stm32_qspi.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * (C) Copyright 2016
  4. *
  5. * Michael Kurz, <michi.kurz@gmail.com>
  6. *
  7. * STM32 QSPI driver
  8. */
  9. #include <common.h>
  10. #include <clk.h>
  11. #include <dm.h>
  12. #include <errno.h>
  13. #include <malloc.h>
  14. #include <reset.h>
  15. #include <spi.h>
  16. #include <spi_flash.h>
  17. #include <asm/io.h>
  18. #include <asm/arch/stm32.h>
  19. #include <linux/ioport.h>
  20. struct stm32_qspi_regs {
  21. u32 cr; /* 0x00 */
  22. u32 dcr; /* 0x04 */
  23. u32 sr; /* 0x08 */
  24. u32 fcr; /* 0x0C */
  25. u32 dlr; /* 0x10 */
  26. u32 ccr; /* 0x14 */
  27. u32 ar; /* 0x18 */
  28. u32 abr; /* 0x1C */
  29. u32 dr; /* 0x20 */
  30. u32 psmkr; /* 0x24 */
  31. u32 psmar; /* 0x28 */
  32. u32 pir; /* 0x2C */
  33. u32 lptr; /* 0x30 */
  34. };
  35. /*
  36. * QUADSPI control register
  37. */
  38. #define STM32_QSPI_CR_EN BIT(0)
  39. #define STM32_QSPI_CR_ABORT BIT(1)
  40. #define STM32_QSPI_CR_DMAEN BIT(2)
  41. #define STM32_QSPI_CR_TCEN BIT(3)
  42. #define STM32_QSPI_CR_SSHIFT BIT(4)
  43. #define STM32_QSPI_CR_DFM BIT(6)
  44. #define STM32_QSPI_CR_FSEL BIT(7)
  45. #define STM32_QSPI_CR_FTHRES_MASK GENMASK(4, 0)
  46. #define STM32_QSPI_CR_FTHRES_SHIFT (8)
  47. #define STM32_QSPI_CR_TEIE BIT(16)
  48. #define STM32_QSPI_CR_TCIE BIT(17)
  49. #define STM32_QSPI_CR_FTIE BIT(18)
  50. #define STM32_QSPI_CR_SMIE BIT(19)
  51. #define STM32_QSPI_CR_TOIE BIT(20)
  52. #define STM32_QSPI_CR_APMS BIT(22)
  53. #define STM32_QSPI_CR_PMM BIT(23)
  54. #define STM32_QSPI_CR_PRESCALER_MASK GENMASK(7, 0)
  55. #define STM32_QSPI_CR_PRESCALER_SHIFT (24)
  56. /*
  57. * QUADSPI device configuration register
  58. */
  59. #define STM32_QSPI_DCR_CKMODE BIT(0)
  60. #define STM32_QSPI_DCR_CSHT_MASK GENMASK(2, 0)
  61. #define STM32_QSPI_DCR_CSHT_SHIFT (8)
  62. #define STM32_QSPI_DCR_FSIZE_MASK GENMASK(4, 0)
  63. #define STM32_QSPI_DCR_FSIZE_SHIFT (16)
  64. /*
  65. * QUADSPI status register
  66. */
  67. #define STM32_QSPI_SR_TEF BIT(0)
  68. #define STM32_QSPI_SR_TCF BIT(1)
  69. #define STM32_QSPI_SR_FTF BIT(2)
  70. #define STM32_QSPI_SR_SMF BIT(3)
  71. #define STM32_QSPI_SR_TOF BIT(4)
  72. #define STM32_QSPI_SR_BUSY BIT(5)
  73. #define STM32_QSPI_SR_FLEVEL_MASK GENMASK(5, 0)
  74. #define STM32_QSPI_SR_FLEVEL_SHIFT (8)
  75. /*
  76. * QUADSPI flag clear register
  77. */
  78. #define STM32_QSPI_FCR_CTEF BIT(0)
  79. #define STM32_QSPI_FCR_CTCF BIT(1)
  80. #define STM32_QSPI_FCR_CSMF BIT(3)
  81. #define STM32_QSPI_FCR_CTOF BIT(4)
  82. /*
  83. * QUADSPI communication configuration register
  84. */
  85. #define STM32_QSPI_CCR_DDRM BIT(31)
