rk_i2c.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397
  1. /*
  2. * (C) Copyright 2015 Google, Inc
  3. *
  4. * (C) Copyright 2008-2014 Rockchip Electronics
  5. * Peter, Software Engineering, <superpeter.cai@gmail.com>.
  6. *
  7. * SPDX-License-Identifier: GPL-2.0+
  8. */
  9. #include <common.h>
  10. #include <clk.h>
  11. #include <dm.h>
  12. #include <errno.h>
  13. #include <i2c.h>
  14. #include <asm/io.h>
  15. #include <asm/arch/clock.h>
  16. #include <asm/arch/i2c.h>
  17. #include <asm/arch/periph.h>
  18. #include <dm/pinctrl.h>
  19. #include <linux/sizes.h>
  20. DECLARE_GLOBAL_DATA_PTR;
  21. /* i2c timerout */
  22. #define I2C_TIMEOUT_MS 100
  23. #define I2C_RETRY_COUNT 3
  24. /* rk i2c fifo max transfer bytes */
  25. #define RK_I2C_FIFO_SIZE 32
  26. struct rk_i2c {
  27. struct udevice *clk;
  28. struct i2c_regs *regs;
  29. unsigned int speed;
  30. int clk_id;
  31. };
  32. static inline void rk_i2c_get_div(int div, int *divh, int *divl)
  33. {
  34. *divl = div / 2;
  35. if (div % 2 == 0)
  36. *divh = div / 2;
  37. else
  38. *divh = DIV_ROUND_UP(div, 2);
  39. }
  40. /*
  41. * SCL Divisor = 8 * (CLKDIVL+1 + CLKDIVH+1)
  42. * SCL = PCLK / SCLK Divisor
  43. * i2c_rate = PCLK
  44. */
  45. static void rk_i2c_set_clk(struct rk_i2c *i2c, uint32_t scl_rate)
  46. {
  47. uint32_t i2c_rate;
  48. int div, divl, divh;
  49. /* First get i2c rate from pclk */
  50. i2c_rate = clk_get_periph_rate(i2c->clk, i2c->clk_id);
  51. div = DIV_ROUND_UP(i2c_rate, scl_rate * 8) - 2;
  52. divh = 0;
  53. divl = 0;
  54. if (div >= 0)
  55. rk_i2c_get_div(div, &divh, &divl);
  56. writel(I2C_CLKDIV_VAL(divl, divh), &i2c->regs->clkdiv);
  57. debug("rk_i2c_set_clk: i2c rate = %d, scl rate = %d\n", i2c_rate,
  58. scl_rate);
  59. debug("set i2c clk div = %d, divh = %d, divl = %d\n", div, divh, divl);
  60. debug("set clk(I2C_CLKDIV: 0x%08x)\n", readl(&i2c->regs->clkdiv));
  61. }
  62. static void rk_i2c_show_regs(struct i2c_regs *regs)
  63. {
  64. #ifdef DEBUG
  65. uint i;
  66. debug("i2c_con: 0x%08x\n", readl(&regs->con));
  67. debug("i2c_clkdiv: 0x%08x\n", readl(&regs->clkdiv));
  68. debug("i2c_mrxaddr: 0x%08x\n", readl(&regs->mrxaddr));
  69. debug("i2c_mrxraddR: 0x%08x\n", readl(&regs->mrxraddr));
  70. debug("i2c_mtxcnt: 0x%08x\n", readl(&regs->mtxcnt));
  71. debug("i2c_mrxcnt: 0x%08x\n", readl(&regs->mrxcnt));
  72. debug("i2c_ien: 0x%08x\n", readl(&regs->ien));
  73. debug("i2c_ipd: 0x%08x\n", readl(&regs->ipd));
  74. debug("i2c_fcnt: 0x%08x\n", readl(&regs->fcnt));
  75. for (i = 0; i < 8; i++)
  76. debug("i2c_txdata%d: 0x%08x\n", i, readl(&regs->txdata[i]));
  77. for (i = 0; i < 8; i++)
