mmc.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410
  1. /*
  2. * Copyright 2008, Freescale Semiconductor, Inc
  3. * Andy Fleming
  4. *
  5. * Based vaguely on the Linux code
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <config.h>
  26. #include <common.h>
  27. #include <command.h>
  28. #include <mmc.h>
  29. #include <part.h>
  30. #include <malloc.h>
  31. #include <linux/list.h>
  32. #include <div64.h>
  33. /* Set block count limit because of 16 bit register limit on some hardware*/
  34. #ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT
  35. #define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535
  36. #endif
  37. static struct list_head mmc_devices;
  38. static int cur_dev_num = -1;
  39. int __board_mmc_getcd(struct mmc *mmc) {
  40. return -1;
  41. }
  42. int board_mmc_getcd(struct mmc *mmc)__attribute__((weak,
  43. alias("__board_mmc_getcd")));
  44. #ifdef CONFIG_MMC_BOUNCE_BUFFER
  45. static int mmc_bounce_need_bounce(struct mmc_data *orig)
  46. {
  47. ulong addr, len;
  48. if (orig->flags & MMC_DATA_READ)
  49. addr = (ulong)orig->dest;
  50. else
  51. addr = (ulong)orig->src;
  52. if (addr % ARCH_DMA_MINALIGN) {
  53. debug("MMC: Unaligned data destination address %08lx!\n", addr);
  54. return 1;
  55. }
  56. len = (ulong)(orig->blocksize * orig->blocks);
  57. if (len % ARCH_DMA_MINALIGN) {
  58. debug("MMC: Unaligned data destination length %08lx!\n", len);
  59. return 1;
  60. }
  61. return 0;
  62. }
  63. static int mmc_bounce_buffer_start(struct mmc_data *backup,
  64. struct mmc_data *orig)
  65. {
  66. ulong origlen, len;
  67. void *buffer;
  68. if (!orig)
  69. return 0;
  70. if (!mmc_bounce_need_bounce(orig))
  71. return 0;
  72. memcpy(backup, orig, sizeof(struct mmc_data));
  73. origlen = orig->blocksize * orig->blocks;
  74. len = roundup(origlen, ARCH_DMA_MINALIGN);
  75. buffer = memalign(ARCH_DMA_MINALIGN, len);
  76. if (!buffer) {
  77. puts("MMC: Error allocating MMC bounce buffer!\n");
  78. return 1;
  79. }
  80. if (orig->flags & MMC_DATA_READ) {
  81. orig->dest = buffer;
  82. } else {
  83. memcpy(buffer, orig->src, origlen);
  84. orig->src = buffer;
  85. }
  86. return 0;
  87. }
  88. static void mmc_bounce_buffer_stop(struct mmc_data *backup,
  89. struct mmc_data *orig)
  90. {
  91. ulong len;
  92. if (!orig)
  93. return;
  94. if (!mmc_bounce_need_bounce(backup))
  95. return;
  96. if (backup->flags & MMC_DATA_READ) {
  97. len = backup->blocksize * backup->blocks;
  98. memcpy(backup->dest, orig->dest, len);
  99. free(orig->dest);
  100. orig->dest = backup->dest;
  101. } else {
  102. free((void *)orig->src);
  103. orig->src = backup->src;
  104. }
  105. return;
  106. }
  107. #else
  108. static inline int mmc_bounce_buffer_start(struct mmc_data *backup,
  109. struct mmc_data *orig) { return 0; }
  110. static inline void mmc_bounce_buffer_stop(struct mmc_data *backup,
  111. struct mmc_data *orig) { }
  112. #endif
  113. int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
  114. {
  115. struct mmc_data backup;
  116. int ret;
  117. memset(&backup, 0, sizeof(backup));
  118. ret = mmc_bounce_buffer_start(&backup, data);
  119. if (ret)
  120. return ret;
  121. #ifdef CONFIG_MMC_TRACE
  122. int i;
  123. u8 *ptr;
  124. printf("CMD_SEND:%d\n", cmd->cmdidx);
  125. printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg);
  126. printf("\t\tFLAG\t\t\t %d\n", cmd->flags);
  127. ret = mmc->send_cmd(mmc, cmd, data);
  128. switch (cmd->resp_type) {
  129. case MMC_RSP_NONE:
  130. printf("\t\tMMC_RSP_NONE\n");
  131. break;
  132. case MMC_RSP_R1:
  133. printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n",
  134. cmd->response[0]);
  135. break;
  136. case MMC_RSP_R1b:
  137. printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n",
  138. cmd->response[0]);
  139. break;
  140. case MMC_RSP_R2:
  141. printf("\t\tMMC_RSP_R2\t\t 0x%08X \n",
  142. cmd->response[0]);
  143. printf("\t\t \t\t 0x%08X \n",
  144. cmd->response[1]);
  145. printf("\t\t \t\t 0x%08X \n",
  146. cmd->response[2]);
  147. printf("\t\t \t\t 0x%08X \n",
  148. cmd->response[3]);
  149. printf("\n");
  150. printf("\t\t\t\t\tDUMPING DATA\n");