  86. #define STM32_QSPI_CCR_DHHC BIT(30)
  87. #define STM32_QSPI_CCR_SIOO BIT(28)
  88. #define STM32_QSPI_CCR_FMODE_SHIFT (26)
  89. #define STM32_QSPI_CCR_DMODE_SHIFT (24)
  90. #define STM32_QSPI_CCR_DCYC_SHIFT (18)
  91. #define STM32_QSPI_CCR_DCYC_MASK GENMASK(4, 0)
  92. #define STM32_QSPI_CCR_ABSIZE_SHIFT (16)
  93. #define STM32_QSPI_CCR_ABMODE_SHIFT (14)
  94. #define STM32_QSPI_CCR_ADSIZE_SHIFT (12)
  95. #define STM32_QSPI_CCR_ADMODE_SHIFT (10)
  96. #define STM32_QSPI_CCR_IMODE_SHIFT (8)
  97. #define STM32_QSPI_CCR_INSTRUCTION_MASK GENMASK(7, 0)
  98. enum STM32_QSPI_CCR_IMODE {
  99. STM32_QSPI_CCR_IMODE_NONE = 0,
  100. STM32_QSPI_CCR_IMODE_ONE_LINE = 1,
  101. STM32_QSPI_CCR_IMODE_TWO_LINE = 2,
  102. STM32_QSPI_CCR_IMODE_FOUR_LINE = 3,
  103. };
  104. enum STM32_QSPI_CCR_ADMODE {
  105. STM32_QSPI_CCR_ADMODE_NONE = 0,
  106. STM32_QSPI_CCR_ADMODE_ONE_LINE = 1,
  107. STM32_QSPI_CCR_ADMODE_TWO_LINE = 2,
  108. STM32_QSPI_CCR_ADMODE_FOUR_LINE = 3,
  109. };
  110. enum STM32_QSPI_CCR_ADSIZE {
  111. STM32_QSPI_CCR_ADSIZE_8BIT = 0,
  112. STM32_QSPI_CCR_ADSIZE_16BIT = 1,
  113. STM32_QSPI_CCR_ADSIZE_24BIT = 2,
  114. STM32_QSPI_CCR_ADSIZE_32BIT = 3,
  115. };
  116. enum STM32_QSPI_CCR_ABMODE {
  117. STM32_QSPI_CCR_ABMODE_NONE = 0,
  118. STM32_QSPI_CCR_ABMODE_ONE_LINE = 1,
  119. STM32_QSPI_CCR_ABMODE_TWO_LINE = 2,
  120. STM32_QSPI_CCR_ABMODE_FOUR_LINE = 3,
  121. };
  122. enum STM32_QSPI_CCR_ABSIZE {
  123. STM32_QSPI_CCR_ABSIZE_8BIT = 0,
  124. STM32_QSPI_CCR_ABSIZE_16BIT = 1,
  125. STM32_QSPI_CCR_ABSIZE_24BIT = 2,
  126. STM32_QSPI_CCR_ABSIZE_32BIT = 3,
  127. };
  128. enum STM32_QSPI_CCR_DMODE {
  129. STM32_QSPI_CCR_DMODE_NONE = 0,
  130. STM32_QSPI_CCR_DMODE_ONE_LINE = 1,
  131. STM32_QSPI_CCR_DMODE_TWO_LINE = 2,
  132. STM32_QSPI_CCR_DMODE_FOUR_LINE = 3,
  133. };
  134. enum STM32_QSPI_CCR_FMODE {
  135. STM32_QSPI_CCR_IND_WRITE = 0,
  136. STM32_QSPI_CCR_IND_READ = 1,
  137. STM32_QSPI_CCR_AUTO_POLL = 2,
  138. STM32_QSPI_CCR_MEM_MAP = 3,
  139. };
  140. /* default SCK frequency, unit: HZ */
  141. #define STM32_QSPI_DEFAULT_SCK_FREQ 108000000
  142. #define STM32_MAX_NORCHIP 2
  143. struct stm32_qspi_platdata {
  144. u32 base;
  145. u32 memory_map;
  146. u32 max_hz;
  147. };
  148. struct stm32_qspi_priv {
  149. struct stm32_qspi_regs *regs;
  150. ulong clock_rate;
  151. u32 max_hz;
  152. u32 mode;
  153. u32 command;
  154. u32 address;
  155. u32 dummycycles;
  156. #define CMD_HAS_ADR BIT(24)
  157. #define CMD_HAS_DUMMY BIT(25)
  158. #define CMD_HAS_DATA BIT(26)
  159. };
  160. static void _stm32_qspi_disable(struct stm32_qspi_priv *priv)
  161. {
  162. clrbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN);
  163. }
