test-fdt.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright (c) 2013 Google, Inc
  4. */
  5. #include <common.h>
  6. #include <dm.h>
  7. #include <errno.h>
  8. #include <fdtdec.h>
  9. #include <malloc.h>
  10. #include <asm/io.h>
  11. #include <dm/test.h>
  12. #include <dm/root.h>
  13. #include <dm/device-internal.h>
  14. #include <dm/uclass-internal.h>
  15. #include <dm/util.h>
  16. #include <dm/lists.h>
  17. #include <dm/of_access.h>
  18. #include <test/ut.h>
  19. DECLARE_GLOBAL_DATA_PTR;
  20. static int testfdt_drv_ping(struct udevice *dev, int pingval, int *pingret)
  21. {
  22. const struct dm_test_pdata *pdata = dev->platdata;
  23. struct dm_test_priv *priv = dev_get_priv(dev);
  24. *pingret = pingval + pdata->ping_add;
  25. priv->ping_total += *pingret;
  26. return 0;
  27. }
  28. static const struct test_ops test_ops = {
  29. .ping = testfdt_drv_ping,
  30. };
  31. static int testfdt_ofdata_to_platdata(struct udevice *dev)
  32. {
  33. struct dm_test_pdata *pdata = dev_get_platdata(dev);
  34. pdata->ping_add = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
  35. "ping-add", -1);
  36. pdata->base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
  37. "ping-expect");
  38. return 0;
  39. }
  40. static int testfdt_drv_probe(struct udevice *dev)
  41. {
  42. struct dm_test_priv *priv = dev_get_priv(dev);
  43. priv->ping_total += DM_TEST_START_TOTAL;
  44. /*
  45. * If this device is on a bus, the uclass_flag will be set before
  46. * calling this function. This is used by
  47. * dm_test_bus_child_pre_probe_uclass().
  48. */
  49. priv->uclass_total += priv->uclass_flag;
  50. return 0;
  51. }
  52. static const struct udevice_id testfdt_ids[] = {
  53. {
  54. .compatible = "denx,u-boot-fdt-test",
  55. .data = DM_TEST_TYPE_FIRST },
  56. {
  57. .compatible = "google,another-fdt-test",
  58. .data = DM_TEST_TYPE_SECOND },
  59. { }
  60. };
  61. U_BOOT_DRIVER(testfdt_drv) = {
  62. .name = "testfdt_drv",
  63. .of_match = testfdt_ids,
  64. .id = UCLASS_TEST_FDT,
  65. .ofdata_to_platdata = testfdt_ofdata_to_platdata,
  66. .probe = testfdt_drv_probe,
  67. .ops = &test_ops,
  68. .priv_auto_alloc_size = sizeof(struct dm_test_priv),
  69. .platdata_auto_alloc_size = sizeof(struct dm_test_pdata),
  70. };
  71. /* From here is the testfdt uclass code */
  72. int testfdt_ping(struct udevice *dev, int pingval, int *pingret)
  73. {
  74. const struct test_ops *ops = device_get_ops(dev);
  75. if (!ops->ping)
  76. return -ENOSYS;
  77. return ops->ping(dev, pingval, pingret);
  78. }
  79. UCLASS_DRIVER(testfdt) = {
  80. .name = "testfdt",
  81. .id = UCLASS_TEST_FDT,
  82. .flags = DM_UC_FLAG_SEQ_ALIAS,
  83. };
  84. struct dm_testprobe_pdata {
  85. int probe_err;
  86. };
  87. static int testprobe_drv_probe(struct udevice *dev)
  88. {
  89. struct dm_testprobe_pdata *pdata = dev_get_platdata(dev);
  90. return pdata->probe_err;
  91. }
  92. static const struct udevice_id testprobe_ids[] = {
  93. { .compatible = "denx,u-boot-probe-test" },
  94. { }
  95. };
  96. U_BOOT_DRIVER(testprobe_drv) = {
  97. .name = "testprobe_drv",
  98. .of_match = testprobe_ids,
  99. .id = UCLASS_TEST_PROBE,
  100. .probe = testprobe_drv_probe,
  101. .platdata_auto_alloc_size = sizeof(struct dm_testprobe_pdata),
  102. };
  103. UCLASS_DRIVER(testprobe) = {
  104. .name = "testprobe",
  105. .id = UCLASS_TEST_PROBE,
  106. .flags = DM_UC_FLAG_SEQ_ALIAS,
  107. };
  108. int dm_check_devices(struct unit_test_state *uts, int num_devices)
  109. {
  110. struct udevice *dev;
  111. int ret;
  112. int i;
  113. /*
  114. * Now check that the ping adds are what we expect. This is using the
  115. * ping-add property in each node.
