spi_flash.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115
  1. /*
  2. * SPI Flash Core
  3. *
  4. * Copyright (C) 2015 Jagan Teki <jteki@openedev.com>
  5. * Copyright (C) 2013 Jagannadha Sutradharudu Teki, Xilinx Inc.
  6. * Copyright (C) 2010 Reinhard Meyer, EMK Elektronik
  7. * Copyright (C) 2008 Atmel Corporation
  8. *
  9. * SPDX-License-Identifier: GPL-2.0+
  10. */
  11. #include <common.h>
  12. #include <errno.h>
  13. #include <malloc.h>
  14. #include <mapmem.h>
  15. #include <spi.h>
  16. #include <spi_flash.h>
  17. #include <linux/log2.h>
  18. #include "sf_internal.h"
  19. DECLARE_GLOBAL_DATA_PTR;
  20. static void spi_flash_addr(u32 addr, u8 *cmd)
  21. {
  22. /* cmd[0] is actual command */
  23. cmd[1] = addr >> 16;
  24. cmd[2] = addr >> 8;
  25. cmd[3] = addr >> 0;
  26. }
  27. /* Read commands array */
  28. static u8 spi_read_cmds_array[] = {
  29. CMD_READ_ARRAY_SLOW,
  30. CMD_READ_ARRAY_FAST,
  31. CMD_READ_DUAL_OUTPUT_FAST,
  32. CMD_READ_DUAL_IO_FAST,
  33. CMD_READ_QUAD_OUTPUT_FAST,
  34. CMD_READ_QUAD_IO_FAST,
  35. };
  36. static int read_sr(struct spi_flash *flash, u8 *rs)
  37. {
  38. int ret;
  39. u8 cmd;
  40. cmd = CMD_READ_STATUS;
  41. ret = spi_flash_read_common(flash, &cmd, 1, rs, 1);
  42. if (ret < 0) {
  43. debug("SF: fail to read status register\n");
  44. return ret;
  45. }
  46. return 0;
  47. }
  48. static int read_fsr(struct spi_flash *flash, u8 *fsr)
  49. {
  50. int ret;
  51. const u8 cmd = CMD_FLAG_STATUS;
  52. ret = spi_flash_read_common(flash, &cmd, 1, fsr, 1);
  53. if (ret < 0) {
  54. debug("SF: fail to read flag status register\n");
  55. return ret;
  56. }
  57. return 0;
  58. }
  59. static int write_sr(struct spi_flash *flash, u8 ws)
  60. {
  61. u8 cmd;
  62. int ret;
  63. cmd = CMD_WRITE_STATUS;
  64. ret = spi_flash_write_common(flash, &cmd, 1, &ws, 1);
  65. if (ret < 0) {
  66. debug("SF: fail to write status register\n");
  67. return ret;
  68. }
  69. return 0;
  70. }
  71. #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
  72. static int read_cr(struct spi_flash *flash, u8 *rc)
  73. {
  74. int ret;
  75. u8 cmd;
  76. cmd = CMD_READ_CONFIG;
  77. ret = spi_flash_read_common(flash, &cmd, 1, rc, 1);
  78. if (ret < 0) {
  79. debug("SF: fail to read config register\n");
  80. return ret;
  81. }
  82. return 0;
  83. }
  84. static int write_cr(struct spi_flash *flash, u8 wc)
  85. {
  86. u8 data[2];
  87. u8 cmd;
  88. int ret;
  89. ret = read_sr(flash, &data[0]);
  90. if (ret < 0)
  91. return ret;
  92. cmd = CMD_WRITE_STATUS;
  93. data[1] = wc;
  94. ret = spi_flash_write_common(flash, &cmd, 1, &data, 2);
  95. if (ret) {
  96. debug("SF: fail to write config register\n");
  97. return ret;
  98. }
  99. return 0;
  100. }
  101. #endif
  102. #ifdef CONFIG_SPI_FLASH_BAR
  103. static int spi_flash_write_bar(struct spi_flash *flash, u32 offset)
  104. {
  105. u8 cmd, bank_sel;
  106. int ret;
  107. bank_sel = offset / (SPI_FLASH_16MB_BOUN << flash->shift);
  108. if (bank_sel == flash->bank_curr)
  109. goto bar_end;
  110. cmd = flash->bank_write_cmd;
  111. ret = spi_flash_write_common(flash, &cmd, 1, &bank_sel, 1);
  112. if (ret < 0) {
  113. debug("SF: fail to write bank register\n");
  114. return ret;
  115. }
  116. bar_end:
  117. flash->bank_curr = bank_sel;
  118. return flash->bank_curr;
  119. }
  120. static int spi_flash_read_bar(struct spi_flash *flash, u8 idcode0)
