dc2114x.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776
  1. /*
  2. * See file CREDITS for list of people who contributed to this
  3. * project.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  18. * MA 02111-1307 USA
  19. */
  20. #include <common.h>
  21. #include <malloc.h>
  22. #include <net.h>
  23. #include <netdev.h>
  24. #include <pci.h>
  25. #undef DEBUG_SROM
  26. #undef DEBUG_SROM2
  27. #undef UPDATE_SROM
  28. /* PCI Registers.
  29. */
  30. #define PCI_CFDA_PSM 0x43
  31. #define CFRV_RN 0x000000f0 /* Revision Number */
  32. #define WAKEUP 0x00 /* Power Saving Wakeup */
  33. #define SLEEP 0x80 /* Power Saving Sleep Mode */
  34. #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
  35. /* Ethernet chip registers.
  36. */
  37. #define DE4X5_BMR 0x000 /* Bus Mode Register */
  38. #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
  39. #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
  40. #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
  41. #define DE4X5_STS 0x028 /* Status Register */
  42. #define DE4X5_OMR 0x030 /* Operation Mode Register */
  43. #define DE4X5_SICR 0x068 /* SIA Connectivity Register */
  44. #define DE4X5_APROM 0x048 /* Ethernet Address PROM */
  45. /* Register bits.
  46. */
  47. #define BMR_SWR 0x00000001 /* Software Reset */
  48. #define STS_TS 0x00700000 /* Transmit Process State */
  49. #define STS_RS 0x000e0000 /* Receive Process State */
  50. #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
  51. #define OMR_SR 0x00000002 /* Start/Stop Receive */
  52. #define OMR_PS 0x00040000 /* Port Select */
  53. #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
  54. #define OMR_PM 0x00000080 /* Pass All Multicast */
  55. /* Descriptor bits.
  56. */
  57. #define R_OWN 0x80000000 /* Own Bit */
  58. #define RD_RER 0x02000000 /* Receive End Of Ring */
  59. #define RD_LS 0x00000100 /* Last Descriptor */
  60. #define RD_ES 0x00008000 /* Error Summary */
  61. #define TD_TER 0x02000000 /* Transmit End Of Ring */
  62. #define T_OWN 0x80000000 /* Own Bit */
  63. #define TD_LS 0x40000000 /* Last Segment */
  64. #define TD_FS 0x20000000 /* First Segment */
  65. #define TD_ES 0x00008000 /* Error Summary */
  66. #define TD_SET 0x08000000 /* Setup Packet */
  67. /* The EEPROM commands include the alway-set leading bit. */
  68. #define SROM_WRITE_CMD 5
  69. #define SROM_READ_CMD 6
  70. #define SROM_ERASE_CMD 7
  71. #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
  72. #define SROM_RD 0x00004000 /* Read from Boot ROM */
  73. #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
  74. #define EE_WRITE_0 0x4801
  75. #define EE_WRITE_1 0x4805
  76. #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
  77. #define SROM_SR 0x00000800 /* Select Serial ROM when set */
  78. #define DT_IN 0x00000004 /* Serial Data In */
  79. #define DT_CLK 0x00000002 /* Serial ROM Clock */
  80. #define DT_CS 0x00000001 /* Serial ROM Chip Select */
  81. #define POLL_DEMAND 1
  82. #ifdef CONFIG_TULIP_FIX_DAVICOM
  83. #define RESET_DM9102(dev) {\
  84. unsigned long i;\
  85. i=INL(dev, 0x0);\
  86. udelay(1000);\
  87. OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  88. udelay(1000);\
  89. }
  90. #else
  91. #define RESET_DE4X5(dev) {\
  92. int i;\
  93. i=INL(dev, DE4X5_BMR);\
  94. udelay(1000);\
  95. OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  96. udelay(1000);\
  97. OUTL(dev, i, DE4X5_BMR);\
  98. udelay(1000);\
  99. for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
  100. udelay(1000);\
  101. }
  102. #endif
  103. #define START_DE4X5(dev) {\
  104. s32 omr; \
  105. omr = INL(dev, DE4X5_OMR);\
  106. omr |= OMR_ST | OMR_SR;\
  107. OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
  108. }
  109. #define STOP_DE4X5(dev) {\
  110. s32 omr; \
  111. omr = INL(dev, DE4X5_OMR);\
  112. omr &= ~(OMR_ST|OMR_SR);\
  113. OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
  114. }
  115. #define NUM_RX_DESC PKTBUFSRX
  116. #ifndef CONFIG_TULIP_FIX_DAVICOM
  117. #define NUM_TX_DESC 1 /* Number of TX descriptors */
  118. #else
  119. #define NUM_TX_DESC 4
  120. #endif
  121. #define RX_BUFF_SZ PKTSIZE_ALIGN
  122. #define TOUT_LOOP 1000000
  123. #define SETUP_FRAME_LEN 192
  124. #define ETH_ALEN 6
  125. struct de4x5_desc {
  126. volatile s32 status;
  127. u32 des1;
  128. u32 buf;
  129. u32 next;
  130. };