  116. */
  117. for (i = 0; i < num_devices; i++) {
  118. uint32_t base;
  119. ret = uclass_get_device(UCLASS_TEST_FDT, i, &dev);
  120. ut_assert(!ret);
  121. /*
  122. * Get the 'ping-expect' property, which tells us what the
  123. * ping add should be. We don't use the platdata because we
  124. * want to test the code that sets that up
  125. * (testfdt_drv_probe()).
  126. */
  127. base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
  128. "ping-expect");
  129. debug("dev=%d, base=%d: %s\n", i, base,
  130. fdt_get_name(gd->fdt_blob, dev_of_offset(dev), NULL));
  131. ut_assert(!dm_check_operations(uts, dev, base,
  132. dev_get_priv(dev)));
  133. }
  134. return 0;
  135. }
  136. /* Test that FDT-based binding works correctly */
  137. static int dm_test_fdt(struct unit_test_state *uts)
  138. {
  139. const int num_devices = 7;
  140. struct udevice *dev;
  141. struct uclass *uc;
  142. int ret;
  143. int i;
  144. ret = dm_scan_fdt(gd->fdt_blob, false);
  145. ut_assert(!ret);
  146. ret = uclass_get(UCLASS_TEST_FDT, &uc);
  147. ut_assert(!ret);
  148. /* These are num_devices compatible root-level device tree nodes */
  149. ut_asserteq(num_devices, list_count_items(&uc->dev_head));
  150. /* Each should have platform data but no private data */
  151. for (i = 0; i < num_devices; i++) {
  152. ret = uclass_find_device(UCLASS_TEST_FDT, i, &dev);
  153. ut_assert(!ret);
  154. ut_assert(!dev_get_priv(dev));
  155. ut_assert(dev->platdata);
  156. }
  157. ut_assertok(dm_check_devices(uts, num_devices));
  158. return 0;
  159. }
  160. DM_TEST(dm_test_fdt, 0);
  161. static int dm_test_fdt_pre_reloc(struct unit_test_state *uts)
  162. {
  163. struct uclass *uc;
  164. int ret;
  165. ret = dm_scan_fdt(gd->fdt_blob, true);
  166. ut_assert(!ret);
  167. ret = uclass_get(UCLASS_TEST_FDT, &uc);
  168. ut_assert(!ret);
  169. /* These is only one pre-reloc device */
  170. ut_asserteq(1, list_count_items(&uc->dev_head));
  171. return 0;
  172. }
  173. DM_TEST(dm_test_fdt_pre_reloc, 0);
  174. /* Test that sequence numbers are allocated properly */
  175. static int dm_test_fdt_uclass_seq(struct unit_test_state *uts)
  176. {
  177. struct udevice *dev;
  178. /* A few basic santiy tests */
  179. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 3, true, &dev));
  180. ut_asserteq_str("b-test", dev->name);
  181. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 8, true, &dev));
  182. ut_asserteq_str("a-test", dev->name);
  183. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 5,
  184. true, &dev));
  185. ut_asserteq_ptr(NULL, dev);
  186. /* Test aliases */
  187. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 6, &dev));
  188. ut_asserteq_str("e-test", dev->name);
  189. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 7,
  190. true, &dev));
  191. /*
  192. * Note that c-test nodes are not probed since it is not a top-level
  193. * node
  194. */
  195. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 3, &dev));
  196. ut_asserteq_str("b-test", dev->name);
  197. /*
  198. * d-test wants sequence number 3 also, but it can't have it because
  199. * b-test gets it first.