  151. for (i = 0; i < 4; i++) {
  152. int j;
  153. printf("\t\t\t\t\t%03d - ", i*4);
  154. ptr = &cmd->response[i];
  155. ptr += 3;
  156. for (j = 0; j < 4; j++)
  157. printf("%02X ", *ptr--);
  158. printf("\n");
  159. }
  160. break;
  161. case MMC_RSP_R3:
  162. printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n",
  163. cmd->response[0]);
  164. break;
  165. default:
  166. printf("\t\tERROR MMC rsp not supported\n");
  167. break;
  168. }
  169. #else
  170. ret = mmc->send_cmd(mmc, cmd, data);
  171. #endif
  172. mmc_bounce_buffer_stop(&backup, data);
  173. return ret;
  174. }
  175. int mmc_send_status(struct mmc *mmc, int timeout)
  176. {
  177. struct mmc_cmd cmd;
  178. int err, retries = 5;
  179. #ifdef CONFIG_MMC_TRACE
  180. int status;
  181. #endif
  182. cmd.cmdidx = MMC_CMD_SEND_STATUS;
  183. cmd.resp_type = MMC_RSP_R1;
  184. if (!mmc_host_is_spi(mmc))
  185. cmd.cmdarg = mmc->rca << 16;
  186. cmd.flags = 0;
  187. do {
  188. err = mmc_send_cmd(mmc, &cmd, NULL);
  189. if (!err) {
  190. if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) &&
  191. (cmd.response[0] & MMC_STATUS_CURR_STATE) !=
  192. MMC_STATE_PRG)
  193. break;
  194. else if (cmd.response[0] & MMC_STATUS_MASK) {
  195. printf("Status Error: 0x%08X\n",
  196. cmd.response[0]);
  197. return COMM_ERR;
  198. }
  199. } else if (--retries < 0)
  200. return err;
  201. udelay(1000);
  202. } while (timeout--);
  203. #ifdef CONFIG_MMC_TRACE
  204. status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9;
  205. printf("CURR STATE:%d\n", status);
  206. #endif
  207. if (!timeout) {
  208. printf("Timeout waiting card ready\n");
  209. return TIMEOUT;
  210. }
  211. return 0;
  212. }
  213. int mmc_set_blocklen(struct mmc *mmc, int len)
  214. {
  215. struct mmc_cmd cmd;
  216. cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
  217. cmd.resp_type = MMC_RSP_R1;
  218. cmd.cmdarg = len;
  219. cmd.flags = 0;
  220. return mmc_send_cmd(mmc, &cmd, NULL);
  221. }
  222. struct mmc *find_mmc_device(int dev_num)
  223. {
  224. struct mmc *m;
  225. struct list_head *entry;
  226. list_for_each(entry, &mmc_devices) {
  227. m = list_entry(entry, struct mmc, link);
  228. if (m->block_dev.dev == dev_num)
  229. return m;
  230. }
  231. printf("MMC Device %d not found\n", dev_num);
  232. return NULL;
  233. }
  234. static ulong mmc_erase_t(struct mmc *mmc, ulong start, lbaint_t blkcnt)
  235. {
  236. struct mmc_cmd cmd;
  237. ulong end;
  238. int err, start_cmd, end_cmd;
  239. if (mmc->high_capacity)
  240. end = start + blkcnt - 1;
  241. else {
  242. end = (start + blkcnt - 1) * mmc->write_bl_len;
  243. start *= mmc->write_bl_len;
  244. }
  245. if (IS_SD(mmc)) {
  246. start_cmd = SD_CMD_ERASE_WR_BLK_START;
  247. end_cmd = SD_CMD_ERASE_WR_BLK_END;
  248. } else {
  249. start_cmd = MMC_CMD_ERASE_GROUP_START;
  250. end_cmd = MMC_CMD_ERASE_GROUP_END;
  251. }
  252. cmd.cmdidx = start_cmd;
  253. cmd.cmdarg = start;
  254. cmd.resp_type = MMC_RSP_R1;
  255. cmd.flags = 0;
  256. err = mmc_send_cmd(mmc, &cmd, NULL);
  257. if (err)
  258. goto err_out;
  259. cmd.cmdidx = end_cmd;
  260. cmd.cmdarg = end;
  261. err = mmc_send_cmd(mmc, &cmd, NULL);
  262. if (err)
  263. goto err_out;
  264. cmd.cmdidx = MMC_CMD_ERASE;
  265. cmd.cmdarg = SECURE_ERASE;
  266. cmd.resp_type = MMC_RSP_R1b;
  267. err = mmc_send_cmd(mmc, &cmd, NULL);
  268. if (err)
  269. goto err_out;
  270. return 0;
  271. err_out:
  272. puts("mmc erase failed\n");
  273. return err;
  274. }
  275. static unsigned long
  276. mmc_berase(int dev_num, unsigned long start, lbaint_t blkcnt)
  277. {
  278. int err = 0;
  279. struct mmc *mmc = find_mmc_device(dev_num);
  280. lbaint_t blk = 0, blk_r = 0;
  281. if (!mmc)
  282. return -1;
  283. if ((start % mmc->erase_grp_size) || (blkcnt % mmc->erase_grp_size))
  284. printf("\n\nCaution! Your devices Erase group is 0x%x\n"
  285. "The erase range would be change to 0x%lx~0x%lx\n\n",
  286. mmc->erase_grp_size, start & ~(mmc->erase_grp_size - 1),
  287. ((start + blkcnt + mmc->erase_grp_size)
  288. & ~(mmc->erase_grp_size - 1)) - 1);
  289. while (blk < blkcnt) {
  290. blk_r = ((blkcnt - blk) > mmc->erase_grp_size) ?
