dc2114x.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760
  1. // SPDX-License-Identifier: GPL-2.0+
  2. #include <common.h>
  3. #include <malloc.h>
  4. #include <net.h>
  5. #include <netdev.h>
  6. #include <pci.h>
  7. #undef DEBUG_SROM
  8. #undef DEBUG_SROM2
  9. #undef UPDATE_SROM
  10. /* PCI Registers.
  11. */
  12. #define PCI_CFDA_PSM 0x43
  13. #define CFRV_RN 0x000000f0 /* Revision Number */
  14. #define WAKEUP 0x00 /* Power Saving Wakeup */
  15. #define SLEEP 0x80 /* Power Saving Sleep Mode */
  16. #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
  17. /* Ethernet chip registers.
  18. */
  19. #define DE4X5_BMR 0x000 /* Bus Mode Register */
  20. #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
  21. #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
  22. #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
  23. #define DE4X5_STS 0x028 /* Status Register */
  24. #define DE4X5_OMR 0x030 /* Operation Mode Register */
  25. #define DE4X5_SICR 0x068 /* SIA Connectivity Register */
  26. #define DE4X5_APROM 0x048 /* Ethernet Address PROM */
  27. /* Register bits.
  28. */
  29. #define BMR_SWR 0x00000001 /* Software Reset */
  30. #define STS_TS 0x00700000 /* Transmit Process State */
  31. #define STS_RS 0x000e0000 /* Receive Process State */
  32. #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
  33. #define OMR_SR 0x00000002 /* Start/Stop Receive */
  34. #define OMR_PS 0x00040000 /* Port Select */
  35. #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
  36. #define OMR_PM 0x00000080 /* Pass All Multicast */
  37. /* Descriptor bits.
  38. */
  39. #define R_OWN 0x80000000 /* Own Bit */
  40. #define RD_RER 0x02000000 /* Receive End Of Ring */
  41. #define RD_LS 0x00000100 /* Last Descriptor */
  42. #define RD_ES 0x00008000 /* Error Summary */
  43. #define TD_TER 0x02000000 /* Transmit End Of Ring */
  44. #define T_OWN 0x80000000 /* Own Bit */
  45. #define TD_LS 0x40000000 /* Last Segment */
  46. #define TD_FS 0x20000000 /* First Segment */
  47. #define TD_ES 0x00008000 /* Error Summary */
  48. #define TD_SET 0x08000000 /* Setup Packet */
  49. /* The EEPROM commands include the alway-set leading bit. */
  50. #define SROM_WRITE_CMD 5
  51. #define SROM_READ_CMD 6
  52. #define SROM_ERASE_CMD 7
  53. #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
  54. #define SROM_RD 0x00004000 /* Read from Boot ROM */
  55. #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
  56. #define EE_WRITE_0 0x4801
  57. #define EE_WRITE_1 0x4805
  58. #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
  59. #define SROM_SR 0x00000800 /* Select Serial ROM when set */
  60. #define DT_IN 0x00000004 /* Serial Data In */
  61. #define DT_CLK 0x00000002 /* Serial ROM Clock */
  62. #define DT_CS 0x00000001 /* Serial ROM Chip Select */
  63. #define POLL_DEMAND 1
  64. #ifdef CONFIG_TULIP_FIX_DAVICOM
  65. #define RESET_DM9102(dev) {\
  66. unsigned long i;\
  67. i=INL(dev, 0x0);\
  68. udelay(1000);\
  69. OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  70. udelay(1000);\
  71. }
  72. #else
  73. #define RESET_DE4X5(dev) {\
  74. int i;\
  75. i=INL(dev, DE4X5_BMR);\
  76. udelay(1000);\
  77. OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  78. udelay(1000);\
  79. OUTL(dev, i, DE4X5_BMR);\
  80. udelay(1000);\
  81. for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
  82. udelay(1000);\
  83. }
  84. #endif
  85. #define START_DE4X5(dev) {\
  86. s32 omr; \
  87. omr = INL(dev, DE4X5_OMR);\
  88. omr |= OMR_ST | OMR_SR;\
  89. OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
  90. }
  91. #define STOP_DE4X5(dev) {\
  92. s32 omr; \
  93. omr = INL(dev, DE4X5_OMR);\
  94. omr &= ~(OMR_ST|OMR_SR);\
  95. OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
  96. }
  97. #define NUM_RX_DESC PKTBUFSRX
  98. #ifndef CONFIG_TULIP_FIX_DAVICOM
  99. #define NUM_TX_DESC 1 /* Number of TX descriptors */
  100. #else
  101. #define NUM_TX_DESC 4
  102. #endif
  103. #define RX_BUFF_SZ PKTSIZE_ALIGN
  104. #define TOUT_LOOP 1000000
  105. #define SETUP_FRAME_LEN 192
  106. struct de4x5_desc {
  107. volatile s32 status;
  108. u32 des1;
  109. u32 buf;
  110. u32 next;
  111. };
  112. static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */
  113. static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */
  114. static int rx_new; /* RX descriptor ring pointer */
  115. static int tx_new; /* TX descriptor ring pointer */
  116. static char rxRingSize;
  117. static char txRingSize;
  118. #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
  119. static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
  120. static int getfrom_srom(struct eth_device* dev, u_long addr);
  121. static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
  122. static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
  123. #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
  124. #ifdef UPDATE_SROM
  125. static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
  126. static void update_srom(struct eth_device *dev, bd_t *bis);
  127. #endif
  128. #ifndef CONFIG_TULIP_FIX_DAVICOM
  129. static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
  130. static void read_hw_addr(struct eth_device* dev, bd_t * bis);
  131. #endif /* CONFIG_TULIP_FIX_DAVICOM */
  132. static void send_setup_frame(struct eth_device* dev, bd_t * bis);
  133. static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
  134. static int dc21x4x_send(struct eth_device *dev, void *packet, int length);
  135. static int dc21x4x_recv(struct eth_device* dev);
  136. static void dc21x4x_halt(struct eth_device* dev);
  137. #ifdef CONFIG_TULIP_SELECT_MEDIA
  138. extern void dc21x4x_select_media(struct eth_device* dev);
  139. #endif
  140. #if defined(CONFIG_E500)
  141. #define phys_to_bus(a) (a)
  142. #else
  143. #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
  144. #endif
  145. static int INL(struct eth_device* dev, u_long addr)
  146. {
  147. return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
  148. }
  149. static void OUTL(struct eth_device* dev, int command, u_long addr)
  150. {
  151. *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
  152. }
  153. static struct pci_device_id supported[] = {
  154. { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
  155. { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
  156. #ifdef CONFIG_TULIP_FIX_DAVICOM
  157. { PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
  158. #endif
  159. { }
  160. };
  161. int dc21x4x_initialize(bd_t *bis)
  162. {
  163. int idx=0;
  164. int card_number = 0;
  165. unsigned int cfrv;
  166. unsigned char timer;
  167. pci_dev_t devbusfn;
  168. unsigned int iobase;
  169. unsigned short status;
  170. struct eth_device* dev;
  171. while(1) {
  172. devbusfn = pci_find_devices(supported, idx++);
  173. if (devbusfn == -1) {
  174. break;
  175. }
  176. /* Get the chip configuration revision register. */
  177. pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
  178. #ifndef CONFIG_TULIP_FIX_DAVICOM
  179. if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
  180. printf("Error: The chip is not DC21143.\n");
  181. continue;
  182. }
  183. #endif
  184. pci_read_config_word(devbusfn, PCI_COMMAND, &status);
  185. status |=
  186. #ifdef CONFIG_TULIP_USE_IO
  187. PCI_COMMAND_IO |
  188. #else
  189. PCI_COMMAND_MEMORY |
  190. #endif
  191. PCI_COMMAND_MASTER;
  192. pci_write_config_word(devbusfn, PCI_COMMAND, status);
  193. pci_read_config_word(devbusfn, PCI_COMMAND, &status);
  194. #ifdef CONFIG_TULIP_USE_IO
  195. if (!(status & PCI_COMMAND_IO)) {
  196. printf("Error: Can not enable I/O access.\n");
  197. continue;
  198. }
  199. #else
  200. if (!(status & PCI_COMMAND_MEMORY)) {
  201. printf("Error: Can not enable MEMORY access.\n");
  202. continue;
  203. }
  204. #endif
  205. if (!(status & PCI_COMMAND_MASTER)) {
  206. printf("Error: Can not enable Bus Mastering.\n");
  207. continue;
  208. }
  209. /* Check the latency timer for values >= 0x60. */
  210. pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
  211. if (timer < 0x60) {
  212. pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
  213. }
  214. #ifdef CONFIG_TULIP_USE_IO
  215. /* read BAR for memory space access */
  216. pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
  217. iobase &= PCI_BASE_ADDRESS_IO_MASK;
  218. #else
  219. /* read BAR for memory space access */
  220. pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
  221. iobase &= PCI_BASE_ADDRESS_MEM_MASK;
  222. #endif
  223. debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
  224. dev = (struct eth_device*) malloc(sizeof *dev);
  225. if (!dev) {