  200. */
  201. ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 2, &dev));
  202. ut_asserteq_str("d-test", dev->name);
  203. /* d-test actually gets 0 */
  204. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 0, &dev));
  205. ut_asserteq_str("d-test", dev->name);
  206. /* initially no one wants seq 1 */
  207. ut_asserteq(-ENODEV, uclass_get_device_by_seq(UCLASS_TEST_FDT, 1,
  208. &dev));
  209. ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 0, &dev));
  210. ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 4, &dev));
  211. /* But now that it is probed, we can find it */
  212. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 1, &dev));
  213. ut_asserteq_str("f-test", dev->name);
  214. return 0;
  215. }
  216. DM_TEST(dm_test_fdt_uclass_seq, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
  217. /* Test that we can find a device by device tree offset */
  218. static int dm_test_fdt_offset(struct unit_test_state *uts)
  219. {
  220. const void *blob = gd->fdt_blob;
  221. struct udevice *dev;
  222. int node;
  223. node = fdt_path_offset(blob, "/e-test");
  224. ut_assert(node > 0);
  225. ut_assertok(uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node,
  226. &dev));
  227. ut_asserteq_str("e-test", dev->name);
  228. /* This node should not be bound */
  229. node = fdt_path_offset(blob, "/junk");
  230. ut_assert(node > 0);
  231. ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
  232. node, &dev));
  233. /* This is not a top level node so should not be probed */
  234. node = fdt_path_offset(blob, "/some-bus/c-test@5");
  235. ut_assert(node > 0);
  236. ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
  237. node, &dev));
  238. return 0;
  239. }
  240. DM_TEST(dm_test_fdt_offset,
  241. DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE);
  242. /**
  243. * Test various error conditions with uclass_first_device() and
  244. * uclass_next_device()
  245. */
  246. static int dm_test_first_next_device(struct unit_test_state *uts)
  247. {
  248. struct dm_testprobe_pdata *pdata;
  249. struct udevice *dev, *parent = NULL;
  250. int count;
  251. int ret;
  252. /* There should be 4 devices */
  253. for (ret = uclass_first_device(UCLASS_TEST_PROBE, &dev), count = 0;
  254. dev;
  255. ret = uclass_next_device(&dev)) {
  256. count++;
  257. parent = dev_get_parent(dev);
  258. }
  259. ut_assertok(ret);
  260. ut_asserteq(4, count);
  261. /* Remove them and try again, with an error on the second one */
  262. ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 1, &dev));
  263. pdata = dev_get_platdata(dev);
  264. pdata->probe_err = -ENOMEM;
  265. device_remove(parent, DM_REMOVE_NORMAL);
  266. ut_assertok(uclass_first_device(UCLASS_TEST_PROBE, &dev));
  267. ut_asserteq(-ENOMEM, uclass_next_device(&dev));
  268. ut_asserteq_ptr(dev, NULL);
  269. /* Now an error on the first one */
  270. ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 0, &dev));
  271. pdata = dev_get_platdata(dev);
  272. pdata->probe_err = -ENOENT;
  273. device_remove(parent, DM_REMOVE_NORMAL);
  274. ut_asserteq(-ENOENT, uclass_first_device(UCLASS_TEST_PROBE, &dev));
  275. return 0;
  276. }
  277. DM_TEST(dm_test_first_next_device, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
  278. /**
  279. * check_devices() - Check return values and pointers
  280. *
  281. * This runs through a full sequence of uclass_first_device_check()...
  282. * uclass_next_device_check() checking that the return values and devices
  283. * are correct.
  284. *
  285. * @uts: Test state
  286. * @devlist: List of expected devices
  287. * @mask: Indicates which devices should return an error. Device n should
  288. * return error (-NOENT - n) if bit n is set, or no error (i.e. 0) if
  289. * bit n is clear.