  164. static void _stm32_qspi_enable(struct stm32_qspi_priv *priv)
  165. {
  166. setbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN);
  167. }
  168. static void _stm32_qspi_wait_for_not_busy(struct stm32_qspi_priv *priv)
  169. {
  170. while (readl(&priv->regs->sr) & STM32_QSPI_SR_BUSY)
  171. ;
  172. }
  173. static void _stm32_qspi_wait_for_complete(struct stm32_qspi_priv *priv)
  174. {
  175. while (!(readl(&priv->regs->sr) & STM32_QSPI_SR_TCF))
  176. ;
  177. }
  178. static void _stm32_qspi_wait_for_ftf(struct stm32_qspi_priv *priv)
  179. {
  180. while (!(readl(&priv->regs->sr) & STM32_QSPI_SR_FTF))
  181. ;
  182. }
  183. static void _stm32_qspi_set_flash_size(struct stm32_qspi_priv *priv, u32 size)
  184. {
  185. u32 fsize = fls(size) - 1;
  186. clrsetbits_le32(&priv->regs->dcr,
  187. STM32_QSPI_DCR_FSIZE_MASK << STM32_QSPI_DCR_FSIZE_SHIFT,
  188. fsize << STM32_QSPI_DCR_FSIZE_SHIFT);
  189. }
  190. static void _stm32_qspi_set_cs(struct stm32_qspi_priv *priv, unsigned int cs)
  191. {
  192. clrsetbits_le32(&priv->regs->cr, STM32_QSPI_CR_FSEL,
  193. cs ? STM32_QSPI_CR_FSEL : 0);
  194. }
  195. static unsigned int _stm32_qspi_gen_ccr(struct stm32_qspi_priv *priv, u8 fmode)
  196. {
  197. unsigned int ccr_reg = 0;
  198. u8 imode, admode, dmode;
  199. u32 mode = priv->mode;
  200. u32 cmd = (priv->command & STM32_QSPI_CCR_INSTRUCTION_MASK);
  201. imode = STM32_QSPI_CCR_IMODE_ONE_LINE;
  202. admode = STM32_QSPI_CCR_ADMODE_ONE_LINE;
  203. dmode = STM32_QSPI_CCR_DMODE_ONE_LINE;
  204. if ((priv->command & CMD_HAS_ADR) && (priv->command & CMD_HAS_DATA)) {
  205. if (fmode == STM32_QSPI_CCR_IND_WRITE) {
  206. if (mode & SPI_TX_QUAD)
  207. dmode = STM32_QSPI_CCR_DMODE_FOUR_LINE;
  208. else if (mode & SPI_TX_DUAL)
  209. dmode = STM32_QSPI_CCR_DMODE_TWO_LINE;
  210. } else if ((fmode == STM32_QSPI_CCR_MEM_MAP) ||
  211. (fmode == STM32_QSPI_CCR_IND_READ)) {
  212. if (mode & SPI_RX_QUAD)
  213. dmode = STM32_QSPI_CCR_DMODE_FOUR_LINE;
  214. else if (mode & SPI_RX_DUAL)
  215. dmode = STM32_QSPI_CCR_DMODE_TWO_LINE;
  216. }
  217. }
  218. if (priv->command & CMD_HAS_DATA)
  219. ccr_reg |= (dmode << STM32_QSPI_CCR_DMODE_SHIFT);
  220. if (priv->command & CMD_HAS_DUMMY)
  221. ccr_reg |= ((priv->dummycycles & STM32_QSPI_CCR_DCYC_MASK)
  222. << STM32_QSPI_CCR_DCYC_SHIFT);
  223. if (priv->command & CMD_HAS_ADR) {
  224. ccr_reg |= (STM32_QSPI_CCR_ADSIZE_24BIT
  225. << STM32_QSPI_CCR_ADSIZE_SHIFT);
  226. ccr_reg |= (admode << STM32_QSPI_CCR_ADMODE_SHIFT);
  227. }
  228. ccr_reg |= (fmode << STM32_QSPI_CCR_FMODE_SHIFT);
  229. ccr_reg |= (imode << STM32_QSPI_CCR_IMODE_SHIFT);
  230. ccr_reg |= cmd;
  231. return ccr_reg;