  131. static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */
  132. static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */
  133. static int rx_new; /* RX descriptor ring pointer */
  134. static int tx_new; /* TX descriptor ring pointer */
  135. static char rxRingSize;
  136. static char txRingSize;
  137. #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
  138. static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
  139. static int getfrom_srom(struct eth_device* dev, u_long addr);
  140. static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
  141. static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
  142. #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
  143. #ifdef UPDATE_SROM
  144. static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
  145. static void update_srom(struct eth_device *dev, bd_t *bis);
  146. #endif
  147. #ifndef CONFIG_TULIP_FIX_DAVICOM
  148. static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
  149. static void read_hw_addr(struct eth_device* dev, bd_t * bis);
  150. #endif /* CONFIG_TULIP_FIX_DAVICOM */
  151. static void send_setup_frame(struct eth_device* dev, bd_t * bis);
  152. static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
  153. static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length);
  154. static int dc21x4x_recv(struct eth_device* dev);
  155. static void dc21x4x_halt(struct eth_device* dev);
  156. #ifdef CONFIG_TULIP_SELECT_MEDIA
  157. extern void dc21x4x_select_media(struct eth_device* dev);
  158. #endif
  159. #if defined(CONFIG_E500)
  160. #define phys_to_bus(a) (a)
  161. #else
  162. #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
  163. #endif
  164. static int INL(struct eth_device* dev, u_long addr)
  165. {
  166. return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
  167. }
  168. static void OUTL(struct eth_device* dev, int command, u_long addr)
  169. {
  170. *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
  171. }
  172. static struct pci_device_id supported[] = {
  173. { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
  174. { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
  175. #ifdef CONFIG_TULIP_FIX_DAVICOM
  176. { PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
  177. #endif
  178. { }
  179. };
  180. int dc21x4x_initialize(bd_t *bis)
  181. {
  182. int idx=0;
  183. int card_number = 0;
  184. unsigned int cfrv;
  185. unsigned char timer;
  186. pci_dev_t devbusfn;
  187. unsigned int iobase;
  188. unsigned short status;
  189. struct eth_device* dev;
  190. while(1) {
  191. devbusfn = pci_find_devices(supported, idx++);
  192. if (devbusfn == -1) {
  193. break;
  194. }
  195. /* Get the chip configuration revision register. */
  196. pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
  197. #ifndef CONFIG_TULIP_FIX_DAVICOM
  198. if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
  199. printf("Error: The chip is not DC21143.\n");
  200. continue;
  201. }
  202. #endif
  203. pci_read_config_word(devbusfn, PCI_COMMAND, &status);
  204. status |=
  205. #ifdef CONFIG_TULIP_USE_IO
  206. PCI_COMMAND_IO |
  207. #else
  208. PCI_COMMAND_MEMORY |
  209. #endif
  210. PCI_COMMAND_MASTER;
  211. pci_write_config_word(devbusfn, PCI_COMMAND, status);
  212. pci_read_config_word(devbusfn, PCI_COMMAND, &status);
  213. #ifdef CONFIG_TULIP_USE_IO
  214. if (!(status & PCI_COMMAND_IO)) {
  215. printf("Error: Can not enable I/O access.\n");
  216. continue;
  217. }
  218. #else
  219. if (!(status & PCI_COMMAND_MEMORY)) {
  220. printf("Error: Can not enable MEMORY access.\n");
  221. continue;
  222. }
  223. #endif
  224. if (!(status & PCI_COMMAND_MASTER)) {
  225. printf("Error: Can not enable Bus Mastering.\n");
  226. continue;
  227. }
  228. /* Check the latency timer for values >= 0x60. */
  229. pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
  230. if (timer < 0x60) {
  231. pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
  232. }
  233. #ifdef CONFIG_TULIP_USE_IO
  234. /* read BAR for memory space access */
  235. pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
  236. iobase &= PCI_BASE_ADDRESS_IO_MASK;
  237. #else
  238. /* read BAR for memory space access */
  239. pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
  240. iobase &= PCI_BASE_ADDRESS_MEM_MASK;
  241. #endif
  242. debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
