cadence_qspi_apb.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888
  1. /*
  2. * Copyright (C) 2012 Altera Corporation <www.altera.com>
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions are met:
  7. * - Redistributions of source code must retain the above copyright
  8. * notice, this list of conditions and the following disclaimer.
  9. * - Redistributions in binary form must reproduce the above copyright
  10. * notice, this list of conditions and the following disclaimer in the
  11. * documentation and/or other materials provided with the distribution.
  12. * - Neither the name of the Altera Corporation nor the
  13. * names of its contributors may be used to endorse or promote products
  14. * derived from this software without specific prior written permission.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. * ARE DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
  20. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  21. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  22. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  23. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  25. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. */
  27. #include <common.h>
  28. #include <asm/io.h>
  29. #include <asm/errno.h>
  30. #include "cadence_qspi.h"
  31. #define CQSPI_REG_POLL_US (1) /* 1us */
  32. #define CQSPI_REG_RETRY (10000)
  33. #define CQSPI_POLL_IDLE_RETRY (3)
  34. #define CQSPI_FIFO_WIDTH (4)
  35. #define CQSPI_REG_SRAM_THRESHOLD_WORDS (50)
  36. /* Transfer mode */
  37. #define CQSPI_INST_TYPE_SINGLE (0)
  38. #define CQSPI_INST_TYPE_DUAL (1)
  39. #define CQSPI_INST_TYPE_QUAD (2)
  40. #define CQSPI_STIG_DATA_LEN_MAX (8)
  41. #define CQSPI_INDIRECTTRIGGER_ADDR_MASK (0xFFFFF)
  42. #define CQSPI_DUMMY_CLKS_PER_BYTE (8)
  43. #define CQSPI_DUMMY_BYTES_MAX (4)
  44. #define CQSPI_REG_SRAM_FILL_THRESHOLD \
  45. ((CQSPI_REG_SRAM_SIZE_WORD / 2) * CQSPI_FIFO_WIDTH)
  46. /****************************************************************************
  47. * Controller's configuration and status register (offset from QSPI_BASE)
  48. ****************************************************************************/
  49. #define CQSPI_REG_CONFIG 0x00
  50. #define CQSPI_REG_CONFIG_CLK_POL_LSB 1
  51. #define CQSPI_REG_CONFIG_CLK_PHA_LSB 2
  52. #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
  53. #define CQSPI_REG_CONFIG_DIRECT_MASK BIT(7)
  54. #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
  55. #define CQSPI_REG_CONFIG_XIP_IMM_MASK BIT(18)
  56. #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
  57. #define CQSPI_REG_CONFIG_BAUD_LSB 19
  58. #define CQSPI_REG_CONFIG_IDLE_LSB 31
  59. #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
  60. #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
  61. #define CQSPI_REG_RD_INSTR 0x04
  62. #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
  63. #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
  64. #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
  65. #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
  66. #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
  67. #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
  68. #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
  69. #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
  70. #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
  71. #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
  72. #define CQSPI_REG_WR_INSTR 0x08
  73. #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
  74. #define CQSPI_REG_DELAY 0x0C
  75. #define CQSPI_REG_DELAY_TSLCH_LSB 0
  76. #define CQSPI_REG_DELAY_TCHSH_LSB 8
  77. #define CQSPI_REG_DELAY_TSD2D_LSB 16
  78. #define CQSPI_REG_DELAY_TSHSL_LSB 24
  79. #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
  80. #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