  232. }
  233. static void _stm32_qspi_enable_mmap(struct stm32_qspi_priv *priv,
  234. struct spi_flash *flash)
  235. {
  236. unsigned int ccr_reg;
  237. priv->command = flash->read_cmd | CMD_HAS_ADR | CMD_HAS_DATA
  238. | CMD_HAS_DUMMY;
  239. priv->dummycycles = flash->dummy_byte * 8;
  240. ccr_reg = _stm32_qspi_gen_ccr(priv, STM32_QSPI_CCR_MEM_MAP);
  241. _stm32_qspi_wait_for_not_busy(priv);
  242. writel(ccr_reg, &priv->regs->ccr);
  243. priv->dummycycles = 0;
  244. }
  245. static void _stm32_qspi_disable_mmap(struct stm32_qspi_priv *priv)
  246. {
  247. setbits_le32(&priv->regs->cr, STM32_QSPI_CR_ABORT);
  248. }
  249. static void _stm32_qspi_set_xfer_length(struct stm32_qspi_priv *priv,
  250. u32 length)
  251. {
  252. writel(length - 1, &priv->regs->dlr);
  253. }
  254. static void _stm32_qspi_start_xfer(struct stm32_qspi_priv *priv, u32 cr_reg)
  255. {
  256. writel(cr_reg, &priv->regs->ccr);
  257. if (priv->command & CMD_HAS_ADR)
  258. writel(priv->address, &priv->regs->ar);
  259. }
  260. static int _stm32_qspi_xfer(struct stm32_qspi_priv *priv,
  261. struct spi_flash *flash, unsigned int bitlen,
  262. const u8 *dout, u8 *din, unsigned long flags)
  263. {
  264. unsigned int words = bitlen / 8;
  265. u32 ccr_reg;
  266. int i;
  267. if (flags & SPI_XFER_MMAP) {
  268. _stm32_qspi_enable_mmap(priv, flash);
  269. return 0;
  270. } else if (flags & SPI_XFER_MMAP_END) {
  271. _stm32_qspi_disable_mmap(priv);
  272. return 0;
  273. }
  274. if (bitlen == 0)
  275. return -1;
  276. if (bitlen % 8) {
  277. debug("spi_xfer: Non byte aligned SPI transfer\n");
  278. return -1;
  279. }
  280. if (dout && din) {
  281. debug("spi_xfer: QSPI cannot have data in and data out set\n");
  282. return -1;
  283. }
  284. if (!dout && (flags & SPI_XFER_BEGIN)) {
  285. debug("spi_xfer: QSPI transfer must begin with command\n");
  286. return -1;
  287. }
  288. if (dout) {
  289. if (flags & SPI_XFER_BEGIN) {
  290. /* data is command */
  291. priv->command = dout[0] | CMD_HAS_DATA;
  292. if (words >= 4) {
  293. /* address is here too */
  294. priv->address = (dout[1] << 16) |
  295. (dout[2] << 8) | dout[3];
  296. priv->command |= CMD_HAS_ADR;
  297. }
  298. if (words > 4) {
  299. /* rest is dummy bytes */
  300. priv->dummycycles = (words - 4) * 8;
  301. priv->command |= CMD_HAS_DUMMY;
  302. }
  303. if (flags & SPI_XFER_END) {
  304. /* command without data */
  305. priv->command &= ~(CMD_HAS_DATA);
  306. }
  307. }
  308. if (flags & SPI_XFER_END) {
  309. ccr_reg = _stm32_qspi_gen_ccr(priv,
  310. STM32_QSPI_CCR_IND_WRITE);
  311. _stm32_qspi_wait_for_not_busy(priv);
  312. if (priv->command & CMD_HAS_DATA)