  243. dev = (struct eth_device*) malloc(sizeof *dev);
  244. if (!dev) {
  245. printf("Can not allocalte memory of dc21x4x\n");
  246. break;
  247. }
  248. memset(dev, 0, sizeof(*dev));
  249. #ifdef CONFIG_TULIP_FIX_DAVICOM
  250. sprintf(dev->name, "Davicom#%d", card_number);
  251. #else
  252. sprintf(dev->name, "dc21x4x#%d", card_number);
  253. #endif
  254. #ifdef CONFIG_TULIP_USE_IO
  255. dev->iobase = pci_io_to_phys(devbusfn, iobase);
  256. #else
  257. dev->iobase = pci_mem_to_phys(devbusfn, iobase);
  258. #endif
  259. dev->priv = (void*) devbusfn;
  260. dev->init = dc21x4x_init;
  261. dev->halt = dc21x4x_halt;
  262. dev->send = dc21x4x_send;
  263. dev->recv = dc21x4x_recv;
  264. /* Ensure we're not sleeping. */
  265. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
  266. udelay(10 * 1000);
  267. #ifndef CONFIG_TULIP_FIX_DAVICOM
  268. read_hw_addr(dev, bis);
  269. #endif
  270. eth_register(dev);
  271. card_number++;
  272. }
  273. return card_number;
  274. }
  275. static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
  276. {
  277. int i;
  278. int devbusfn = (int) dev->priv;
  279. /* Ensure we're not sleeping. */
  280. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
  281. #ifdef CONFIG_TULIP_FIX_DAVICOM
  282. RESET_DM9102(dev);
  283. #else
  284. RESET_DE4X5(dev);
  285. #endif
  286. if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
  287. printf("Error: Cannot reset ethernet controller.\n");
  288. return -1;
  289. }
  290. #ifdef CONFIG_TULIP_SELECT_MEDIA
  291. dc21x4x_select_media(dev);
  292. #else
  293. OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
  294. #endif
  295. for (i = 0; i < NUM_RX_DESC; i++) {
  296. rx_ring[i].status = cpu_to_le32(R_OWN);
  297. rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
  298. rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
  299. #ifdef CONFIG_TULIP_FIX_DAVICOM
  300. rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
  301. #else
  302. rx_ring[i].next = 0;
  303. #endif
  304. }
  305. for (i=0; i < NUM_TX_DESC; i++) {
  306. tx_ring[i].status = 0;
  307. tx_ring[i].des1 = 0;
  308. tx_ring[i].buf = 0;
  309. #ifdef CONFIG_TULIP_FIX_DAVICOM
  310. tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
  311. #else
  312. tx_ring[i].next = 0;
  313. #endif
  314. }
  315. rxRingSize = NUM_RX_DESC;
  316. txRingSize = NUM_TX_DESC;
  317. /* Write the end of list marker to the descriptor lists. */
  318. rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
  319. tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
  320. /* Tell the adapter where the TX/RX rings are located. */
  321. OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
  322. OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
  323. START_DE4X5(dev);
  324. tx_new = 0;
  325. rx_new = 0;
  326. send_setup_frame(dev, bis);
  327. return 0;
  328. }
  329. static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length)
  330. {
  331. int status = -1;
  332. int i;
  333. if (length <= 0) {
  334. printf("%s: bad packet size: %d\n", dev->name, length);
  335. goto Done;
  336. }
  337. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  338. if (i >= TOUT_LOOP) {
  339. printf("%s: tx error buffer not ready\n", dev->name);
  340. goto Done;
  341. }
  342. }
  343. tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
  344. tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
  345. tx_ring[tx_new].status = cpu_to_le32(T_OWN);
  346. OUTL(dev, POLL_DEMAND, DE4X5_TPD);
  347. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  348. if (i >= TOUT_LOOP) {
  349. printf(".%s: tx buffer not ready\n", dev->name);
  350. goto Done;
  351. }
  352. }
  353. if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
  354. #if 0 /* test-only */
  355. printf("TX error status = 0x%08X\n",
  356. le32_to_cpu(tx_ring[tx_new].status));
  357. #endif
  358. tx_ring[tx_new].status = 0x0;
  359. goto Done;
  360. }
  361. status = length;
  362. Done:
  363. tx_new = (tx_new+1) % NUM_TX_DESC;
  364. return status;
  365. }
  366. static int dc21x4x_recv(struct eth_device* dev)
  367. {
  368. s32 status;
  369. int length = 0;
  370. for ( ; ; ) {
  371. status = (s32)le32_to_cpu(rx_ring[rx_new].status);
  372. if (status & R_OWN) {
  373. break;
  374. }
  375. if (status & RD_LS) {
  376. /* Valid frame status.