  81. #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
  82. #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
  83. #define CQSPI_READLCAPTURE 0x10
  84. #define CQSPI_READLCAPTURE_BYPASS_LSB 0
  85. #define CQSPI_READLCAPTURE_DELAY_LSB 1
  86. #define CQSPI_READLCAPTURE_DELAY_MASK 0xF
  87. #define CQSPI_REG_SIZE 0x14
  88. #define CQSPI_REG_SIZE_ADDRESS_LSB 0
  89. #define CQSPI_REG_SIZE_PAGE_LSB 4
  90. #define CQSPI_REG_SIZE_BLOCK_LSB 16
  91. #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
  92. #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
  93. #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
  94. #define CQSPI_REG_SRAMPARTITION 0x18
  95. #define CQSPI_REG_INDIRECTTRIGGER 0x1C
  96. #define CQSPI_REG_REMAP 0x24
  97. #define CQSPI_REG_MODE_BIT 0x28
  98. #define CQSPI_REG_SDRAMLEVEL 0x2C
  99. #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
  100. #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
  101. #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
  102. #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
  103. #define CQSPI_REG_IRQSTATUS 0x40
  104. #define CQSPI_REG_IRQMASK 0x44
  105. #define CQSPI_REG_INDIRECTRD 0x60
  106. #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
  107. #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
  108. #define CQSPI_REG_INDIRECTRD_INPROGRESS_MASK BIT(2)
  109. #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
  110. #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
  111. #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
  112. #define CQSPI_REG_INDIRECTRDBYTES 0x6C
  113. #define CQSPI_REG_CMDCTRL 0x90
  114. #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
  115. #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
  116. #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
  117. #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
  118. #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
  119. #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
  120. #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
  121. #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
  122. #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
  123. #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
  124. #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
  125. #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
  126. #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
  127. #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
  128. #define CQSPI_REG_CMDCTRL_OPCODE_MASK 0xFF
  129. #define CQSPI_REG_INDIRECTWR 0x70
  130. #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
  131. #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
  132. #define CQSPI_REG_INDIRECTWR_INPROGRESS_MASK BIT(2)
  133. #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
  134. #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
  135. #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
  136. #define CQSPI_REG_INDIRECTWRBYTES 0x7C
  137. #define CQSPI_REG_CMDADDRESS 0x94
  138. #define CQSPI_REG_CMDREADDATALOWER 0xA0
  139. #define CQSPI_REG_CMDREADDATAUPPER 0xA4
  140. #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
  141. #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
  142. #define CQSPI_REG_IS_IDLE(base) \
  143. ((readl(base + CQSPI_REG_CONFIG) >> \
  144. CQSPI_REG_CONFIG_IDLE_LSB) & 0x1)
  145. #define CQSPI_CAL_DELAY(tdelay_ns, tref_ns, tsclk_ns) \
  146. ((((tdelay_ns) - (tsclk_ns)) / (tref_ns)))
  147. #define CQSPI_GET_RD_SRAM_LEVEL(reg_base) \
  148. (((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >> \
  149. CQSPI_REG_SDRAMLEVEL_RD_LSB) & CQSPI_REG_SDRAMLEVEL_RD_MASK)
  150. #define CQSPI_GET_WR_SRAM_LEVEL(reg_base) \
  151. (((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >> \
  152. CQSPI_REG_SDRAMLEVEL_WR_LSB) & CQSPI_REG_SDRAMLEVEL_WR_MASK)