  291. mmc->erase_grp_size : (blkcnt - blk);
  292. err = mmc_erase_t(mmc, start + blk, blk_r);
  293. if (err)
  294. break;
  295. blk += blk_r;
  296. }
  297. return blk;
  298. }
  299. static ulong
  300. mmc_write_blocks(struct mmc *mmc, ulong start, lbaint_t blkcnt, const void*src)
  301. {
  302. struct mmc_cmd cmd;
  303. struct mmc_data data;
  304. int timeout = 1000;
  305. if ((start + blkcnt) > mmc->block_dev.lba) {
  306. printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
  307. start + blkcnt, mmc->block_dev.lba);
  308. return 0;
  309. }
  310. if (blkcnt > 1)
  311. cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK;
  312. else
  313. cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;
  314. if (mmc->high_capacity)
  315. cmd.cmdarg = start;
  316. else
  317. cmd.cmdarg = start * mmc->write_bl_len;
  318. cmd.resp_type = MMC_RSP_R1;
  319. cmd.flags = 0;
  320. data.src = src;
  321. data.blocks = blkcnt;
  322. data.blocksize = mmc->write_bl_len;
  323. data.flags = MMC_DATA_WRITE;
  324. if (mmc_send_cmd(mmc, &cmd, &data)) {
  325. printf("mmc write failed\n");
  326. return 0;
  327. }
  328. /* SPI multiblock writes terminate using a special
  329. * token, not a STOP_TRANSMISSION request.
  330. */
  331. if (!mmc_host_is_spi(mmc) && blkcnt > 1) {
  332. cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
  333. cmd.cmdarg = 0;
  334. cmd.resp_type = MMC_RSP_R1b;
  335. cmd.flags = 0;
  336. if (mmc_send_cmd(mmc, &cmd, NULL)) {
  337. printf("mmc fail to send stop cmd\n");
  338. return 0;
  339. }
  340. }
  341. /* Waiting for the ready status */
  342. if (mmc_send_status(mmc, timeout))
  343. return 0;
  344. return blkcnt;
  345. }
  346. static ulong
  347. mmc_bwrite(int dev_num, ulong start, lbaint_t blkcnt, const void*src)
  348. {
  349. lbaint_t cur, blocks_todo = blkcnt;
  350. struct mmc *mmc = find_mmc_device(dev_num);
  351. if (!mmc)
  352. return 0;
  353. if (mmc_set_blocklen(mmc, mmc->write_bl_len))
  354. return 0;
  355. do {
  356. cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
  357. if(mmc_write_blocks(mmc, start, cur, src) != cur)
  358. return 0;
  359. blocks_todo -= cur;
  360. start += cur;
  361. src += cur * mmc->write_bl_len;
  362. } while (blocks_todo > 0);
  363. return blkcnt;
  364. }
  365. int mmc_read_blocks(struct mmc *mmc, void *dst, ulong start, lbaint_t blkcnt)
  366. {
  367. struct mmc_cmd cmd;
  368. struct mmc_data data;
  369. if (blkcnt > 1)
  370. cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
  371. else
  372. cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
  373. if (mmc->high_capacity)
  374. cmd.cmdarg = start;
  375. else
  376. cmd.cmdarg = start * mmc->read_bl_len;
  377. cmd.resp_type = MMC_RSP_R1;
  378. cmd.flags = 0;
  379. data.dest = dst;
  380. data.blocks = blkcnt;
  381. data.blocksize = mmc->read_bl_len;
  382. data.flags = MMC_DATA_READ;
  383. if (mmc_send_cmd(mmc, &cmd, &data))
  384. return 0;
  385. if (blkcnt > 1) {
  386. cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
  387. cmd.cmdarg = 0;
  388. cmd.resp_type = MMC_RSP_R1b;
  389. cmd.flags = 0;
  390. if (mmc_send_cmd(mmc, &cmd, NULL)) {
  391. printf("mmc fail to send stop cmd\n");
  392. return 0;
  393. }
  394. }
  395. return blkcnt;
  396. }
  397. static ulong mmc_bread(int dev_num, ulong start, lbaint_t blkcnt, void *dst)
  398. {
  399. lbaint_t cur, blocks_todo = blkcnt;
  400. if (blkcnt == 0)
  401. return 0;
  402. struct mmc *mmc = find_mmc_device(dev_num);
  403. if (!mmc)
  404. return 0;
  405. if ((start + blkcnt) > mmc->block_dev.lba) {
  406. printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
  407. start + blkcnt, mmc->block_dev.lba);
  408. return 0;
  409. }
  410. if (mmc_set_blocklen(mmc, mmc->read_bl_len))
  411. return 0;
  412. do {
  413. cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
  414. if(mmc_read_blocks(mmc, dst, start, cur) != cur)
  415. return 0;
  416. blocks_todo -= cur;
  417. start += cur;
  418. dst += cur * mmc->read_bl_len;
  419. } while (blocks_todo > 0);
  420. return blkcnt;
  421. }
  422. int mmc_go_idle(struct mmc* mmc)
  423. {
  424. struct mmc_cmd cmd;
  425. int err;
  426. udelay(1000);
  427. cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
  428. cmd.cmdarg = 0;
  429. cmd.resp_type = MMC_RSP_NONE;
  430. cmd.flags = 0;
  431. err = mmc_send_cmd(mmc, &cmd, NULL);
  432. if (err)
  433. return err;
  434. udelay(2000);
  435. return 0;
  436. }
  437. int
  438. sd_send_op_cond(struct mmc *mmc)
  439. {
  440. int timeout = 1000;
  441. int err;
  442. struct mmc_cmd cmd;
  443. do {
  444. cmd.cmdidx = MMC_CMD_APP_CMD;
  445. cmd.resp_type = MMC_RSP_R1;
  446. cmd.cmdarg = 0;
  447. cmd.flags = 0;
  448. err = mmc_send_cmd(mmc, &cmd, NULL);
  449. if (err)
  450. return err;
  451. cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
  452. cmd.resp_type = MMC_RSP_R3;
  453. /*
  454. * Most cards do not answer if some reserved bits
  455. * in the ocr are set. However, Some controller
  456. * can set bit 7 (reserved for low voltages), but
  457. * how to manage low voltages SD card is not yet
  458. * specified.