  226. printf("Can not allocalte memory of dc21x4x\n");
  227. break;
  228. }
  229. memset(dev, 0, sizeof(*dev));
  230. #ifdef CONFIG_TULIP_FIX_DAVICOM
  231. sprintf(dev->name, "Davicom#%d", card_number);
  232. #else
  233. sprintf(dev->name, "dc21x4x#%d", card_number);
  234. #endif
  235. #ifdef CONFIG_TULIP_USE_IO
  236. dev->iobase = pci_io_to_phys(devbusfn, iobase);
  237. #else
  238. dev->iobase = pci_mem_to_phys(devbusfn, iobase);
  239. #endif
  240. dev->priv = (void*) devbusfn;
  241. dev->init = dc21x4x_init;
  242. dev->halt = dc21x4x_halt;
  243. dev->send = dc21x4x_send;
  244. dev->recv = dc21x4x_recv;
  245. /* Ensure we're not sleeping. */
  246. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
  247. udelay(10 * 1000);
  248. #ifndef CONFIG_TULIP_FIX_DAVICOM
  249. read_hw_addr(dev, bis);
  250. #endif
  251. eth_register(dev);
  252. card_number++;
  253. }
  254. return card_number;
  255. }
  256. static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
  257. {
  258. int i;
  259. int devbusfn = (int) dev->priv;
  260. /* Ensure we're not sleeping. */
  261. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
  262. #ifdef CONFIG_TULIP_FIX_DAVICOM
  263. RESET_DM9102(dev);
  264. #else
  265. RESET_DE4X5(dev);
  266. #endif
  267. if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
  268. printf("Error: Cannot reset ethernet controller.\n");
  269. return -1;
  270. }
  271. #ifdef CONFIG_TULIP_SELECT_MEDIA
  272. dc21x4x_select_media(dev);
  273. #else
  274. OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
  275. #endif
  276. for (i = 0; i < NUM_RX_DESC; i++) {
  277. rx_ring[i].status = cpu_to_le32(R_OWN);
  278. rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
  279. rx_ring[i].buf = cpu_to_le32(
  280. phys_to_bus((u32)net_rx_packets[i]));
  281. #ifdef CONFIG_TULIP_FIX_DAVICOM
  282. rx_ring[i].next = cpu_to_le32(
  283. phys_to_bus((u32)&rx_ring[(i + 1) % NUM_RX_DESC]));
  284. #else
  285. rx_ring[i].next = 0;
  286. #endif
  287. }
  288. for (i=0; i < NUM_TX_DESC; i++) {
  289. tx_ring[i].status = 0;
  290. tx_ring[i].des1 = 0;
  291. tx_ring[i].buf = 0;
  292. #ifdef CONFIG_TULIP_FIX_DAVICOM
  293. tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
  294. #else
  295. tx_ring[i].next = 0;
  296. #endif
  297. }
  298. rxRingSize = NUM_RX_DESC;
  299. txRingSize = NUM_TX_DESC;
  300. /* Write the end of list marker to the descriptor lists. */
  301. rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
  302. tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
  303. /* Tell the adapter where the TX/RX rings are located. */
  304. OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
  305. OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
  306. START_DE4X5(dev);
  307. tx_new = 0;
  308. rx_new = 0;
  309. send_setup_frame(dev, bis);
  310. return 0;
  311. }
  312. static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
  313. {
  314. int status = -1;
  315. int i;
  316. if (length <= 0) {
  317. printf("%s: bad packet size: %d\n", dev->name, length);
  318. goto Done;
  319. }
  320. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  321. if (i >= TOUT_LOOP) {
  322. printf("%s: tx error buffer not ready\n", dev->name);
  323. goto Done;
  324. }
  325. }
  326. tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
  327. tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
  328. tx_ring[tx_new].status = cpu_to_le32(T_OWN);
  329. OUTL(dev, POLL_DEMAND, DE4X5_TPD);
  330. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  331. if (i >= TOUT_LOOP) {
  332. printf(".%s: tx buffer not ready\n", dev->name);
  333. goto Done;
  334. }
  335. }
  336. if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
  337. #if 0 /* test-only */
  338. printf("TX error status = 0x%08X\n",
  339. le32_to_cpu(tx_ring[tx_new].status));
  340. #endif
  341. tx_ring[tx_new].status = 0x0;
  342. goto Done;
  343. }
  344. status = length;
  345. Done:
  346. tx_new = (tx_new+1) % NUM_TX_DESC;
  347. return status;
  348. }
  349. static int dc21x4x_recv(struct eth_device* dev)
  350. {
  351. s32 status;
  352. int length = 0;
  353. for ( ; ; ) {
  354. status = (s32)le32_to_cpu(rx_ring[rx_new].status);
  355. if (status & R_OWN) {
  356. break;
  357. }
  358. if (status & RD_LS) {
  359. /* Valid frame status.