  290. */
  291. static int check_devices(struct unit_test_state *uts,
  292. struct udevice *devlist[], int mask)
  293. {
  294. int expected_ret;
  295. struct udevice *dev;
  296. int i;
  297. expected_ret = (mask & 1) ? -ENOENT : 0;
  298. mask >>= 1;
  299. ut_asserteq(expected_ret,
  300. uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
  301. for (i = 0; i < 4; i++) {
  302. ut_asserteq_ptr(devlist[i], dev);
  303. expected_ret = (mask & 1) ? -ENOENT - (i + 1) : 0;
  304. mask >>= 1;
  305. ut_asserteq(expected_ret, uclass_next_device_check(&dev));
  306. }
  307. ut_asserteq_ptr(NULL, dev);
  308. return 0;
  309. }
  310. /* Test uclass_first_device_check() and uclass_next_device_check() */
  311. static int dm_test_first_next_ok_device(struct unit_test_state *uts)
  312. {
  313. struct dm_testprobe_pdata *pdata;
  314. struct udevice *dev, *parent = NULL, *devlist[4];
  315. int count;
  316. int ret;
  317. /* There should be 4 devices */
  318. count = 0;
  319. for (ret = uclass_first_device_check(UCLASS_TEST_PROBE, &dev);
  320. dev;
  321. ret = uclass_next_device_check(&dev)) {
  322. ut_assertok(ret);
  323. devlist[count++] = dev;
  324. parent = dev_get_parent(dev);
  325. }
  326. ut_asserteq(4, count);
  327. ut_assertok(uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
  328. ut_assertok(check_devices(uts, devlist, 0));
  329. /* Remove them and try again, with an error on the second one */
  330. pdata = dev_get_platdata(devlist[1]);
  331. pdata->probe_err = -ENOENT - 1;
  332. device_remove(parent, DM_REMOVE_NORMAL);
  333. ut_assertok(check_devices(uts, devlist, 1 << 1));
  334. /* Now an error on the first one */
  335. pdata = dev_get_platdata(devlist[0]);
  336. pdata->probe_err = -ENOENT - 0;
  337. device_remove(parent, DM_REMOVE_NORMAL);
  338. ut_assertok(check_devices(uts, devlist, 3 << 0));
  339. /* Now errors on all */
  340. pdata = dev_get_platdata(devlist[2]);
  341. pdata->probe_err = -ENOENT - 2;
  342. pdata = dev_get_platdata(devlist[3]);
  343. pdata->probe_err = -ENOENT - 3;
  344. device_remove(parent, DM_REMOVE_NORMAL);
  345. ut_assertok(check_devices(uts, devlist, 0xf << 0));
  346. return 0;
  347. }
  348. DM_TEST(dm_test_first_next_ok_device, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
  349. static const struct udevice_id fdt_dummy_ids[] = {
  350. { .compatible = "denx,u-boot-fdt-dummy", },
  351. { }
  352. };
  353. UCLASS_DRIVER(fdt_dummy) = {
  354. .name = "fdt-dummy",
  355. .id = UCLASS_TEST_DUMMY,
  356. .flags = DM_UC_FLAG_SEQ_ALIAS,
  357. };
  358. U_BOOT_DRIVER(fdt_dummy_drv) = {
  359. .name = "fdt_dummy_drv",
  360. .of_match = fdt_dummy_ids,
  361. .id = UCLASS_TEST_DUMMY,
  362. };
  363. static int dm_test_fdt_translation(struct unit_test_state *uts)
  364. {
  365. struct udevice *dev;
  366. /* Some simple translations */
  367. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
  368. ut_asserteq_str("dev@0,0", dev->name);
  369. ut_asserteq(0x8000, dev_read_addr(dev));
  370. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, true, &dev));
  371. ut_asserteq_str("dev@1,100", dev->name);
  372. ut_asserteq(0x9000, dev_read_addr(dev));
  373. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 2, true, &dev));
  374. ut_asserteq_str("dev@2,200", dev->name);
  375. ut_asserteq(0xA000, dev_read_addr(dev));
  376. /* No translation for busses with #size-cells == 0 */
  377. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 3, true, &dev));
  378. ut_asserteq_str("dev@42", dev->name);
  379. ut_asserteq(0x42, dev_read_addr(dev));
  380. return 0;
  381. }
  382. DM_TEST(dm_test_fdt_translation, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