  153. static unsigned int cadence_qspi_apb_cmd2addr(const unsigned char *addr_buf,
  154. unsigned int addr_width)
  155. {
  156. unsigned int addr;
  157. addr = (addr_buf[0] << 16) | (addr_buf[1] << 8) | addr_buf[2];
  158. if (addr_width == 4)
  159. addr = (addr << 8) | addr_buf[3];
  160. return addr;
  161. }
  162. static void cadence_qspi_apb_read_fifo_data(void *dest,
  163. const void *src_ahb_addr, unsigned int bytes)
  164. {
  165. unsigned int temp;
  166. int remaining = bytes;
  167. unsigned int *dest_ptr = (unsigned int *)dest;
  168. unsigned int *src_ptr = (unsigned int *)src_ahb_addr;
  169. while (remaining >= sizeof(dest_ptr)) {
  170. *dest_ptr = readl(src_ptr);
  171. remaining -= sizeof(src_ptr);
  172. dest_ptr++;
  173. }
  174. if (remaining) {
  175. /* dangling bytes */
  176. temp = readl(src_ptr);
  177. memcpy(dest_ptr, &temp, remaining);
  178. }
  179. return;
  180. }
  181. static void cadence_qspi_apb_write_fifo_data(const void *dest_ahb_addr,
  182. const void *src, unsigned int bytes)
  183. {
  184. unsigned int temp = 0;
  185. int i;
  186. int remaining = bytes;
  187. unsigned int *dest_ptr = (unsigned int *)dest_ahb_addr;
  188. unsigned int *src_ptr = (unsigned int *)src;
  189. while (remaining >= CQSPI_FIFO_WIDTH) {
  190. for (i = CQSPI_FIFO_WIDTH/sizeof(src_ptr) - 1; i >= 0; i--)
  191. writel(*(src_ptr+i), dest_ptr+i);
  192. src_ptr += CQSPI_FIFO_WIDTH/sizeof(src_ptr);
  193. remaining -= CQSPI_FIFO_WIDTH;
  194. }
  195. if (remaining) {
  196. /* dangling bytes */
  197. i = remaining/sizeof(dest_ptr);
  198. memcpy(&temp, src_ptr+i, remaining % sizeof(dest_ptr));
  199. writel(temp, dest_ptr+i);
  200. for (--i; i >= 0; i--)
  201. writel(*(src_ptr+i), dest_ptr+i);
  202. }
  203. return;
  204. }
  205. /* Read from SRAM FIFO with polling SRAM fill level. */
  206. static int qspi_read_sram_fifo_poll(const void *reg_base, void *dest_addr,
  207. const void *src_addr, unsigned int num_bytes)
  208. {
  209. unsigned int remaining = num_bytes;
  210. unsigned int retry;
  211. unsigned int sram_level = 0;
  212. unsigned char *dest = (unsigned char *)dest_addr;
  213. while (remaining > 0) {
  214. retry = CQSPI_REG_RETRY;
  215. while (retry--) {
  216. sram_level = CQSPI_GET_RD_SRAM_LEVEL(reg_base);
  217. if (sram_level)
  218. break;
  219. udelay(1);
  220. }
  221. if (!retry) {
  222. printf("QSPI: No receive data after polling for %d times\n",
  223. CQSPI_REG_RETRY);
  224. return -1;
  225. }
  226. sram_level *= CQSPI_FIFO_WIDTH;
  227. sram_level = sram_level > remaining ? remaining : sram_level;
  228. /* Read data from FIFO. */
  229. cadence_qspi_apb_read_fifo_data(dest, src_addr, sram_level);
  230. dest += sram_level;
  231. remaining -= sram_level;
  232. udelay(1);
  233. }
  234. return 0;
  235. }
  236. /* Write to SRAM FIFO with polling SRAM fill level. */
  237. static int qpsi_write_sram_fifo_push(struct cadence_spi_platdata *plat,
  238. const void *src_addr, unsigned int num_bytes)
  239. {
  240. const void *reg_base = plat->regbase;
  241. void *dest_addr = plat->ahbbase;
  242. unsigned int retry = CQSPI_REG_RETRY;
  243. unsigned int sram_level;
  244. unsigned int wr_bytes;
  245. unsigned char *src = (unsigned char *)src_addr;
  246. int remaining = num_bytes;
  247. unsigned int page_size = plat->page_size;
  248. unsigned int sram_threshold_words = CQSPI_REG_SRAM_THRESHOLD_WORDS;
  249. while (remaining > 0) {
  250. retry = CQSPI_REG_RETRY;
  251. while (retry--) {
  252. sram_level = CQSPI_GET_WR_SRAM_LEVEL(reg_base);
  253. if (sram_level <= sram_threshold_words)
  254. break;
  255. }
  256. if (!retry) {
  257. printf("QSPI: SRAM fill level (0x%08x) not hit lower expected level (0x%08x)",
  258. sram_level, sram_threshold_words);
  259. return -1;
  260. }
  261. /* Write a page or remaining bytes. */
  262. wr_bytes = (remaining > page_size) ?