  459. */
  460. cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 :
  461. (mmc->voltages & 0xff8000);
  462. if (mmc->version == SD_VERSION_2)
  463. cmd.cmdarg |= OCR_HCS;
  464. err = mmc_send_cmd(mmc, &cmd, NULL);
  465. if (err)
  466. return err;
  467. udelay(1000);
  468. } while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
  469. if (timeout <= 0)
  470. return UNUSABLE_ERR;
  471. if (mmc->version != SD_VERSION_2)
  472. mmc->version = SD_VERSION_1_0;
  473. if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
  474. cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
  475. cmd.resp_type = MMC_RSP_R3;
  476. cmd.cmdarg = 0;
  477. cmd.flags = 0;
  478. err = mmc_send_cmd(mmc, &cmd, NULL);
  479. if (err)
  480. return err;
  481. }
  482. mmc->ocr = cmd.response[0];
  483. mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
  484. mmc->rca = 0;
  485. return 0;
  486. }
  487. int mmc_send_op_cond(struct mmc *mmc)
  488. {
  489. int timeout = 10000;
  490. struct mmc_cmd cmd;
  491. int err;
  492. /* Some cards seem to need this */
  493. mmc_go_idle(mmc);
  494. /* Asking to the card its capabilities */
  495. cmd.cmdidx = MMC_CMD_SEND_OP_COND;
  496. cmd.resp_type = MMC_RSP_R3;
  497. cmd.cmdarg = 0;
  498. cmd.flags = 0;
  499. err = mmc_send_cmd(mmc, &cmd, NULL);
  500. if (err)
  501. return err;
  502. udelay(1000);
  503. do {
  504. cmd.cmdidx = MMC_CMD_SEND_OP_COND;
  505. cmd.resp_type = MMC_RSP_R3;
  506. cmd.cmdarg = (mmc_host_is_spi(mmc) ? 0 :
  507. (mmc->voltages &
  508. (cmd.response[0] & OCR_VOLTAGE_MASK)) |
  509. (cmd.response[0] & OCR_ACCESS_MODE));
  510. if (mmc->host_caps & MMC_MODE_HC)
  511. cmd.cmdarg |= OCR_HCS;
  512. cmd.flags = 0;
  513. err = mmc_send_cmd(mmc, &cmd, NULL);
  514. if (err)
  515. return err;
  516. udelay(1000);
  517. } while (!(cmd.response[0] & OCR_BUSY) && timeout--);
  518. if (timeout <= 0)
  519. return UNUSABLE_ERR;
  520. if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
  521. cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
  522. cmd.resp_type = MMC_RSP_R3;
  523. cmd.cmdarg = 0;
  524. cmd.flags = 0;
  525. err = mmc_send_cmd(mmc, &cmd, NULL);
  526. if (err)
  527. return err;
  528. }
  529. mmc->version = MMC_VERSION_UNKNOWN;
  530. mmc->ocr = cmd.response[0];
  531. mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
  532. mmc->rca = 0;
  533. return 0;
  534. }
  535. int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd)
  536. {
  537. struct mmc_cmd cmd;
  538. struct mmc_data data;
  539. int err;
  540. /* Get the Card Status Register */
  541. cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
  542. cmd.resp_type = MMC_RSP_R1;
  543. cmd.cmdarg = 0;
  544. cmd.flags = 0;
  545. data.dest = ext_csd;
  546. data.blocks = 1;
  547. data.blocksize = 512;
  548. data.flags = MMC_DATA_READ;
  549. err = mmc_send_cmd(mmc, &cmd, &data);
  550. return err;
  551. }
  552. int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
  553. {
  554. struct mmc_cmd cmd;
  555. int timeout = 1000;
  556. int ret;
  557. cmd.cmdidx = MMC_CMD_SWITCH;
  558. cmd.resp_type = MMC_RSP_R1b;
  559. cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
  560. (index << 16) |
  561. (value << 8);
  562. cmd.flags = 0;
  563. ret = mmc_send_cmd(mmc, &cmd, NULL);
  564. /* Waiting for the ready status */
  565. if (!ret)
  566. ret = mmc_send_status(mmc, timeout);
  567. return ret;
  568. }
  569. int mmc_change_freq(struct mmc *mmc)
  570. {
  571. ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, 512);
  572. char cardtype;
  573. int err;
  574. mmc->card_caps = 0;
  575. if (mmc_host_is_spi(mmc))
  576. return 0;
  577. /* Only version 4 supports high-speed */
  578. if (mmc->version < MMC_VERSION_4)
  579. return 0;
  580. err = mmc_send_ext_csd(mmc, ext_csd);
  581. if (err)
  582. return err;
  583. cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf;