  377. */
  378. if (status & RD_ES) {
  379. /* There was an error.
  380. */
  381. printf("RX error status = 0x%08X\n", status);
  382. } else {
  383. /* A valid frame received.
  384. */
  385. length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
  386. /* Pass the packet up to the protocol
  387. * layers.
  388. */
  389. NetReceive(NetRxPackets[rx_new], length - 4);
  390. }
  391. /* Change buffer ownership for this frame, back
  392. * to the adapter.
  393. */
  394. rx_ring[rx_new].status = cpu_to_le32(R_OWN);
  395. }
  396. /* Update entry information.
  397. */
  398. rx_new = (rx_new + 1) % rxRingSize;
  399. }
  400. return length;
  401. }
  402. static void dc21x4x_halt(struct eth_device* dev)
  403. {
  404. int devbusfn = (int) dev->priv;
  405. STOP_DE4X5(dev);
  406. OUTL(dev, 0, DE4X5_SICR);
  407. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
  408. }
  409. static void send_setup_frame(struct eth_device* dev, bd_t *bis)
  410. {
  411. int i;
  412. char setup_frame[SETUP_FRAME_LEN];
  413. char *pa = &setup_frame[0];
  414. memset(pa, 0xff, SETUP_FRAME_LEN);
  415. for (i = 0; i < ETH_ALEN; i++) {
  416. *(pa + (i & 1)) = dev->enetaddr[i];
  417. if (i & 0x01) {
  418. pa += 4;
  419. }
  420. }
  421. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  422. if (i >= TOUT_LOOP) {
  423. printf("%s: tx error buffer not ready\n", dev->name);
  424. goto Done;
  425. }
  426. }
  427. tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
  428. tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
  429. tx_ring[tx_new].status = cpu_to_le32(T_OWN);
  430. OUTL(dev, POLL_DEMAND, DE4X5_TPD);
  431. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  432. if (i >= TOUT_LOOP) {
  433. printf("%s: tx buffer not ready\n", dev->name);
  434. goto Done;
  435. }
  436. }
  437. if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
  438. printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
  439. }
  440. tx_new = (tx_new+1) % NUM_TX_DESC;
  441. Done:
  442. return;
  443. }
  444. #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
  445. /* SROM Read and write routines.
  446. */
  447. static void
  448. sendto_srom(struct eth_device* dev, u_int command, u_long addr)
  449. {
  450. OUTL(dev, command, addr);
  451. udelay(1);
  452. }
  453. static int
  454. getfrom_srom(struct eth_device* dev, u_long addr)
  455. {
  456. s32 tmp;
  457. tmp = INL(dev, addr);
  458. udelay(1);
  459. return tmp;
  460. }
  461. /* Note: this routine returns extra data bits for size detection. */
  462. static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
  463. {
  464. int i;
  465. unsigned retval = 0;
  466. int read_cmd = location | (SROM_READ_CMD << addr_len);
  467. sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
  468. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  469. #ifdef DEBUG_SROM
  470. printf(" EEPROM read at %d ", location);
  471. #endif
  472. /* Shift the read command bits out. */
  473. for (i = 4 + addr_len; i >= 0; i--) {
  474. short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  475. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
  476. udelay(10);
  477. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
  478. udelay(10);
  479. #ifdef DEBUG_SROM2
  480. printf("%X", getfrom_srom(dev, ioaddr) & 15);
  481. #endif
  482. retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
  483. }
  484. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  485. #ifdef DEBUG_SROM2
  486. printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
  487. #endif
  488. for (i = 16; i > 0; i--) {
  489. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
  490. udelay(10);
  491. #ifdef DEBUG_SROM2
  492. printf("%X", getfrom_srom(dev, ioaddr) & 15);
  493. #endif
  494. retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
  495. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  496. udelay(10);
  497. }
  498. /* Terminate the EEPROM access. */
  499. sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
  500. #ifdef DEBUG_SROM2
  501. printf(" EEPROM value at %d is %5.5x.\n", location, retval);
  502. #endif
  503. return retval;
  504. }
  505. #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
  506. /* This executes a generic EEPROM command, typically a write or write
  507. * enable. It returns the data output from the EEPROM, and thus may
  508. * also be used for reads.