  263. page_size : remaining;
  264. cadence_qspi_apb_write_fifo_data(dest_addr, src, wr_bytes);
  265. src += wr_bytes;
  266. remaining -= wr_bytes;
  267. }
  268. return 0;
  269. }
  270. void cadence_qspi_apb_controller_enable(void *reg_base)
  271. {
  272. unsigned int reg;
  273. reg = readl(reg_base + CQSPI_REG_CONFIG);
  274. reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
  275. writel(reg, reg_base + CQSPI_REG_CONFIG);
  276. return;
  277. }
  278. void cadence_qspi_apb_controller_disable(void *reg_base)
  279. {
  280. unsigned int reg;
  281. reg = readl(reg_base + CQSPI_REG_CONFIG);
  282. reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
  283. writel(reg, reg_base + CQSPI_REG_CONFIG);
  284. return;
  285. }
  286. /* Return 1 if idle, otherwise return 0 (busy). */
  287. static unsigned int cadence_qspi_wait_idle(void *reg_base)
  288. {
  289. unsigned int start, count = 0;
  290. /* timeout in unit of ms */
  291. unsigned int timeout = 5000;
  292. start = get_timer(0);
  293. for ( ; get_timer(start) < timeout ; ) {
  294. if (CQSPI_REG_IS_IDLE(reg_base))
  295. count++;
  296. else
  297. count = 0;
  298. /*
  299. * Ensure the QSPI controller is in true idle state after
  300. * reading back the same idle status consecutively
  301. */
  302. if (count >= CQSPI_POLL_IDLE_RETRY)
  303. return 1;
  304. }
  305. /* Timeout, still in busy mode. */
  306. printf("QSPI: QSPI is still busy after poll for %d times.\n",
  307. CQSPI_REG_RETRY);
  308. return 0;
  309. }
  310. void cadence_qspi_apb_readdata_capture(void *reg_base,
  311. unsigned int bypass, unsigned int delay)
  312. {
  313. unsigned int reg;
  314. cadence_qspi_apb_controller_disable(reg_base);
  315. reg = readl(reg_base + CQSPI_READLCAPTURE);
  316. if (bypass)
  317. reg |= (1 << CQSPI_READLCAPTURE_BYPASS_LSB);
  318. else
  319. reg &= ~(1 << CQSPI_READLCAPTURE_BYPASS_LSB);
  320. reg &= ~(CQSPI_READLCAPTURE_DELAY_MASK
  321. << CQSPI_READLCAPTURE_DELAY_LSB);
  322. reg |= ((delay & CQSPI_READLCAPTURE_DELAY_MASK)
  323. << CQSPI_READLCAPTURE_DELAY_LSB);
  324. writel(reg, reg_base + CQSPI_READLCAPTURE);
  325. cadence_qspi_apb_controller_enable(reg_base);
  326. return;
  327. }
  328. void cadence_qspi_apb_config_baudrate_div(void *reg_base,
  329. unsigned int ref_clk_hz, unsigned int sclk_hz)
  330. {
  331. unsigned int reg;
  332. unsigned int div;
  333. cadence_qspi_apb_controller_disable(reg_base);
  334. reg = readl(reg_base + CQSPI_REG_CONFIG);
  335. reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
  336. div = ref_clk_hz / sclk_hz;
  337. if (div > 32)
  338. div = 32;
  339. /* Check if even number. */
  340. if ((div & 1)) {
  341. div = (div / 2);
  342. } else {
  343. if (ref_clk_hz % sclk_hz)
  344. /* ensure generated SCLK doesn't exceed user
  345. specified sclk_hz */
  346. div = (div / 2);
  347. else
  348. div = (div / 2) - 1;
  349. }
  350. debug("%s: ref_clk %dHz sclk %dHz Div 0x%x\n", __func__,
  351. ref_clk_hz, sclk_hz, div);
  352. div = (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
  353. reg |= div;
  354. writel(reg, reg_base + CQSPI_REG_CONFIG);
  355. cadence_qspi_apb_controller_enable(reg_base);
  356. return;
  357. }
  358. void cadence_qspi_apb_set_clk_mode(void *reg_base,
  359. unsigned int clk_pol, unsigned int clk_pha)
  360. {
  361. unsigned int reg;
  362. cadence_qspi_apb_controller_disable(reg_base);
  363. reg = readl(reg_base + CQSPI_REG_CONFIG);
  364. reg &= ~(1 <<
  365. (CQSPI_REG_CONFIG_CLK_POL_LSB | CQSPI_REG_CONFIG_CLK_PHA_LSB));
  366. reg |= ((clk_pol & 0x1) << CQSPI_REG_CONFIG_CLK_POL_LSB);
  367. reg |= ((clk_pha & 0x1) << CQSPI_REG_CONFIG_CLK_PHA_LSB);
  368. writel(reg, reg_base + CQSPI_REG_CONFIG);
  369. cadence_qspi_apb_controller_enable(reg_base);
  370. return;
  371. }
  372. void cadence_qspi_apb_chipselect(void *reg_base,
  373. unsigned int chip_select, unsigned int decoder_enable)
  374. {
  375. unsigned int reg;
  376. cadence_qspi_apb_controller_disable(reg_base);
  377. debug("%s : chipselect %d decode %d\n", __func__, chip_select,
  378. decoder_enable);
  379. reg = readl(reg_base + CQSPI_REG_CONFIG);
  380. /* docoder */
  381. if (decoder_enable) {
  382. reg |= CQSPI_REG_CONFIG_DECODE_MASK;
  383. } else {
  384. reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
  385. /* Convert CS if without decoder.