  584. err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
  585. if (err)
  586. return err;
  587. /* Now check to see that it worked */
  588. err = mmc_send_ext_csd(mmc, ext_csd);
  589. if (err)
  590. return err;
  591. /* No high-speed support */
  592. if (!ext_csd[EXT_CSD_HS_TIMING])
  593. return 0;
  594. /* High Speed is set, there are two types: 52MHz and 26MHz */
  595. if (cardtype & MMC_HS_52MHZ)
  596. mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
  597. else
  598. mmc->card_caps |= MMC_MODE_HS;
  599. return 0;
  600. }
  601. int mmc_switch_part(int dev_num, unsigned int part_num)
  602. {
  603. struct mmc *mmc = find_mmc_device(dev_num);
  604. if (!mmc)
  605. return -1;
  606. return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
  607. (mmc->part_config & ~PART_ACCESS_MASK)
  608. | (part_num & PART_ACCESS_MASK));
  609. }
  610. int mmc_getcd(struct mmc *mmc)
  611. {
  612. int cd;
  613. cd = board_mmc_getcd(mmc);
  614. if ((cd < 0) && mmc->getcd)
  615. cd = mmc->getcd(mmc);
  616. return cd;
  617. }
  618. int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
  619. {
  620. struct mmc_cmd cmd;
  621. struct mmc_data data;
  622. /* Switch the frequency */
  623. cmd.cmdidx = SD_CMD_SWITCH_FUNC;
  624. cmd.resp_type = MMC_RSP_R1;
  625. cmd.cmdarg = (mode << 31) | 0xffffff;
  626. cmd.cmdarg &= ~(0xf << (group * 4));
  627. cmd.cmdarg |= value << (group * 4);
  628. cmd.flags = 0;
  629. data.dest = (char *)resp;
  630. data.blocksize = 64;
  631. data.blocks = 1;
  632. data.flags = MMC_DATA_READ;
  633. return mmc_send_cmd(mmc, &cmd, &data);
  634. }
  635. int sd_change_freq(struct mmc *mmc)
  636. {
  637. int err;
  638. struct mmc_cmd cmd;
  639. ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2);
  640. ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
  641. struct mmc_data data;
  642. int timeout;
  643. mmc->card_caps = 0;
  644. if (mmc_host_is_spi(mmc))
  645. return 0;
  646. /* Read the SCR to find out if this card supports higher speeds */
  647. cmd.cmdidx = MMC_CMD_APP_CMD;
  648. cmd.resp_type = MMC_RSP_R1;
  649. cmd.cmdarg = mmc->rca << 16;
  650. cmd.flags = 0;
  651. err = mmc_send_cmd(mmc, &cmd, NULL);
  652. if (err)
  653. return err;
  654. cmd.cmdidx = SD_CMD_APP_SEND_SCR;
  655. cmd.resp_type = MMC_RSP_R1;
  656. cmd.cmdarg = 0;
  657. cmd.flags = 0;
  658. timeout = 3;
  659. retry_scr:
  660. data.dest = (char *)scr;
  661. data.blocksize = 8;
  662. data.blocks = 1;
  663. data.flags = MMC_DATA_READ;
  664. err = mmc_send_cmd(mmc, &cmd, &data);
  665. if (err) {
  666. if (timeout--)
  667. goto retry_scr;
  668. return err;
  669. }
  670. mmc->scr[0] = __be32_to_cpu(scr[0]);
  671. mmc->scr[1] = __be32_to_cpu(scr[1]);
  672. switch ((mmc->scr[0] >> 24) & 0xf) {
  673. case 0:
  674. mmc->version = SD_VERSION_1_0;
  675. break;
  676. case 1:
  677. mmc->version = SD_VERSION_1_10;
  678. break;
  679. case 2:
  680. mmc->version = SD_VERSION_2;
  681. break;
  682. default:
  683. mmc->version = SD_VERSION_1_0;
  684. break;
  685. }
  686. if (mmc->scr[0] & SD_DATA_4BIT)
  687. mmc->card_caps |= MMC_MODE_4BIT;
  688. /* Version 1.0 doesn't support switching */
  689. if (mmc->version == SD_VERSION_1_0)
  690. return 0;
  691. timeout = 4;
  692. while (timeout--) {
  693. err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
  694. (u8 *)switch_status);
  695. if (err)
  696. return err;
  697. /* The high-speed function is busy. Try again */
  698. if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
  699. break;
  700. }
  701. /* If high-speed isn't supported, we return */
  702. if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
  703. return 0;
  704. /*
  705. * If the host doesn't support SD_HIGHSPEED, do not switch card to
  706. * HIGHSPEED mode even if the card support SD_HIGHSPPED.
  707. * This can avoid furthur problem when the card runs in different
  708. * mode between the host.