  509. */
  510. #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
  511. static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
  512. {
  513. unsigned retval = 0;
  514. #ifdef DEBUG_SROM
  515. printf(" EEPROM op 0x%x: ", cmd);
  516. #endif
  517. sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
  518. /* Shift the command bits out. */
  519. do {
  520. short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
  521. sendto_srom(dev,dataval, ioaddr);
  522. udelay(10);
  523. #ifdef DEBUG_SROM2
  524. printf("%X", getfrom_srom(dev,ioaddr) & 15);
  525. #endif
  526. sendto_srom(dev,dataval | DT_CLK, ioaddr);
  527. udelay(10);
  528. retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
  529. } while (--cmd_len >= 0);
  530. sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
  531. /* Terminate the EEPROM access. */
  532. sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
  533. #ifdef DEBUG_SROM
  534. printf(" EEPROM result is 0x%5.5x.\n", retval);
  535. #endif
  536. return retval;
  537. }
  538. #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
  539. #ifndef CONFIG_TULIP_FIX_DAVICOM
  540. static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
  541. {
  542. int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
  543. return do_eeprom_cmd(dev, ioaddr,
  544. (((SROM_READ_CMD << ee_addr_size) | index) << 16)
  545. | 0xffff, 3 + ee_addr_size + 16);
  546. }
  547. #endif /* CONFIG_TULIP_FIX_DAVICOM */
  548. #ifdef UPDATE_SROM
  549. static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
  550. {
  551. int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
  552. int i;
  553. unsigned short newval;
  554. udelay(10*1000); /* test-only */
  555. #ifdef DEBUG_SROM
  556. printf("ee_addr_size=%d.\n", ee_addr_size);
  557. printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
  558. #endif
  559. /* Enable programming modes. */
  560. do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
  561. /* Do the actual write. */
  562. do_eeprom_cmd(dev, ioaddr,
  563. (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
  564. 3 + ee_addr_size + 16);
  565. /* Poll for write finished. */
  566. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  567. for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
  568. if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
  569. break;
  570. #ifdef DEBUG_SROM
  571. printf(" Write finished after %d ticks.\n", i);
  572. #endif
  573. /* Disable programming. */
  574. do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
  575. /* And read the result. */
  576. newval = do_eeprom_cmd(dev, ioaddr,
  577. (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
  578. | 0xffff, 3 + ee_addr_size + 16);
  579. #ifdef DEBUG_SROM
  580. printf(" New value at offset %d is %4.4x.\n", index, newval);
  581. #endif
  582. return 1;
  583. }
  584. #endif
  585. #ifndef CONFIG_TULIP_FIX_DAVICOM
  586. static void read_hw_addr(struct eth_device *dev, bd_t *bis)
  587. {
  588. u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
  589. int i, j = 0;
  590. for (i = 0; i < (ETH_ALEN >> 1); i++) {
  591. tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
  592. *p = le16_to_cpu(tmp);
  593. j += *p++;
  594. }
  595. if ((j == 0) || (j == 0x2fffd)) {
  596. memset (dev->enetaddr, 0, ETH_ALEN);
  597. debug ("Warning: can't read HW address from SROM.\n");
  598. goto Done;
  599. }
  600. return;
  601. Done:
  602. #ifdef UPDATE_SROM
  603. update_srom(dev, bis);
  604. #endif
  605. return;
  606. }
  607. #endif /* CONFIG_TULIP_FIX_DAVICOM */
  608. #ifdef UPDATE_SROM
  609. static void update_srom(struct eth_device *dev, bd_t *bis)
  610. {
  611. int i;
  612. static unsigned short eeprom[0x40] = {
  613. 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
  614. 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
  615. 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
  616. 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
  617. 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
  618. 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
  619. 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
  620. 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
  621. 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
  622. 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
  623. 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
  624. 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
  625. 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
  626. 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
  627. 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
  628. 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
  629. };
  630. uchar enetaddr[6];
  631. /* Ethernet Addr... */
  632. if (!eth_getenv_enetaddr("ethaddr", enetaddr))
  633. return;
  634. eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
  635. eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
  636. eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
  637. for (i=0; i<0x40; i++) {
  638. write_srom(dev, DE4X5_APROM, i, eeprom[i]);
  639. }
  640. }
  641. #endif /* UPDATE_SROM */