nvram.c 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
  1. /*
  2. * (C) Copyright 2000-2010
  3. * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
  4. *
  5. * (C) Copyright 2001 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
  6. * Andreas Heppel <aheppel@sysgo.de>
  7. * SPDX-License-Identifier: GPL-2.0+
  8. */
  9. /*
  10. * 09-18-2001 Andreas Heppel, Sysgo RTS GmbH <aheppel@sysgo.de>
  11. *
  12. * It might not be possible in all cases to use 'memcpy()' to copy
  13. * the environment to NVRAM, as the NVRAM might not be mapped into
  14. * the memory space. (I.e. this is the case for the BAB750). In those
  15. * cases it might be possible to access the NVRAM using a different
  16. * method. For example, the RTC on the BAB750 is accessible in IO
  17. * space using its address and data registers. To enable usage of
  18. * NVRAM in those cases I invented the functions 'nvram_read()' and
  19. * 'nvram_write()', which will be activated upon the configuration
  20. * #define CONFIG_SYS_NVRAM_ACCESS_ROUTINE. Note, that those functions are
  21. * strongly dependent on the used HW, and must be redefined for each
  22. * board that wants to use them.
  23. */
  24. #include <common.h>
  25. #include <command.h>
  26. #include <environment.h>
  27. #include <linux/stddef.h>
  28. #include <search.h>
  29. #include <errno.h>
  30. DECLARE_GLOBAL_DATA_PTR;
  31. #ifdef CONFIG_SYS_NVRAM_ACCESS_ROUTINE
  32. extern void *nvram_read(void *dest, const long src, size_t count);
  33. extern void nvram_write(long dest, const void *src, size_t count);
  34. #else
  35. env_t *env_ptr = (env_t *)CONFIG_ENV_ADDR;
  36. #endif
  37. #ifdef CONFIG_SYS_NVRAM_ACCESS_ROUTINE
  38. static int env_nvram_get_char(int index)
  39. {
  40. uchar c;
  41. nvram_read(&c, CONFIG_ENV_ADDR + index, 1);
  42. return c;
  43. }
  44. #endif
  45. static int env_nvram_load(void)
  46. {
  47. char buf[CONFIG_ENV_SIZE];
  48. #if defined(CONFIG_SYS_NVRAM_ACCESS_ROUTINE)
  49. nvram_read(buf, CONFIG_ENV_ADDR, CONFIG_ENV_SIZE);
  50. #else
  51. memcpy(buf, (void *)CONFIG_ENV_ADDR, CONFIG_ENV_SIZE);
  52. #endif
  53. env_import(buf, 1);
  54. return 0;
  55. }
  56. static int env_nvram_save(void)
  57. {
  58. env_t env_new;
  59. int rcode = 0;
  60. rcode = env_export(&env_new);
  61. if (rcode)
  62. return rcode;
  63. #ifdef CONFIG_SYS_NVRAM_ACCESS_ROUTINE
  64. nvram_write(CONFIG_ENV_ADDR, &env_new, CONFIG_ENV_SIZE);
  65. #else
  66. if (memcpy((char *)CONFIG_ENV_ADDR, &env_new, CONFIG_ENV_SIZE) == NULL)
  67. rcode = 1;
  68. #endif
  69. return rcode;
  70. }
  71. /*
  72. * Initialize Environment use
  73. *
  74. * We are still running from ROM, so data use is limited
  75. */
  76. static int env_nvram_init(void)
  77. {
  78. #if defined(CONFIG_SYS_NVRAM_ACCESS_ROUTINE)
  79. ulong crc;
  80. uchar data[ENV_SIZE];
  81. nvram_read(&crc, CONFIG_ENV_ADDR, sizeof(ulong));
  82. nvram_read(data, CONFIG_ENV_ADDR + sizeof(ulong), ENV_SIZE);
  83. if (crc32(0, data, ENV_SIZE) == crc) {
  84. gd->env_addr = (ulong)CONFIG_ENV_ADDR + sizeof(long);
  85. #else
  86. if (crc32(0, env_ptr->data, ENV_SIZE) == env_ptr->crc) {
  87. gd->env_addr = (ulong)&env_ptr->data;
  88. #endif
  89. gd->env_valid = ENV_VALID;
  90. } else {
  91. gd->env_addr = (ulong)&default_environment[0];
  92. gd->env_valid = ENV_INVALID;
  93. }
  94. return 0;
  95. }
  96. U_BOOT_ENV_LOCATION(nvram) = {
  97. .location = ENVL_NVRAM,
  98. ENV_NAME("NVRAM")
  99. #ifdef CONFIG_SYS_NVRAM_ACCESS_ROUTINE
  100. .get_char = env_nvram_get_char,
  101. #endif
  102. .load = env_nvram_load,
  103. .save = env_save_ptr(env_nvram_save),
  104. .init = env_nvram_init,
  105. };