  709. */
  710. if (!((mmc->host_caps & MMC_MODE_HS_52MHz) &&
  711. (mmc->host_caps & MMC_MODE_HS)))
  712. return 0;
  713. err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status);
  714. if (err)
  715. return err;
  716. if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
  717. mmc->card_caps |= MMC_MODE_HS;
  718. return 0;
  719. }
  720. /* frequency bases */
  721. /* divided by 10 to be nice to platforms without floating point */
  722. static const int fbase[] = {
  723. 10000,
  724. 100000,
  725. 1000000,
  726. 10000000,
  727. };
  728. /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
  729. * to platforms without floating point.
  730. */
  731. static const int multipliers[] = {
  732. 0, /* reserved */
  733. 10,
  734. 12,
  735. 13,
  736. 15,
  737. 20,
  738. 25,
  739. 30,
  740. 35,
  741. 40,
  742. 45,
  743. 50,
  744. 55,
  745. 60,
  746. 70,
  747. 80,
  748. };
  749. void mmc_set_ios(struct mmc *mmc)
  750. {
  751. mmc->set_ios(mmc);
  752. }
  753. void mmc_set_clock(struct mmc *mmc, uint clock)
  754. {
  755. if (clock > mmc->f_max)
  756. clock = mmc->f_max;
  757. if (clock < mmc->f_min)
  758. clock = mmc->f_min;
  759. mmc->clock = clock;
  760. mmc_set_ios(mmc);
  761. }
  762. void mmc_set_bus_width(struct mmc *mmc, uint width)
  763. {
  764. mmc->bus_width = width;
  765. mmc_set_ios(mmc);
  766. }
  767. int mmc_startup(struct mmc *mmc)
  768. {
  769. int err, width;
  770. uint mult, freq;
  771. u64 cmult, csize, capacity;
  772. struct mmc_cmd cmd;
  773. ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, 512);
  774. ALLOC_CACHE_ALIGN_BUFFER(char, test_csd, 512);
  775. int timeout = 1000;
  776. #ifdef CONFIG_MMC_SPI_CRC_ON
  777. if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
  778. cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
  779. cmd.resp_type = MMC_RSP_R1;
  780. cmd.cmdarg = 1;
  781. cmd.flags = 0;
  782. err = mmc_send_cmd(mmc, &cmd, NULL);
  783. if (err)
  784. return err;
  785. }
  786. #endif
  787. /* Put the Card in Identify Mode */
  788. cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
  789. MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
  790. cmd.resp_type = MMC_RSP_R2;
  791. cmd.cmdarg = 0;
  792. cmd.flags = 0;
  793. err = mmc_send_cmd(mmc, &cmd, NULL);
  794. if (err)
  795. return err;
  796. memcpy(mmc->cid, cmd.response, 16);
  797. /*
  798. * For MMC cards, set the Relative Address.
  799. * For SD cards, get the Relatvie Address.
  800. * This also puts the cards into Standby State
  801. */
  802. if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
  803. cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
  804. cmd.cmdarg = mmc->rca << 16;
  805. cmd.resp_type = MMC_RSP_R6;
  806. cmd.flags = 0;
  807. err = mmc_send_cmd(mmc, &cmd, NULL);
  808. if (err)
  809. return err;
  810. if (IS_SD(mmc))
  811. mmc->rca = (cmd.response[0] >> 16) & 0xffff;
  812. }
  813. /* Get the Card-Specific Data */
  814. cmd.cmdidx = MMC_CMD_SEND_CSD;
  815. cmd.resp_type = MMC_RSP_R2;
  816. cmd.cmdarg = mmc->rca << 16;
  817. cmd.flags = 0;
  818. err = mmc_send_cmd(mmc, &cmd, NULL);
  819. /* Waiting for the ready status */
  820. mmc_send_status(mmc, timeout);
  821. if (err)
  822. return err;
  823. mmc->csd[0] = cmd.response[0];
  824. mmc->csd[1] = cmd.response[1];
  825. mmc->csd[2] = cmd.response[2];
  826. mmc->csd[3] = cmd.response[3];
  827. if (mmc->version == MMC_VERSION_UNKNOWN) {
  828. int version = (cmd.response[0] >> 26) & 0xf;
  829. switch (version) {
  830. case 0:
  831. mmc->version = MMC_VERSION_1_2;
  832. break;
  833. case 1:
  834. mmc->version = MMC_VERSION_1_4;
  835. break;
  836. case 2:
  837. mmc->version = MMC_VERSION_2_2;
  838. break;
  839. case 3:
  840. mmc->version = MMC_VERSION_3;
  841. break;
  842. case 4:
  843. mmc->version = MMC_VERSION_4;
  844. break;
  845. default:
  846. mmc->version = MMC_VERSION_1_2;
  847. break;
  848. }
  849. }
  850. /* divide frequency by 10, since the mults are 10x bigger */
  851. freq = fbase[(cmd.response[0] & 0x7)];
  852. mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
  853. mmc->tran_speed = freq * mult;
  854. mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
  855. if (IS_SD(mmc))
  856. mmc->write_bl_len = mmc->read_bl_len;
  857. else
  858. mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