  78. debug("i2c_rxdata%d: 0x%08x\n", i, readl(&regs->rxdata[i]));
  79. #endif
  80. }
  81. static int rk_i2c_send_start_bit(struct rk_i2c *i2c)
  82. {
  83. struct i2c_regs *regs = i2c->regs;
  84. ulong start;
  85. debug("I2c Send Start bit.\n");
  86. writel(I2C_IPD_ALL_CLEAN, &regs->ipd);
  87. writel(I2C_CON_EN | I2C_CON_START, &regs->con);
  88. writel(I2C_STARTIEN, &regs->ien);
  89. start = get_timer(0);
  90. while (1) {
  91. if (readl(&regs->ipd) & I2C_STARTIPD) {
  92. writel(I2C_STARTIPD, &regs->ipd);
  93. break;
  94. }
  95. if (get_timer(start) > I2C_TIMEOUT_MS) {
  96. debug("I2C Send Start Bit Timeout\n");
  97. rk_i2c_show_regs(regs);
  98. return -ETIMEDOUT;
  99. }
  100. udelay(1);
  101. }
  102. return 0;
  103. }
  104. static int rk_i2c_send_stop_bit(struct rk_i2c *i2c)
  105. {
  106. struct i2c_regs *regs = i2c->regs;
  107. ulong start;
  108. debug("I2c Send Stop bit.\n");
  109. writel(I2C_IPD_ALL_CLEAN, &regs->ipd);
  110. writel(I2C_CON_EN | I2C_CON_STOP, &regs->con);
  111. writel(I2C_CON_STOP, &regs->ien);
  112. start = get_timer(0);
  113. while (1) {
  114. if (readl(&regs->ipd) & I2C_STOPIPD) {
  115. writel(I2C_STOPIPD, &regs->ipd);
  116. break;
  117. }
  118. if (get_timer(start) > I2C_TIMEOUT_MS) {
  119. debug("I2C Send Start Bit Timeout\n");
  120. rk_i2c_show_regs(regs);
  121. return -ETIMEDOUT;
  122. }
  123. udelay(1);
  124. }
  125. return 0;
  126. }
  127. static inline void rk_i2c_disable(struct rk_i2c *i2c)
  128. {
  129. writel(0, &i2c->regs->con);
  130. }
  131. static int rk_i2c_read(struct rk_i2c *i2c, uchar chip, uint reg, uint r_len,
  132. uchar *buf, uint b_len)
  133. {
  134. struct i2c_regs *regs = i2c->regs;
  135. uchar *pbuf = buf;
  136. uint bytes_remain_len = b_len;
  137. uint bytes_xferred = 0;
  138. uint words_xferred = 0;
  139. ulong start;
  140. uint con = 0;
  141. uint rxdata;
  142. uint i, j;
  143. int err;
  144. debug("rk_i2c_read: chip = %d, reg = %d, r_len = %d, b_len = %d\n",
  145. chip, reg, r_len, b_len);
  146. err = rk_i2c_send_start_bit(i2c);
  147. if (err)
  148. return err;
  149. writel(I2C_MRXADDR_SET(1, chip << 1 | 1), &regs->mrxaddr);
  150. if (r_len == 0) {
  151. writel(0, &regs->mrxraddr);
  152. } else if (r_len < 4) {
  153. writel(I2C_MRXRADDR_SET(r_len, reg), &regs->mrxraddr);
  154. } else {
  155. debug("I2C Read: addr len %d not supported\n", r_len);
  156. return -EIO;
  157. }
  158. while (bytes_remain_len) {
  159. if (bytes_remain_len > RK_I2C_FIFO_SIZE) {
  160. con = I2C_CON_EN | I2C_CON_MOD(I2C_MODE_TRX);
  161. bytes_xferred = 32;
  162. } else {
  163. con = I2C_CON_EN | I2C_CON_MOD(I2C_MODE_TRX) |
  164. I2C_CON_LASTACK;
  165. bytes_xferred = bytes_remain_len;