  121. {
  122. u8 curr_bank = 0;
  123. int ret;
  124. if (flash->size <= SPI_FLASH_16MB_BOUN)
  125. goto bank_end;
  126. switch (idcode0) {
  127. case SPI_FLASH_CFI_MFR_SPANSION:
  128. flash->bank_read_cmd = CMD_BANKADDR_BRRD;
  129. flash->bank_write_cmd = CMD_BANKADDR_BRWR;
  130. break;
  131. default:
  132. flash->bank_read_cmd = CMD_EXTNADDR_RDEAR;
  133. flash->bank_write_cmd = CMD_EXTNADDR_WREAR;
  134. }
  135. ret = spi_flash_read_common(flash, &flash->bank_read_cmd, 1,
  136. &curr_bank, 1);
  137. if (ret) {
  138. debug("SF: fail to read bank addr register\n");
  139. return ret;
  140. }
  141. bank_end:
  142. flash->bank_curr = curr_bank;
  143. return 0;
  144. }
  145. #endif
  146. #ifdef CONFIG_SF_DUAL_FLASH
  147. static void spi_flash_dual(struct spi_flash *flash, u32 *addr)
  148. {
  149. switch (flash->dual_flash) {
  150. case SF_DUAL_STACKED_FLASH:
  151. if (*addr >= (flash->size >> 1)) {
  152. *addr -= flash->size >> 1;
  153. flash->spi->flags |= SPI_XFER_U_PAGE;
  154. } else {
  155. flash->spi->flags &= ~SPI_XFER_U_PAGE;
  156. }
  157. break;
  158. case SF_DUAL_PARALLEL_FLASH:
  159. *addr >>= flash->shift;
  160. break;
  161. default:
  162. debug("SF: Unsupported dual_flash=%d\n", flash->dual_flash);
  163. break;
  164. }
  165. }
  166. #endif
  167. static int spi_flash_sr_ready(struct spi_flash *flash)
  168. {
  169. u8 sr;
  170. int ret;
  171. ret = read_sr(flash, &sr);
  172. if (ret < 0)
  173. return ret;
  174. return !(sr & STATUS_WIP);
  175. }
  176. static int spi_flash_fsr_ready(struct spi_flash *flash)
  177. {
  178. u8 fsr;
  179. int ret;
  180. ret = read_fsr(flash, &fsr);
  181. if (ret < 0)
  182. return ret;
  183. return fsr & STATUS_PEC;
  184. }
  185. static int spi_flash_ready(struct spi_flash *flash)
  186. {
  187. int sr, fsr;
  188. sr = spi_flash_sr_ready(flash);
  189. if (sr < 0)
  190. return sr;
  191. fsr = 1;
  192. if (flash->flags & SNOR_F_USE_FSR) {
  193. fsr = spi_flash_fsr_ready(flash);
  194. if (fsr < 0)
  195. return fsr;
  196. }
  197. return sr && fsr;
  198. }
  199. static int spi_flash_cmd_wait_ready(struct spi_flash *flash,
  200. unsigned long timeout)
  201. {
  202. int timebase, ret;
  203. timebase = get_timer(0);
  204. while (get_timer(timebase) < timeout) {
  205. ret = spi_flash_ready(flash);
  206. if (ret < 0)
  207. return ret;
  208. if (ret)
  209. return 0;
  210. }
  211. printf("SF: Timeout!\n");
  212. return -ETIMEDOUT;
  213. }
  214. int spi_flash_write_common(struct spi_flash *flash, const u8 *cmd,
  215. size_t cmd_len, const void *buf, size_t buf_len)
  216. {
  217. struct spi_slave *spi = flash->spi;
  218. unsigned long timeout = SPI_FLASH_PROG_TIMEOUT;
  219. int ret;
  220. if (buf == NULL)
  221. timeout = SPI_FLASH_PAGE_ERASE_TIMEOUT;
  222. ret = spi_claim_bus(flash->spi);
  223. if (ret) {
  224. debug("SF: unable to claim SPI bus\n");
  225. return ret;
  226. }
  227. ret = spi_flash_cmd_write_enable(flash);
  228. if (ret < 0) {
  229. debug("SF: enabling write failed\n");
  230. return ret;
  231. }
  232. ret = spi_flash_cmd_write(spi, cmd, cmd_len, buf, buf_len);
  233. if (ret < 0) {
  234. debug("SF: write cmd failed\n");
  235. return ret;
  236. }
  237. ret = spi_flash_cmd_wait_ready(flash, timeout);
  238. if (ret < 0) {
  239. debug("SF: write %s timed out\n",
  240. timeout == SPI_FLASH_PROG_TIMEOUT ?