  313. _stm32_qspi_set_xfer_length(priv, words);
  314. _stm32_qspi_start_xfer(priv, ccr_reg);
  315. debug("%s: write: ccr:0x%08x adr:0x%08x\n",
  316. __func__, priv->regs->ccr, priv->regs->ar);
  317. if (priv->command & CMD_HAS_DATA) {
  318. _stm32_qspi_wait_for_ftf(priv);
  319. debug("%s: words:%d data:", __func__, words);
  320. i = 0;
  321. while (words > i) {
  322. writeb(dout[i], &priv->regs->dr);
  323. debug("%02x ", dout[i]);
  324. i++;
  325. }
  326. debug("\n");
  327. _stm32_qspi_wait_for_complete(priv);
  328. } else {
  329. _stm32_qspi_wait_for_not_busy(priv);
  330. }
  331. }
  332. } else if (din) {
  333. ccr_reg = _stm32_qspi_gen_ccr(priv, STM32_QSPI_CCR_IND_READ);
  334. _stm32_qspi_wait_for_not_busy(priv);
  335. _stm32_qspi_set_xfer_length(priv, words);
  336. _stm32_qspi_start_xfer(priv, ccr_reg);
  337. debug("%s: read: ccr:0x%08x adr:0x%08x len:%d\n", __func__,
  338. priv->regs->ccr, priv->regs->ar, priv->regs->dlr);
  339. debug("%s: data:", __func__);
  340. i = 0;
  341. while (words > i) {
  342. din[i] = readb(&priv->regs->dr);
  343. debug("%02x ", din[i]);
  344. i++;
  345. }
  346. debug("\n");
  347. }
  348. return 0;
  349. }
  350. static int stm32_qspi_ofdata_to_platdata(struct udevice *bus)
  351. {
  352. struct resource res_regs, res_mem;
  353. struct stm32_qspi_platdata *plat = bus->platdata;
  354. int ret;
  355. ret = dev_read_resource_byname(bus, "qspi", &res_regs);
  356. if (ret) {
  357. debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
  358. return -ENOMEM;
  359. }
  360. ret = dev_read_resource_byname(bus, "qspi_mm", &res_mem);
  361. if (ret) {
  362. debug("Error: can't get mmap base address(ret = %d)!\n", ret);
  363. return -ENOMEM;
  364. }
  365. plat->max_hz = dev_read_u32_default(bus, "spi-max-frequency",
  366. STM32_QSPI_DEFAULT_SCK_FREQ);
  367. plat->base = res_regs.start;
  368. plat->memory_map = res_mem.start;
  369. debug("%s: regs=<0x%x> mapped=<0x%x>, max-frequency=%d\n",
  370. __func__,
  371. plat->base,
  372. plat->memory_map,
  373. plat->max_hz
  374. );
  375. return 0;
  376. }
  377. static int stm32_qspi_probe(struct udevice *bus)
  378. {
  379. struct stm32_qspi_platdata *plat = dev_get_platdata(bus);
  380. struct stm32_qspi_priv *priv = dev_get_priv(bus);
  381. struct dm_spi_bus *dm_spi_bus;
  382. struct clk clk;
  383. struct reset_ctl reset_ctl;
  384. int ret;
  385. dm_spi_bus = bus->uclass_priv;
  386. dm_spi_bus->max_hz = plat->max_hz;
  387. priv->regs = (struct stm32_qspi_regs *)(uintptr_t)plat->base;
  388. priv->max_hz = plat->max_hz;
  389. ret = clk_get_by_index(bus, 0, &clk);
  390. if (ret < 0)
  391. return ret;
  392. ret = clk_enable(&clk);