  859. if (mmc->high_capacity) {
  860. csize = (mmc->csd[1] & 0x3f) << 16
  861. | (mmc->csd[2] & 0xffff0000) >> 16;
  862. cmult = 8;
  863. } else {
  864. csize = (mmc->csd[1] & 0x3ff) << 2
  865. | (mmc->csd[2] & 0xc0000000) >> 30;
  866. cmult = (mmc->csd[2] & 0x00038000) >> 15;
  867. }
  868. mmc->capacity = (csize + 1) << (cmult + 2);
  869. mmc->capacity *= mmc->read_bl_len;
  870. if (mmc->read_bl_len > 512)
  871. mmc->read_bl_len = 512;
  872. if (mmc->write_bl_len > 512)
  873. mmc->write_bl_len = 512;
  874. /* Select the card, and put it into Transfer Mode */
  875. if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
  876. cmd.cmdidx = MMC_CMD_SELECT_CARD;
  877. cmd.resp_type = MMC_RSP_R1;
  878. cmd.cmdarg = mmc->rca << 16;
  879. cmd.flags = 0;
  880. err = mmc_send_cmd(mmc, &cmd, NULL);
  881. if (err)
  882. return err;
  883. }
  884. /*
  885. * For SD, its erase group is always one sector
  886. */
  887. mmc->erase_grp_size = 1;
  888. mmc->part_config = MMCPART_NOAVAILABLE;
  889. if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
  890. /* check ext_csd version and capacity */
  891. err = mmc_send_ext_csd(mmc, ext_csd);
  892. if (!err & (ext_csd[EXT_CSD_REV] >= 2)) {
  893. /*
  894. * According to the JEDEC Standard, the value of
  895. * ext_csd's capacity is valid if the value is more
  896. * than 2GB
  897. */
  898. capacity = ext_csd[EXT_CSD_SEC_CNT] << 0
  899. | ext_csd[EXT_CSD_SEC_CNT + 1] << 8
  900. | ext_csd[EXT_CSD_SEC_CNT + 2] << 16
  901. | ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
  902. capacity *= 512;
  903. if ((capacity >> 20) > 2 * 1024)
  904. mmc->capacity = capacity;
  905. }
  906. /*
  907. * Check whether GROUP_DEF is set, if yes, read out
  908. * group size from ext_csd directly, or calculate
  909. * the group size from the csd value.
  910. */
  911. if (ext_csd[EXT_CSD_ERASE_GROUP_DEF])
  912. mmc->erase_grp_size =
  913. ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 512 * 1024;
  914. else {
  915. int erase_gsz, erase_gmul;
  916. erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10;
  917. erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5;
  918. mmc->erase_grp_size = (erase_gsz + 1)
  919. * (erase_gmul + 1);
  920. }
  921. /* store the partition info of emmc */
  922. if (ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT)
  923. mmc->part_config = ext_csd[EXT_CSD_PART_CONF];
  924. }
  925. if (IS_SD(mmc))
  926. err = sd_change_freq(mmc);
  927. else
  928. err = mmc_change_freq(mmc);
  929. if (err)
  930. return err;
  931. /* Restrict card's capabilities by what the host can do */
  932. mmc->card_caps &= mmc->host_caps;
  933. if (IS_SD(mmc)) {
  934. if (mmc->card_caps & MMC_MODE_4BIT) {
  935. cmd.cmdidx = MMC_CMD_APP_CMD;
  936. cmd.resp_type = MMC_RSP_R1;
  937. cmd.cmdarg = mmc->rca << 16;
  938. cmd.flags = 0;
  939. err = mmc_send_cmd(mmc, &cmd, NULL);
  940. if (err)
  941. return err;
  942. cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
  943. cmd.resp_type = MMC_RSP_R1;
  944. cmd.cmdarg = 2;
  945. cmd.flags = 0;
  946. err = mmc_send_cmd(mmc, &cmd, NULL);
  947. if (err)
  948. return err;
  949. mmc_set_bus_width(mmc, 4);
  950. }
  951. if (mmc->card_caps & MMC_MODE_HS)
  952. mmc_set_clock(mmc, 50000000);
  953. else
  954. mmc_set_clock(mmc, 25000000);
  955. } else {
  956. for (width = EXT_CSD_BUS_WIDTH_8; width >= 0; width--) {
  957. /* Set the card to use 4 bit*/
  958. err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
  959. EXT_CSD_BUS_WIDTH, width);
  960. if (err)
  961. continue;
  962. if (!width) {
  963. mmc_set_bus_width(mmc, 1);
  964. break;
  965. } else
  966. mmc_set_bus_width(mmc, 4 * width);
  967. err = mmc_send_ext_csd(mmc, test_csd);
  968. if (!err && ext_csd[EXT_CSD_PARTITIONING_SUPPORT] \
  969. == test_csd[EXT_CSD_PARTITIONING_SUPPORT]
  970. && ext_csd[EXT_CSD_ERASE_GROUP_DEF] \
  971. == test_csd[EXT_CSD_ERASE_GROUP_DEF] \
  972. && ext_csd[EXT_CSD_REV] \
  973. == test_csd[EXT_CSD_REV]
  974. && ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] \
  975. == test_csd[EXT_CSD_HC_ERASE_GRP_SIZE]
  976. && memcmp(&ext_csd[EXT_CSD_SEC_CNT], \
  977. &test_csd[EXT_CSD_SEC_CNT], 4) == 0) {
  978. mmc->card_caps |= width;
  979. break;
  980. }
  981. }
  982. if (mmc->card_caps & MMC_MODE_HS) {
  983. if (mmc->card_caps & MMC_MODE_HS_52MHz)
  984. mmc_set_clock(mmc, 52000000);