  386. * CS0 to 4b'1110
  387. * CS1 to 4b'1101
  388. * CS2 to 4b'1011
  389. * CS3 to 4b'0111
  390. */
  391. chip_select = 0xF & ~(1 << chip_select);
  392. }
  393. reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
  394. << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
  395. reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
  396. << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
  397. writel(reg, reg_base + CQSPI_REG_CONFIG);
  398. cadence_qspi_apb_controller_enable(reg_base);
  399. return;
  400. }
  401. void cadence_qspi_apb_delay(void *reg_base,
  402. unsigned int ref_clk, unsigned int sclk_hz,
  403. unsigned int tshsl_ns, unsigned int tsd2d_ns,
  404. unsigned int tchsh_ns, unsigned int tslch_ns)
  405. {
  406. unsigned int ref_clk_ns;
  407. unsigned int sclk_ns;
  408. unsigned int tshsl, tchsh, tslch, tsd2d;
  409. unsigned int reg;
  410. cadence_qspi_apb_controller_disable(reg_base);
  411. /* Convert to ns. */
  412. ref_clk_ns = (1000000000) / ref_clk;
  413. /* Convert to ns. */
  414. sclk_ns = (1000000000) / sclk_hz;
  415. /* Plus 1 to round up 1 clock cycle. */
  416. tshsl = CQSPI_CAL_DELAY(tshsl_ns, ref_clk_ns, sclk_ns) + 1;
  417. tchsh = CQSPI_CAL_DELAY(tchsh_ns, ref_clk_ns, sclk_ns) + 1;
  418. tslch = CQSPI_CAL_DELAY(tslch_ns, ref_clk_ns, sclk_ns) + 1;
  419. tsd2d = CQSPI_CAL_DELAY(tsd2d_ns, ref_clk_ns, sclk_ns) + 1;
  420. reg = ((tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
  421. << CQSPI_REG_DELAY_TSHSL_LSB);
  422. reg |= ((tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
  423. << CQSPI_REG_DELAY_TCHSH_LSB);
  424. reg |= ((tslch & CQSPI_REG_DELAY_TSLCH_MASK)
  425. << CQSPI_REG_DELAY_TSLCH_LSB);
  426. reg |= ((tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
  427. << CQSPI_REG_DELAY_TSD2D_LSB);
  428. writel(reg, reg_base + CQSPI_REG_DELAY);
  429. cadence_qspi_apb_controller_enable(reg_base);
  430. return;
  431. }
  432. void cadence_qspi_apb_controller_init(struct cadence_spi_platdata *plat)
  433. {
  434. unsigned reg;
  435. cadence_qspi_apb_controller_disable(plat->regbase);
  436. /* Configure the device size and address bytes */
  437. reg = readl(plat->regbase + CQSPI_REG_SIZE);
  438. /* Clear the previous value */
  439. reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
  440. reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
  441. reg |= (plat->page_size << CQSPI_REG_SIZE_PAGE_LSB);
  442. reg |= (plat->block_size << CQSPI_REG_SIZE_BLOCK_LSB);
  443. writel(reg, plat->regbase + CQSPI_REG_SIZE);
  444. /* Configure the remap address register, no remap */
  445. writel(0, plat->regbase + CQSPI_REG_REMAP);
  446. /* Indirect mode configurations */
  447. writel((plat->sram_size/2), plat->regbase + CQSPI_REG_SRAMPARTITION);
  448. /* Disable all interrupts */
  449. writel(0, plat->regbase + CQSPI_REG_IRQMASK);
  450. cadence_qspi_apb_controller_enable(plat->regbase);
  451. return;
  452. }
  453. static int cadence_qspi_apb_exec_flash_cmd(void *reg_base,
  454. unsigned int reg)
  455. {
  456. unsigned int retry = CQSPI_REG_RETRY;
  457. /* Write the CMDCTRL without start execution. */
  458. writel(reg, reg_base + CQSPI_REG_CMDCTRL);
  459. /* Start execute */
  460. reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
  461. writel(reg, reg_base + CQSPI_REG_CMDCTRL);
  462. while (retry--) {
  463. reg = readl(reg_base + CQSPI_REG_CMDCTRL);
  464. if ((reg & CQSPI_REG_CMDCTRL_INPROGRESS_MASK) == 0)
  465. break;
  466. udelay(1);
  467. }
  468. if (!retry) {
  469. printf("QSPI: flash command execution timeout\n");
  470. return -EIO;
  471. }
  472. /* Polling QSPI idle status. */
  473. if (!cadence_qspi_wait_idle(reg_base))