  393. if (ret) {
  394. dev_err(bus, "failed to enable clock\n");
  395. return ret;
  396. }
  397. priv->clock_rate = clk_get_rate(&clk);
  398. if (priv->clock_rate < 0) {
  399. clk_disable(&clk);
  400. return priv->clock_rate;
  401. }
  402. ret = reset_get_by_index(bus, 0, &reset_ctl);
  403. if (ret) {
  404. if (ret != -ENOENT) {
  405. dev_err(bus, "failed to get reset\n");
  406. clk_disable(&clk);
  407. return ret;
  408. }
  409. } else {
  410. /* Reset QSPI controller */
  411. reset_assert(&reset_ctl);
  412. udelay(2);
  413. reset_deassert(&reset_ctl);
  414. }
  415. setbits_le32(&priv->regs->cr, STM32_QSPI_CR_SSHIFT);
  416. return 0;
  417. }
  418. static int stm32_qspi_remove(struct udevice *bus)
  419. {
  420. return 0;
  421. }
  422. static int stm32_qspi_claim_bus(struct udevice *dev)
  423. {
  424. struct stm32_qspi_priv *priv;
  425. struct udevice *bus;
  426. struct spi_flash *flash;
  427. struct dm_spi_slave_platdata *slave_plat;
  428. bus = dev->parent;
  429. priv = dev_get_priv(bus);
  430. flash = dev_get_uclass_priv(dev);
  431. slave_plat = dev_get_parent_platdata(dev);
  432. if (slave_plat->cs >= STM32_MAX_NORCHIP)
  433. return -ENODEV;
  434. _stm32_qspi_set_cs(priv, slave_plat->cs);
  435. _stm32_qspi_set_flash_size(priv, flash->size);
  436. _stm32_qspi_enable(priv);
  437. return 0;
  438. }
  439. static int stm32_qspi_release_bus(struct udevice *dev)
  440. {
  441. struct stm32_qspi_priv *priv;
  442. struct udevice *bus;
  443. bus = dev->parent;
  444. priv = dev_get_priv(bus);
  445. _stm32_qspi_disable(priv);
  446. return 0;
  447. }
  448. static int stm32_qspi_xfer(struct udevice *dev, unsigned int bitlen,
  449. const void *dout, void *din, unsigned long flags)
  450. {
  451. struct stm32_qspi_priv *priv;
  452. struct udevice *bus;
  453. struct spi_flash *flash;
  454. bus = dev->parent;
  455. priv = dev_get_priv(bus);
  456. flash = dev_get_uclass_priv(dev);
  457. return _stm32_qspi_xfer(priv, flash, bitlen, (const u8 *)dout,
  458. (u8 *)din, flags);
  459. }
  460. static int stm32_qspi_set_speed(struct udevice *bus, uint speed)
  461. {
  462. struct stm32_qspi_platdata *plat = bus->platdata;
  463. struct stm32_qspi_priv *priv = dev_get_priv(bus);
  464. u32 qspi_clk = priv->clock_rate;
  465. u32 prescaler = 255;
  466. u32 csht;
  467. if (speed > plat->max_hz)
  468. speed = plat->max_hz;
  469. if (speed > 0) {
  470. prescaler = DIV_ROUND_UP(qspi_clk, speed) - 1;
  471. if (prescaler > 255)
  472. prescaler = 255;
  473. else if (prescaler < 0)
  474. prescaler = 0;
  475. }
  476. csht = DIV_ROUND_UP((5 * qspi_clk) / (prescaler + 1), 100000000);
  477. csht = (csht - 1) & STM32_QSPI_DCR_CSHT_MASK;