  985. else
  986. mmc_set_clock(mmc, 26000000);
  987. } else
  988. mmc_set_clock(mmc, 20000000);
  989. }
  990. /* fill in device description */
  991. mmc->block_dev.lun = 0;
  992. mmc->block_dev.type = 0;
  993. mmc->block_dev.blksz = mmc->read_bl_len;
  994. mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
  995. sprintf(mmc->block_dev.vendor, "Man %06x Snr %08x", mmc->cid[0] >> 8,
  996. (mmc->cid[2] << 8) | (mmc->cid[3] >> 24));
  997. sprintf(mmc->block_dev.product, "%c%c%c%c%c", mmc->cid[0] & 0xff,
  998. (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
  999. (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
  1000. sprintf(mmc->block_dev.revision, "%d.%d", mmc->cid[2] >> 28,
  1001. (mmc->cid[2] >> 24) & 0xf);
  1002. init_part(&mmc->block_dev);
  1003. return 0;
  1004. }
  1005. int mmc_send_if_cond(struct mmc *mmc)
  1006. {
  1007. struct mmc_cmd cmd;
  1008. int err;
  1009. cmd.cmdidx = SD_CMD_SEND_IF_COND;
  1010. /* We set the bit if the host supports voltages between 2.7 and 3.6 V */
  1011. cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa;
  1012. cmd.resp_type = MMC_RSP_R7;
  1013. cmd.flags = 0;
  1014. err = mmc_send_cmd(mmc, &cmd, NULL);
  1015. if (err)
  1016. return err;
  1017. if ((cmd.response[0] & 0xff) != 0xaa)
  1018. return UNUSABLE_ERR;
  1019. else
  1020. mmc->version = SD_VERSION_2;
  1021. return 0;
  1022. }
  1023. int mmc_register(struct mmc *mmc)
  1024. {
  1025. /* Setup the universal parts of the block interface just once */
  1026. mmc->block_dev.if_type = IF_TYPE_MMC;
  1027. mmc->block_dev.dev = cur_dev_num++;
  1028. mmc->block_dev.removable = 1;
  1029. mmc->block_dev.block_read = mmc_bread;
  1030. mmc->block_dev.block_write = mmc_bwrite;
  1031. mmc->block_dev.block_erase = mmc_berase;
  1032. if (!mmc->b_max)
  1033. mmc->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
  1034. INIT_LIST_HEAD (&mmc->link);
  1035. list_add_tail (&mmc->link, &mmc_devices);
  1036. return 0;
  1037. }
  1038. #ifdef CONFIG_PARTITIONS
  1039. block_dev_desc_t *mmc_get_dev(int dev)
  1040. {
  1041. struct mmc *mmc = find_mmc_device(dev);
  1042. return mmc ? &mmc->block_dev : NULL;
  1043. }
  1044. #endif
  1045. int mmc_init(struct mmc *mmc)
  1046. {
  1047. int err;
  1048. if (mmc_getcd(mmc) == 0) {
  1049. mmc->has_init = 0;
  1050. printf("MMC: no card present\n");
  1051. return NO_CARD_ERR;
  1052. }
  1053. if (mmc->has_init)
  1054. return 0;
  1055. err = mmc->init(mmc);
  1056. if (err)
  1057. return err;
  1058. mmc_set_bus_width(mmc, 1);
  1059. mmc_set_clock(mmc, 1);
  1060. /* Reset the Card */
  1061. err = mmc_go_idle(mmc);
  1062. if (err)
  1063. return err;
  1064. /* The internal partition reset to user partition(0) at every CMD0*/
  1065. mmc->part_num = 0;
  1066. /* Test for SD version 2 */
  1067. err = mmc_send_if_cond(mmc);
  1068. /* Now try to get the SD card's operating condition */
  1069. err = sd_send_op_cond(mmc);
  1070. /* If the command timed out, we check for an MMC card */
  1071. if (err == TIMEOUT) {
  1072. err = mmc_send_op_cond(mmc);
  1073. if (err) {
  1074. printf("Card did not respond to voltage select!\n");
  1075. return UNUSABLE_ERR;
  1076. }
  1077. }
  1078. err = mmc_startup(mmc);
  1079. if (err)
  1080. mmc->has_init = 0;
  1081. else
  1082. mmc->has_init = 1;
  1083. return err;
  1084. }
  1085. /*
  1086. * CPU and board-specific MMC initializations. Aliased function
  1087. * signals caller to move on
  1088. */
  1089. static int __def_mmc_init(bd_t *bis)
  1090. {
  1091. return -1;
  1092. }
  1093. int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
  1094. int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
  1095. void print_mmc_devices(char separator)
  1096. {
  1097. struct mmc *m;
  1098. struct list_head *entry;
  1099. list_for_each(entry, &mmc_devices) {
  1100. m = list_entry(entry, struct mmc, link);
  1101. printf("%s: %d", m->name, m->block_dev.dev);
  1102. if (entry->next != &mmc_devices)
  1103. printf("%c ", separator);
  1104. }
  1105. printf("\n");
  1106. }
  1107. int get_mmc_num(void)
  1108. {
  1109. return cur_dev_num;
  1110. }
  1111. int mmc_initialize(bd_t *bis)
  1112. {
  1113. INIT_LIST_HEAD (&mmc_devices);
  1114. cur_dev_num = 0;
  1115. if (board_mmc_init(bis) < 0)
  1116. cpu_mmc_init(bis);
  1117. print_mmc_devices(',');
  1118. return 0;
  1119. }