  360. */
  361. if (status & RD_ES) {
  362. /* There was an error.
  363. */
  364. printf("RX error status = 0x%08X\n", status);
  365. } else {
  366. /* A valid frame received.
  367. */
  368. length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
  369. /* Pass the packet up to the protocol
  370. * layers.
  371. */
  372. net_process_received_packet(
  373. net_rx_packets[rx_new], length - 4);
  374. }
  375. /* Change buffer ownership for this frame, back
  376. * to the adapter.
  377. */
  378. rx_ring[rx_new].status = cpu_to_le32(R_OWN);
  379. }
  380. /* Update entry information.
  381. */
  382. rx_new = (rx_new + 1) % rxRingSize;
  383. }
  384. return length;
  385. }
  386. static void dc21x4x_halt(struct eth_device* dev)
  387. {
  388. int devbusfn = (int) dev->priv;
  389. STOP_DE4X5(dev);
  390. OUTL(dev, 0, DE4X5_SICR);
  391. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
  392. }
  393. static void send_setup_frame(struct eth_device* dev, bd_t *bis)
  394. {
  395. int i;
  396. char setup_frame[SETUP_FRAME_LEN];
  397. char *pa = &setup_frame[0];
  398. memset(pa, 0xff, SETUP_FRAME_LEN);
  399. for (i = 0; i < ETH_ALEN; i++) {
  400. *(pa + (i & 1)) = dev->enetaddr[i];
  401. if (i & 0x01) {
  402. pa += 4;
  403. }
  404. }
  405. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  406. if (i >= TOUT_LOOP) {
  407. printf("%s: tx error buffer not ready\n", dev->name);
  408. goto Done;
  409. }
  410. }
  411. tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
  412. tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
  413. tx_ring[tx_new].status = cpu_to_le32(T_OWN);
  414. OUTL(dev, POLL_DEMAND, DE4X5_TPD);
  415. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  416. if (i >= TOUT_LOOP) {
  417. printf("%s: tx buffer not ready\n", dev->name);
  418. goto Done;
  419. }
  420. }
  421. if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
  422. printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
  423. }
  424. tx_new = (tx_new+1) % NUM_TX_DESC;
  425. Done:
  426. return;
  427. }
  428. #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
  429. /* SROM Read and write routines.
  430. */
  431. static void
  432. sendto_srom(struct eth_device* dev, u_int command, u_long addr)
  433. {
  434. OUTL(dev, command, addr);
  435. udelay(1);
  436. }
  437. static int
  438. getfrom_srom(struct eth_device* dev, u_long addr)
  439. {
  440. s32 tmp;
  441. tmp = INL(dev, addr);
  442. udelay(1);
  443. return tmp;
  444. }
  445. /* Note: this routine returns extra data bits for size detection. */
  446. static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
  447. {
  448. int i;
  449. unsigned retval = 0;
  450. int read_cmd = location | (SROM_READ_CMD << addr_len);
  451. sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
  452. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  453. #ifdef DEBUG_SROM
  454. printf(" EEPROM read at %d ", location);
  455. #endif
  456. /* Shift the read command bits out. */
  457. for (i = 4 + addr_len; i >= 0; i--) {
  458. short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  459. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
  460. udelay(10);
  461. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
  462. udelay(10);
  463. #ifdef DEBUG_SROM2
  464. printf("%X", getfrom_srom(dev, ioaddr) & 15);
  465. #endif
  466. retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
  467. }
  468. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  469. #ifdef DEBUG_SROM2
  470. printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
  471. #endif
  472. for (i = 16; i > 0; i--) {
  473. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
  474. udelay(10);
  475. #ifdef DEBUG_SROM2
  476. printf("%X", getfrom_srom(dev, ioaddr) & 15);
  477. #endif
  478. retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
  479. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  480. udelay(10);
  481. }
  482. /* Terminate the EEPROM access. */
  483. sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
  484. #ifdef DEBUG_SROM2
  485. printf(" EEPROM value at %d is %5.5x.\n", location, retval);
  486. #endif
  487. return retval;
  488. }
  489. #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
  490. /* This executes a generic EEPROM command, typically a write or write
  491. * enable. It returns the data output from the EEPROM, and thus may
  492. * also be used for reads.