  478. _stm32_qspi_wait_for_not_busy(priv);
  479. clrsetbits_le32(&priv->regs->cr,
  480. STM32_QSPI_CR_PRESCALER_MASK <<
  481. STM32_QSPI_CR_PRESCALER_SHIFT,
  482. prescaler << STM32_QSPI_CR_PRESCALER_SHIFT);
  483. clrsetbits_le32(&priv->regs->dcr,
  484. STM32_QSPI_DCR_CSHT_MASK << STM32_QSPI_DCR_CSHT_SHIFT,
  485. csht << STM32_QSPI_DCR_CSHT_SHIFT);
  486. debug("%s: regs=%p, speed=%d\n", __func__, priv->regs,
  487. (qspi_clk / (prescaler + 1)));
  488. return 0;
  489. }
  490. static int stm32_qspi_set_mode(struct udevice *bus, uint mode)
  491. {
  492. struct stm32_qspi_priv *priv = dev_get_priv(bus);
  493. _stm32_qspi_wait_for_not_busy(priv);
  494. if ((mode & SPI_CPHA) && (mode & SPI_CPOL))
  495. setbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE);
  496. else if (!(mode & SPI_CPHA) && !(mode & SPI_CPOL))
  497. clrbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE);
  498. else
  499. return -ENODEV;
  500. if (mode & SPI_CS_HIGH)
  501. return -ENODEV;
  502. if (mode & SPI_RX_QUAD)
  503. priv->mode |= SPI_RX_QUAD;
  504. else if (mode & SPI_RX_DUAL)
  505. priv->mode |= SPI_RX_DUAL;
  506. else
  507. priv->mode &= ~(SPI_RX_QUAD | SPI_RX_DUAL);
  508. if (mode & SPI_TX_QUAD)
  509. priv->mode |= SPI_TX_QUAD;
  510. else if (mode & SPI_TX_DUAL)
  511. priv->mode |= SPI_TX_DUAL;
  512. else
  513. priv->mode &= ~(SPI_TX_QUAD | SPI_TX_DUAL);
  514. debug("%s: regs=%p, mode=%d rx: ", __func__, priv->regs, mode);
  515. if (mode & SPI_RX_QUAD)
  516. debug("quad, tx: ");
  517. else if (mode & SPI_RX_DUAL)
  518. debug("dual, tx: ");
  519. else
  520. debug("single, tx: ");
  521. if (mode & SPI_TX_QUAD)
  522. debug("quad\n");
  523. else if (mode & SPI_TX_DUAL)
  524. debug("dual\n");
  525. else
  526. debug("single\n");
  527. return 0;
  528. }
  529. static const struct dm_spi_ops stm32_qspi_ops = {
  530. .claim_bus = stm32_qspi_claim_bus,
  531. .release_bus = stm32_qspi_release_bus,
  532. .xfer = stm32_qspi_xfer,
  533. .set_speed = stm32_qspi_set_speed,
  534. .set_mode = stm32_qspi_set_mode,
  535. };
  536. static const struct udevice_id stm32_qspi_ids[] = {
  537. { .compatible = "st,stm32-qspi" },
  538. { .compatible = "st,stm32f469-qspi" },
  539. { }
  540. };
  541. U_BOOT_DRIVER(stm32_qspi) = {
  542. .name = "stm32_qspi",
  543. .id = UCLASS_SPI,
  544. .of_match = stm32_qspi_ids,
  545. .ops = &stm32_qspi_ops,
  546. .ofdata_to_platdata = stm32_qspi_ofdata_to_platdata,
  547. .platdata_auto_alloc_size = sizeof(struct stm32_qspi_platdata),
  548. .priv_auto_alloc_size = sizeof(struct stm32_qspi_priv),
  549. .probe = stm32_qspi_probe,
  550. .remove = stm32_qspi_remove,
  551. };