  166. }
  167. words_xferred = DIV_ROUND_UP(bytes_xferred, 4);
  168. writel(con, &regs->con);
  169. writel(bytes_xferred, &regs->mrxcnt);
  170. writel(I2C_MBRFIEN | I2C_NAKRCVIEN, &regs->ien);
  171. start = get_timer(0);
  172. while (1) {
  173. if (readl(&regs->ipd) & I2C_NAKRCVIPD) {
  174. writel(I2C_NAKRCVIPD, &regs->ipd);
  175. err = -EREMOTEIO;
  176. }
  177. if (readl(&regs->ipd) & I2C_MBRFIPD) {
  178. writel(I2C_MBRFIPD, &regs->ipd);
  179. break;
  180. }
  181. if (get_timer(start) > I2C_TIMEOUT_MS) {
  182. debug("I2C Read Data Timeout\n");
  183. err = -ETIMEDOUT;
  184. rk_i2c_show_regs(regs);
  185. goto i2c_exit;
  186. }
  187. udelay(1);
  188. }
  189. for (i = 0; i < words_xferred; i++) {
  190. rxdata = readl(&regs->rxdata[i]);
  191. debug("I2c Read RXDATA[%d] = 0x%x\n", i, rxdata);
  192. for (j = 0; j < 4; j++) {
  193. if ((i * 4 + j) == bytes_xferred)
  194. break;
  195. *pbuf++ = (rxdata >> (j * 8)) & 0xff;
  196. }
  197. }
  198. bytes_remain_len -= bytes_xferred;
  199. debug("I2C Read bytes_remain_len %d\n", bytes_remain_len);
  200. }
  201. i2c_exit:
  202. rk_i2c_send_stop_bit(i2c);
  203. rk_i2c_disable(i2c);
  204. return err;
  205. }
  206. static int rk_i2c_write(struct rk_i2c *i2c, uchar chip, uint reg, uint r_len,
  207. uchar *buf, uint b_len)
  208. {
  209. struct i2c_regs *regs = i2c->regs;
  210. int err;
  211. uchar *pbuf = buf;
  212. uint bytes_remain_len = b_len + r_len + 1;
  213. uint bytes_xferred = 0;
  214. uint words_xferred = 0;
  215. ulong start;
  216. uint txdata;
  217. uint i, j;
  218. debug("rk_i2c_write: chip = %d, reg = %d, r_len = %d, b_len = %d\n",
  219. chip, reg, r_len, b_len);
  220. err = rk_i2c_send_start_bit(i2c);
  221. if (err)
  222. return err;
  223. while (bytes_remain_len) {
  224. if (bytes_remain_len > RK_I2C_FIFO_SIZE)
  225. bytes_xferred = 32;
  226. else
  227. bytes_xferred = bytes_remain_len;
  228. words_xferred = DIV_ROUND_UP(bytes_xferred, 4);
  229. for (i = 0; i < words_xferred; i++) {
  230. txdata = 0;
  231. for (j = 0; j < 4; j++) {
  232. if ((i * 4 + j) == bytes_xferred)
  233. break;
  234. if (i == 0 && j == 0) {
  235. txdata |= (chip << 1);
  236. } else if (i == 0 && j <= r_len) {
  237. txdata |= (reg &
  238. (0xff << ((j - 1) * 8))) << 8;
  239. } else {
  240. txdata |= (*pbuf++)<<(j * 8);
  241. }
  242. writel(txdata, &regs->txdata[i]);
  243. }
  244. debug("I2c Write TXDATA[%d] = 0x%x\n", i, txdata);
  245. }
  246. writel(I2C_CON_EN | I2C_CON_MOD(I2C_MODE_TX), &regs->con);
  247. writel(bytes_xferred, &regs->mtxcnt);
  248. writel(I2C_MBTFIEN | I2C_NAKRCVIEN, &regs->ien);
  249. start = get_timer(0);
  250. while (1) {