  474. return -EIO;
  475. return 0;
  476. }
  477. /* For command RDID, RDSR. */
  478. int cadence_qspi_apb_command_read(void *reg_base,
  479. unsigned int cmdlen, const u8 *cmdbuf, unsigned int rxlen,
  480. u8 *rxbuf)
  481. {
  482. unsigned int reg;
  483. unsigned int read_len;
  484. int status;
  485. if (!cmdlen || rxlen > CQSPI_STIG_DATA_LEN_MAX || rxbuf == NULL) {
  486. printf("QSPI: Invalid input arguments cmdlen %d rxlen %d\n",
  487. cmdlen, rxlen);
  488. return -EINVAL;
  489. }
  490. reg = cmdbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  491. reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
  492. /* 0 means 1 byte. */
  493. reg |= (((rxlen - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
  494. << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
  495. status = cadence_qspi_apb_exec_flash_cmd(reg_base, reg);
  496. if (status != 0)
  497. return status;
  498. reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
  499. /* Put the read value into rx_buf */
  500. read_len = (rxlen > 4) ? 4 : rxlen;
  501. memcpy(rxbuf, &reg, read_len);
  502. rxbuf += read_len;
  503. if (rxlen > 4) {
  504. reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
  505. read_len = rxlen - read_len;
  506. memcpy(rxbuf, &reg, read_len);
  507. }
  508. return 0;
  509. }
  510. /* For commands: WRSR, WREN, WRDI, CHIP_ERASE, BE, etc. */
  511. int cadence_qspi_apb_command_write(void *reg_base, unsigned int cmdlen,
  512. const u8 *cmdbuf, unsigned int txlen, const u8 *txbuf)
  513. {
  514. unsigned int reg = 0;
  515. unsigned int addr_value;
  516. unsigned int wr_data;
  517. unsigned int wr_len;
  518. if (!cmdlen || cmdlen > 5 || txlen > 8 || cmdbuf == NULL) {
  519. printf("QSPI: Invalid input arguments cmdlen %d txlen %d\n",
  520. cmdlen, txlen);
  521. return -EINVAL;
  522. }
  523. reg |= cmdbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  524. if (cmdlen == 4 || cmdlen == 5) {
  525. /* Command with address */
  526. reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
  527. /* Number of bytes to write. */
  528. reg |= ((cmdlen - 2) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
  529. << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
  530. /* Get address */
  531. addr_value = cadence_qspi_apb_cmd2addr(&cmdbuf[1],
  532. cmdlen >= 5 ? 4 : 3);
  533. writel(addr_value, reg_base + CQSPI_REG_CMDADDRESS);
  534. }
  535. if (txlen) {
  536. /* writing data = yes */
  537. reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
  538. reg |= ((txlen - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
  539. << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
  540. wr_len = txlen > 4 ? 4 : txlen;
  541. memcpy(&wr_data, txbuf, wr_len);
  542. writel(wr_data, reg_base +
  543. CQSPI_REG_CMDWRITEDATALOWER);
  544. if (txlen > 4) {
  545. txbuf += wr_len;
  546. wr_len = txlen - wr_len;
  547. memcpy(&wr_data, txbuf, wr_len);
  548. writel(wr_data, reg_base +
  549. CQSPI_REG_CMDWRITEDATAUPPER);
  550. }
  551. }
  552. /* Execute the command */
  553. return cadence_qspi_apb_exec_flash_cmd(reg_base, reg);
  554. }
  555. /* Opcode + Address (3/4 bytes) + dummy bytes (0-4 bytes) */
  556. int cadence_qspi_apb_indirect_read_setup(struct cadence_spi_platdata *plat,
  557. unsigned int cmdlen, const u8 *cmdbuf)
  558. {
  559. unsigned int reg;
  560. unsigned int rd_reg;
  561. unsigned int addr_value;
  562. unsigned int dummy_clk;
  563. unsigned int dummy_bytes;
  564. unsigned int addr_bytes;
  565. /*
  566. * Identify addr_byte. All NOR flash device drivers are using fast read
  567. * which always expecting 1 dummy byte, 1 cmd byte and 3/4 addr byte.