  383. /* Test devfdt_remap_addr_index() */
  384. static int dm_test_fdt_remap_addr_flat(struct unit_test_state *uts)
  385. {
  386. struct udevice *dev;
  387. fdt_addr_t addr;
  388. void *paddr;
  389. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
  390. addr = devfdt_get_addr(dev);
  391. ut_asserteq(0x8000, addr);
  392. paddr = map_physmem(addr, 0, MAP_NOCACHE);
  393. ut_assertnonnull(paddr);
  394. ut_asserteq_ptr(paddr, devfdt_remap_addr(dev));
  395. return 0;
  396. }
  397. DM_TEST(dm_test_fdt_remap_addr_flat,
  398. DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT | DM_TESTF_FLAT_TREE);
  399. /* Test dev_remap_addr_index() */
  400. static int dm_test_fdt_remap_addr_live(struct unit_test_state *uts)
  401. {
  402. struct udevice *dev;
  403. fdt_addr_t addr;
  404. void *paddr;
  405. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, true, &dev));
  406. addr = dev_read_addr(dev);
  407. ut_asserteq(0x8000, addr);
  408. paddr = map_physmem(addr, 0, MAP_NOCACHE);
  409. ut_assertnonnull(paddr);
  410. ut_asserteq_ptr(paddr, dev_remap_addr(dev));
  411. return 0;
  412. }
  413. DM_TEST(dm_test_fdt_remap_addr_live,
  414. DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
  415. static int dm_test_fdt_livetree_writing(struct unit_test_state *uts)
  416. {
  417. struct udevice *dev;
  418. ofnode node;
  419. if (!of_live_active()) {
  420. printf("Live tree not active; ignore test\n");
  421. return 0;
  422. }
  423. /* Test enabling devices */
  424. node = ofnode_path("/usb@2");
  425. ut_assert(!of_device_is_available(ofnode_to_np(node)));
  426. ofnode_set_enabled(node, true);
  427. ut_assert(of_device_is_available(ofnode_to_np(node)));
  428. device_bind_driver_to_node(dm_root(), "usb_sandbox", "usb@2", node,
  429. &dev);
  430. ut_assertok(uclass_find_device_by_seq(UCLASS_USB, 2, true, &dev));
  431. /* Test string property setting */
  432. ut_assert(device_is_compatible(dev, "sandbox,usb"));
  433. ofnode_write_string(node, "compatible", "gdsys,super-usb");
  434. ut_assert(device_is_compatible(dev, "gdsys,super-usb"));
  435. ofnode_write_string(node, "compatible", "sandbox,usb");
  436. ut_assert(device_is_compatible(dev, "sandbox,usb"));
  437. /* Test setting generic properties */
  438. /* Non-existent in DTB */
  439. ut_asserteq(FDT_ADDR_T_NONE, dev_read_addr(dev));
  440. /* reg = 0x42, size = 0x100 */
  441. ut_assertok(ofnode_write_prop(node, "reg", 8,
  442. "\x00\x00\x00\x42\x00\x00\x01\x00"));
  443. ut_asserteq(0x42, dev_read_addr(dev));
  444. /* Test disabling devices */
  445. device_remove(dev, DM_REMOVE_NORMAL);
  446. device_unbind(dev);
  447. ut_assert(of_device_is_available(ofnode_to_np(node)));
  448. ofnode_set_enabled(node, false);
  449. ut_assert(!of_device_is_available(ofnode_to_np(node)));
  450. return 0;
  451. }
  452. DM_TEST(dm_test_fdt_livetree_writing, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
  453. static int dm_test_fdt_disable_enable_by_path(struct unit_test_state *uts)
  454. {
  455. ofnode node;
  456. if (!of_live_active()) {
  457. printf("Live tree not active; ignore test\n");
  458. return 0;
  459. }
  460. node = ofnode_path("/usb@2");
  461. /* Test enabling devices */
  462. ut_assert(!of_device_is_available(ofnode_to_np(node)));
  463. dev_enable_by_path("/usb@2");
  464. ut_assert(of_device_is_available(ofnode_to_np(node)));
  465. /* Test disabling devices */
  466. ut_assert(of_device_is_available(ofnode_to_np(node)));
  467. dev_disable_by_path("/usb@2");
  468. ut_assert(!of_device_is_available(ofnode_to_np(node)));
  469. return 0;
  470. }
  471. DM_TEST(dm_test_fdt_disable_enable_by_path, DM_TESTF_SCAN_PDATA |
  472. DM_TESTF_SCAN_FDT);