  493. */
  494. #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
  495. static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
  496. {
  497. unsigned retval = 0;
  498. #ifdef DEBUG_SROM
  499. printf(" EEPROM op 0x%x: ", cmd);
  500. #endif
  501. sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
  502. /* Shift the command bits out. */
  503. do {
  504. short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
  505. sendto_srom(dev,dataval, ioaddr);
  506. udelay(10);
  507. #ifdef DEBUG_SROM2
  508. printf("%X", getfrom_srom(dev,ioaddr) & 15);
  509. #endif
  510. sendto_srom(dev,dataval | DT_CLK, ioaddr);
  511. udelay(10);
  512. retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
  513. } while (--cmd_len >= 0);
  514. sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
  515. /* Terminate the EEPROM access. */
  516. sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
  517. #ifdef DEBUG_SROM
  518. printf(" EEPROM result is 0x%5.5x.\n", retval);
  519. #endif
  520. return retval;
  521. }
  522. #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
  523. #ifndef CONFIG_TULIP_FIX_DAVICOM
  524. static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
  525. {
  526. int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
  527. return do_eeprom_cmd(dev, ioaddr,
  528. (((SROM_READ_CMD << ee_addr_size) | index) << 16)
  529. | 0xffff, 3 + ee_addr_size + 16);
  530. }
  531. #endif /* CONFIG_TULIP_FIX_DAVICOM */
  532. #ifdef UPDATE_SROM
  533. static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
  534. {
  535. int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
  536. int i;
  537. unsigned short newval;
  538. udelay(10*1000); /* test-only */
  539. #ifdef DEBUG_SROM
  540. printf("ee_addr_size=%d.\n", ee_addr_size);
  541. printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
  542. #endif
  543. /* Enable programming modes. */
  544. do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
  545. /* Do the actual write. */
  546. do_eeprom_cmd(dev, ioaddr,
  547. (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
  548. 3 + ee_addr_size + 16);
  549. /* Poll for write finished. */
  550. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  551. for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
  552. if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
  553. break;
  554. #ifdef DEBUG_SROM
  555. printf(" Write finished after %d ticks.\n", i);
  556. #endif
  557. /* Disable programming. */
  558. do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
  559. /* And read the result. */
  560. newval = do_eeprom_cmd(dev, ioaddr,
  561. (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
  562. | 0xffff, 3 + ee_addr_size + 16);
  563. #ifdef DEBUG_SROM
  564. printf(" New value at offset %d is %4.4x.\n", index, newval);
  565. #endif
  566. return 1;
  567. }
  568. #endif
  569. #ifndef CONFIG_TULIP_FIX_DAVICOM
  570. static void read_hw_addr(struct eth_device *dev, bd_t *bis)
  571. {
  572. u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
  573. int i, j = 0;
  574. for (i = 0; i < (ETH_ALEN >> 1); i++) {
  575. tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
  576. *p = le16_to_cpu(tmp);
  577. j += *p++;
  578. }
  579. if ((j == 0) || (j == 0x2fffd)) {
  580. memset (dev->enetaddr, 0, ETH_ALEN);
  581. debug ("Warning: can't read HW address from SROM.\n");
  582. goto Done;
  583. }
  584. return;
  585. Done:
  586. #ifdef UPDATE_SROM
  587. update_srom(dev, bis);
  588. #endif
  589. return;
  590. }
  591. #endif /* CONFIG_TULIP_FIX_DAVICOM */
  592. #ifdef UPDATE_SROM
  593. static void update_srom(struct eth_device *dev, bd_t *bis)
  594. {
  595. int i;
  596. static unsigned short eeprom[0x40] = {
  597. 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
  598. 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
  599. 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
  600. 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
  601. 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
  602. 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
  603. 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
  604. 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
  605. 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
  606. 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
  607. 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
  608. 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
  609. 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
  610. 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
  611. 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
  612. 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
  613. };
  614. uchar enetaddr[6];
  615. /* Ethernet Addr... */
  616. if (!eth_env_get_enetaddr("ethaddr", enetaddr))
  617. return;
  618. eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
  619. eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
  620. eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
  621. for (i=0; i<0x40; i++) {
  622. write_srom(dev, DE4X5_APROM, i, eeprom[i]);
  623. }
  624. }
  625. #endif /* UPDATE_SROM */