  568. * With that, the length is in value of 5 or 6. Only FRAM chip from
  569. * ramtron using normal read (which won't need dummy byte).
  570. * Unlikely NOR flash using normal read due to performance issue.
  571. */
  572. if (cmdlen >= 5)
  573. /* to cater fast read where cmd + addr + dummy */
  574. addr_bytes = cmdlen - 2;
  575. else
  576. /* for normal read (only ramtron as of now) */
  577. addr_bytes = cmdlen - 1;
  578. /* Setup the indirect trigger address */
  579. writel(((u32)plat->ahbbase & CQSPI_INDIRECTTRIGGER_ADDR_MASK),
  580. plat->regbase + CQSPI_REG_INDIRECTTRIGGER);
  581. /* Configure the opcode */
  582. rd_reg = cmdbuf[0] << CQSPI_REG_RD_INSTR_OPCODE_LSB;
  583. #if (CONFIG_SPI_FLASH_QUAD == 1)
  584. /* Instruction and address at DQ0, data at DQ0-3. */
  585. rd_reg |= CQSPI_INST_TYPE_QUAD << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
  586. #endif
  587. /* Get address */
  588. addr_value = cadence_qspi_apb_cmd2addr(&cmdbuf[1], addr_bytes);
  589. writel(addr_value, plat->regbase + CQSPI_REG_INDIRECTRDSTARTADDR);
  590. /* The remaining lenght is dummy bytes. */
  591. dummy_bytes = cmdlen - addr_bytes - 1;
  592. if (dummy_bytes) {
  593. if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX)
  594. dummy_bytes = CQSPI_DUMMY_BYTES_MAX;
  595. rd_reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
  596. #if defined(CONFIG_SPL_SPI_XIP) && defined(CONFIG_SPL_BUILD)
  597. writel(0x0, plat->regbase + CQSPI_REG_MODE_BIT);
  598. #else
  599. writel(0xFF, plat->regbase + CQSPI_REG_MODE_BIT);
  600. #endif
  601. /* Convert to clock cycles. */
  602. dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE;
  603. /* Need to minus the mode byte (8 clocks). */
  604. dummy_clk -= CQSPI_DUMMY_CLKS_PER_BYTE;
  605. if (dummy_clk)
  606. rd_reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
  607. << CQSPI_REG_RD_INSTR_DUMMY_LSB;
  608. }
  609. writel(rd_reg, plat->regbase + CQSPI_REG_RD_INSTR);
  610. /* set device size */
  611. reg = readl(plat->regbase + CQSPI_REG_SIZE);
  612. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  613. reg |= (addr_bytes - 1);
  614. writel(reg, plat->regbase + CQSPI_REG_SIZE);
  615. return 0;
  616. }
  617. int cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat,
  618. unsigned int rxlen, u8 *rxbuf)
  619. {
  620. unsigned int reg;
  621. writel(rxlen, plat->regbase + CQSPI_REG_INDIRECTRDBYTES);
  622. /* Start the indirect read transfer */
  623. writel(CQSPI_REG_INDIRECTRD_START_MASK,
  624. plat->regbase + CQSPI_REG_INDIRECTRD);
  625. if (qspi_read_sram_fifo_poll(plat->regbase, (void *)rxbuf,
  626. (const void *)plat->ahbbase, rxlen))
  627. goto failrd;
  628. /* Check flash indirect controller */
  629. reg = readl(plat->regbase + CQSPI_REG_INDIRECTRD);
  630. if (!(reg & CQSPI_REG_INDIRECTRD_DONE_MASK)) {
  631. reg = readl(plat->regbase + CQSPI_REG_INDIRECTRD);
  632. printf("QSPI: indirect completion status error with reg 0x%08x\n",
  633. reg);
  634. goto failrd;
  635. }
  636. /* Clear indirect completion status */
  637. writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
  638. plat->regbase + CQSPI_REG_INDIRECTRD);
  639. return 0;
  640. failrd:
  641. /* Cancel the indirect read */
  642. writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
  643. plat->regbase + CQSPI_REG_INDIRECTRD);
  644. return -1;
  645. }
  646. /* Opcode + Address (3/4 bytes) */
