLGRP_L4SRC_L4SP_OFFSET;
  330. if (reg == CLKMGR_L4_SP_CLK_SRC_MAINPLL) {
  331. clock = cm_get_main_vco_clk_hz();
  332. /* get the clock prior L4 SP divider (main clk) */
  333. reg = readl(&clock_manager_base->altera.mainclk);
  334. clock /= (reg + 1);
  335. reg = readl(&clock_manager_base->main_pll.mainclk);
  336. clock /= (reg + 1);
  337. } else if (reg == CLKMGR_L4_SP_CLK_SRC_PERPLL) {
  338. clock = cm_get_per_vco_clk_hz();
  339. /* get the clock prior L4 SP divider (periph_base_clk) */
  340. reg = readl(&clock_manager_base->per_pll.perbaseclk);
  341. clock /= (reg + 1);
  342. }
  343. /* get the L4 SP clock which supplied to UART */
  344. reg = readl(&clock_manager_base->main_pll.maindiv);
  345. reg = (reg & CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_MASK) >>
  346. CLKMGR_MAINPLLGRP_MAINDIV_L4SPCLK_OFFSET;
  347. clock = clock / (1 << reg);
  348. return clock;
  349. }
  350. unsigned int cm_get_mmc_controller_clk_hz(void)
  351. {
  352. u32 reg, clock = 0;
  353. /* identify the source of MMC clock */
  354. reg = readl(&clock_manager_base->per_pll.src);
  355. reg = (reg & CLKMGR_PERPLLGRP_SRC_SDMMC_MASK) >>
  356. CLKMGR_PERPLLGRP_SRC_SDMMC_OFFSET;
  357. if (reg == CLKMGR_SDMMC_CLK_SRC_F2S) {
  358. clock = cm_get_f2s_per_ref_clk_hz();
  359. } else if (reg == CLKMGR_SDMMC_CLK_SRC_MAIN) {
  360. clock = cm_get_main_vco_clk_hz();
  361. /* get the SDMMC clock */
  362. reg = readl(&clock_manager_base->main_pll.mainnandsdmmcclk);
  363. clock /= (reg + 1);
  364. } else if (reg == CLKMGR_SDMMC_CLK_SRC_PER) {
  365. clock = cm_get_per_vco_clk_hz();
  366. /* get the SDMMC clock */
  367. reg = readl(&clock_manager_base->per_pll.pernandsdmmcclk);
  368. clock /= (reg + 1);
  369. }
  370. /* further divide by 4 as we have fixed divider at wrapper */
  371. clock /= 4;
  372. return clock;
  373. }
  374. unsigned int cm_get_qspi_controller_clk_hz(void)
  375. {
  376. u32 reg, clock = 0;
  377. /* identify the source of QSPI clock */
  378. reg = readl(&clock_manager_base->per_pll.src);
  379. reg = (reg & CLKMGR_PERPLLGRP_SRC_QSPI_MASK) >>
  380. CLKMGR_PERPLLGRP_SRC_QSPI_OFFSET;
  381. if (reg == CLKMGR_QSPI_CLK_SRC_F2S) {
  382. clock = cm_get_f2s_per_ref_clk_hz();
  383. } else if (reg == CLKMGR_QSPI_CLK_SRC_MAIN) {
  384. clock = cm_get_main_vco_clk_hz();
  385. /* get the qspi clock */
  386. reg = readl(&clock_manager_base->main_pll.mainqspiclk);
  387. clock /= (reg + 1);
  388. } else if (reg == CLKMGR_QSPI_CLK_SRC_PER) {
  389. clock = cm_get_per_vco_clk_hz();
  390. /* get the qspi clock */
  391. reg = readl(&clock_manager_base->per_pll.perqspiclk);
  392. clock /= (reg + 1);
  393. }
  394. return clock;
  395. }
  396. unsigned int cm_get_spi_controller_clk_hz(void)
  397. {
  398. u32 reg, clock = 0;
  399. clock = cm_get_per_vco_clk_hz();
  400. /* get the clock prior L4 SP divider (periph_base_clk) */
  401. reg = readl(&clock_manager_base->per_pll.perbaseclk);
  402. clock /= (reg + 1);
  403. return clock;
  404. }
  405. void cm_print_clock_quick_summary(void)
  406. {
  407. printf("MPU %10ld kHz\n", cm_get_mpu_clk_hz() / 1000);
  408. printf("DDR %10ld kHz\n", cm_get_sdram_clk_hz() / 1000);
  409. printf("EOSC1 %8d kHz\n", cm_get_osc_clk_hz(1) / 1000);
  410. printf("EOSC2 %8d kHz\n", cm_get_osc_clk_hz(2) / 1000);
  411. printf("F2S_SDR_REF %8d kHz\n", cm_get_f2s_sdr_ref_clk_hz() / 1000);
  412. printf("F2S_PER_REF %8d kHz\n", cm_get_f2s_per_ref_clk_hz() / 1000);
  413. printf("MMC %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000);
  414. printf("QSPI %8d kHz\n", cm_get_qspi_controller_clk_hz() / 1000);
  415. printf("UART %8d kHz\n", cm_get_l4_sp_clk_hz() / 1000);
  416. printf("SPI %8d kHz\n", cm_get_spi_controller_clk_hz() / 1000);
  417. }