  251. if (readl(&regs->ipd) & I2C_NAKRCVIPD) {
  252. writel(I2C_NAKRCVIPD, &regs->ipd);
  253. err = -EREMOTEIO;
  254. }
  255. if (readl(&regs->ipd) & I2C_MBTFIPD) {
  256. writel(I2C_MBTFIPD, &regs->ipd);
  257. break;
  258. }
  259. if (get_timer(start) > I2C_TIMEOUT_MS) {
  260. debug("I2C Write Data Timeout\n");
  261. err = -ETIMEDOUT;
  262. rk_i2c_show_regs(regs);
  263. goto i2c_exit;
  264. }
  265. udelay(1);
  266. }
  267. bytes_remain_len -= bytes_xferred;
  268. debug("I2C Write bytes_remain_len %d\n", bytes_remain_len);
  269. }
  270. i2c_exit:
  271. rk_i2c_send_stop_bit(i2c);
  272. rk_i2c_disable(i2c);
  273. return err;
  274. }
  275. static int rockchip_i2c_xfer(struct udevice *bus, struct i2c_msg *msg,
  276. int nmsgs)
  277. {
  278. struct rk_i2c *i2c = dev_get_priv(bus);
  279. int ret;
  280. debug("i2c_xfer: %d messages\n", nmsgs);
  281. for (; nmsgs > 0; nmsgs--, msg++) {
  282. debug("i2c_xfer: chip=0x%x, len=0x%x\n", msg->addr, msg->len);
  283. if (msg->flags & I2C_M_RD) {
  284. ret = rk_i2c_read(i2c, msg->addr, 0, 0, msg->buf,
  285. msg->len);
  286. } else {
  287. ret = rk_i2c_write(i2c, msg->addr, 0, 0, msg->buf,
  288. msg->len);
  289. }
  290. if (ret) {
  291. debug("i2c_write: error sending\n");
  292. return -EREMOTEIO;
  293. }
  294. }
  295. return 0;
  296. }
  297. int rockchip_i2c_set_bus_speed(struct udevice *bus, unsigned int speed)
  298. {
  299. struct rk_i2c *i2c = dev_get_priv(bus);
  300. rk_i2c_set_clk(i2c, speed);
  301. return 0;
  302. }
  303. static int rockchip_i2c_ofdata_to_platdata(struct udevice *bus)
  304. {
  305. struct rk_i2c *priv = dev_get_priv(bus);
  306. int ret;
  307. ret = clk_get_by_index(bus, 0, &priv->clk);
  308. if (ret < 0) {
  309. debug("%s: Could not get clock for %s: %d\n", __func__,
  310. bus->name, ret);
  311. return ret;
  312. }
  313. priv->clk_id = ret;
  314. return 0;
  315. }
  316. static int rockchip_i2c_probe(struct udevice *bus)
  317. {
  318. struct rk_i2c *priv = dev_get_priv(bus);
  319. priv->regs = (void *)dev_get_addr(bus);
  320. return 0;
  321. }
  322. static const struct dm_i2c_ops rockchip_i2c_ops = {
  323. .xfer = rockchip_i2c_xfer,
  324. .set_bus_speed = rockchip_i2c_set_bus_speed,
  325. };
  326. static const struct udevice_id rockchip_i2c_ids[] = {
  327. { .compatible = "rockchip,rk3288-i2c" },
  328. { }
  329. };
  330. U_BOOT_DRIVER(i2c_rockchip) = {
  331. .name = "i2c_rockchip",
  332. .id = UCLASS_I2C,
  333. .of_match = rockchip_i2c_ids,
  334. .ofdata_to_platdata = rockchip_i2c_ofdata_to_platdata,
  335. .probe = rockchip_i2c_probe,
  336. .priv_auto_alloc_size = sizeof(struct rk_i2c),
  337. .ops = &rockchip_i2c_ops,
  338. };