  647. int cadence_qspi_apb_indirect_write_setup(struct cadence_spi_platdata *plat,
  648. unsigned int cmdlen, const u8 *cmdbuf)
  649. {
  650. unsigned int reg;
  651. unsigned int addr_bytes = cmdlen > 4 ? 4 : 3;
  652. if (cmdlen < 4 || cmdbuf == NULL) {
  653. printf("QSPI: iInvalid input argument, len %d cmdbuf 0x%08x\n",
  654. cmdlen, (unsigned int)cmdbuf);
  655. return -EINVAL;
  656. }
  657. /* Setup the indirect trigger address */
  658. writel(((u32)plat->ahbbase & CQSPI_INDIRECTTRIGGER_ADDR_MASK),
  659. plat->regbase + CQSPI_REG_INDIRECTTRIGGER);
  660. /* Configure the opcode */
  661. reg = cmdbuf[0] << CQSPI_REG_WR_INSTR_OPCODE_LSB;
  662. writel(reg, plat->regbase + CQSPI_REG_WR_INSTR);
  663. /* Setup write address. */
  664. reg = cadence_qspi_apb_cmd2addr(&cmdbuf[1], addr_bytes);
  665. writel(reg, plat->regbase + CQSPI_REG_INDIRECTWRSTARTADDR);
  666. reg = readl(plat->regbase + CQSPI_REG_SIZE);
  667. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  668. reg |= (addr_bytes - 1);
  669. writel(reg, plat->regbase + CQSPI_REG_SIZE);
  670. return 0;
  671. }
  672. int cadence_qspi_apb_indirect_write_execute(struct cadence_spi_platdata *plat,
  673. unsigned int txlen, const u8 *txbuf)
  674. {
  675. unsigned int reg = 0;
  676. unsigned int retry;
  677. /* Configure the indirect read transfer bytes */
  678. writel(txlen, plat->regbase + CQSPI_REG_INDIRECTWRBYTES);
  679. /* Start the indirect write transfer */
  680. writel(CQSPI_REG_INDIRECTWR_START_MASK,
  681. plat->regbase + CQSPI_REG_INDIRECTWR);
  682. if (qpsi_write_sram_fifo_push(plat, (const void *)txbuf, txlen))
  683. goto failwr;
  684. /* Wait until last write is completed (FIFO empty) */
  685. retry = CQSPI_REG_RETRY;
  686. while (retry--) {
  687. reg = CQSPI_GET_WR_SRAM_LEVEL(plat->regbase);
  688. if (reg == 0)
  689. break;
  690. udelay(1);
  691. }
  692. if (reg != 0) {
  693. printf("QSPI: timeout for indirect write\n");
  694. goto failwr;
  695. }
  696. /* Check flash indirect controller status */
  697. retry = CQSPI_REG_RETRY;
  698. while (retry--) {
  699. reg = readl(plat->regbase + CQSPI_REG_INDIRECTWR);
  700. if (reg & CQSPI_REG_INDIRECTWR_DONE_MASK)
  701. break;
  702. udelay(1);
  703. }
  704. if (!(reg & CQSPI_REG_INDIRECTWR_DONE_MASK)) {
  705. printf("QSPI: indirect completion status error with reg 0x%08x\n",
  706. reg);
  707. goto failwr;
  708. }
  709. /* Clear indirect completion status */
  710. writel(CQSPI_REG_INDIRECTWR_DONE_MASK,
  711. plat->regbase + CQSPI_REG_INDIRECTWR);
  712. return 0;
  713. failwr:
  714. /* Cancel the indirect write */
  715. writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
  716. plat->regbase + CQSPI_REG_INDIRECTWR);
  717. return -1;
  718. }
  719. void cadence_qspi_apb_enter_xip(void *reg_base, char xip_dummy)
  720. {
  721. unsigned int reg;
  722. /* enter XiP mode immediately and enable direct mode */
  723. reg = readl(reg_base + CQSPI_REG_CONFIG);
  724. reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
  725. reg |= CQSPI_REG_CONFIG_DIRECT_MASK;
  726. reg |= CQSPI_REG_CONFIG_XIP_IMM_MASK;
  727. writel(reg, reg_base + CQSPI_REG_CONFIG);
  728. /* keep the XiP mode */
  729. writel(xip_dummy, reg_base + CQSPI_REG_MODE_BIT);
  730. /* Enable mode bit at devrd */
  731. reg = readl(reg_base + CQSPI_REG_RD_INSTR);
  732. reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
  733. writel(reg, reg_base + CQSPI_REG_RD_INSTR);
  734. }