  241. "program" : "page erase");
  242. return ret;
  243. }
  244. spi_release_bus(spi);
  245. return ret;
  246. }
  247. int spi_flash_cmd_erase_ops(struct spi_flash *flash, u32 offset, size_t len)
  248. {
  249. u32 erase_size, erase_addr;
  250. u8 cmd[SPI_FLASH_CMD_LEN];
  251. int ret = -1;
  252. erase_size = flash->erase_size;
  253. if (offset % erase_size || len % erase_size) {
  254. debug("SF: Erase offset/length not multiple of erase size\n");
  255. return -1;
  256. }
  257. if (flash->flash_is_locked) {
  258. if (flash->flash_is_locked(flash, offset, len) > 0) {
  259. printf("offset 0x%x is protected and cannot be erased\n",
  260. offset);
  261. return -EINVAL;
  262. }
  263. }
  264. cmd[0] = flash->erase_cmd;
  265. while (len) {
  266. erase_addr = offset;
  267. #ifdef CONFIG_SF_DUAL_FLASH
  268. if (flash->dual_flash > SF_SINGLE_FLASH)
  269. spi_flash_dual(flash, &erase_addr);
  270. #endif
  271. #ifdef CONFIG_SPI_FLASH_BAR
  272. ret = spi_flash_write_bar(flash, erase_addr);
  273. if (ret < 0)
  274. return ret;
  275. #endif
  276. spi_flash_addr(erase_addr, cmd);
  277. debug("SF: erase %2x %2x %2x %2x (%x)\n", cmd[0], cmd[1],
  278. cmd[2], cmd[3], erase_addr);
  279. ret = spi_flash_write_common(flash, cmd, sizeof(cmd), NULL, 0);
  280. if (ret < 0) {
  281. debug("SF: erase failed\n");
  282. break;
  283. }
  284. offset += erase_size;
  285. len -= erase_size;
  286. }
  287. return ret;
  288. }
  289. int spi_flash_cmd_write_ops(struct spi_flash *flash, u32 offset,
  290. size_t len, const void *buf)
  291. {
  292. unsigned long byte_addr, page_size;
  293. u32 write_addr;
  294. size_t chunk_len, actual;
  295. u8 cmd[SPI_FLASH_CMD_LEN];
  296. int ret = -1;
  297. page_size = flash->page_size;
  298. if (flash->flash_is_locked) {
  299. if (flash->flash_is_locked(flash, offset, len) > 0) {
  300. printf("offset 0x%x is protected and cannot be written\n",
  301. offset);
  302. return -EINVAL;
  303. }
  304. }
  305. cmd[0] = flash->write_cmd;
  306. for (actual = 0; actual < len; actual += chunk_len) {
  307. write_addr = offset;
  308. #ifdef CONFIG_SF_DUAL_FLASH
  309. if (flash->dual_flash > SF_SINGLE_FLASH)
  310. spi_flash_dual(flash, &write_addr);
  311. #endif
  312. #ifdef CONFIG_SPI_FLASH_BAR
  313. ret = spi_flash_write_bar(flash, write_addr);
  314. if (ret < 0)
  315. return ret;
  316. #endif
  317. byte_addr = offset % page_size;
  318. chunk_len = min(len - actual, (size_t)(page_size - byte_addr));
  319. if (flash->spi->max_write_size)
  320. chunk_len = min(chunk_len,
  321. (size_t)flash->spi->max_write_size);
  322. spi_flash_addr(write_addr, cmd);
  323. debug("SF: 0x%p => cmd = { 0x%02x 0x%02x%02x%02x } chunk_len = %zu\n",
  324. buf + actual, cmd[0], cmd[1], cmd[2], cmd[3], chunk_len);
  325. ret = spi_flash_write_common(flash, cmd, sizeof(cmd),
  326. buf + actual, chunk_len);
  327. if (ret < 0) {
  328. debug("SF: write failed\n");
  329. break;
  330. }
  331. offset += chunk_len;
  332. }
  333. return ret;
  334. }
  335. int spi_flash_read_common(struct spi_flash *flash, const u8 *cmd,
  336. size_t cmd_len, void *data, size_t data_len)
  337. {
  338. struct spi_slave *spi = flash->spi;
  339. int ret;
  340. ret = spi_claim_bus(flash->spi);
  341. if (ret) {
  342. debug("SF: unable to claim SPI bus\n");
  343. return ret;
  344. }
  345. ret = spi_flash_cmd_read(spi, cmd, cmd_len, data, data_len);
  346. if (ret < 0) {
  347. debug("SF: read cmd failed\n");
  348. return ret;
  349. }
  350. spi_release_bus(spi);
  351. return ret;
  352. }
  353. void __weak spi_flash_copy_mmap(void *data, void *offset, size_t len)
  354. {
  355. memcpy(data, offset, len);
  356. }
  357. int spi_flash_cmd_read_ops(struct spi_flash *flash, u32 offset,
  358. size_t len, void *data)
  359. {
  360. u8 *cmd, cmdsz;
  361. u32 remain_len, read_len, read_addr;
  362. int bank_sel = 0;
  363. int ret = -1;
  364. /* Handle memory-mapped SPI */
  365. if (flash->memory_map) {
  366. ret = spi_claim_bus(flash->spi);
  367. if (ret) {
  368. debug("SF: unable to claim SPI bus\n");
  369. return ret;
  370. }
  371. spi_xfer(flash->spi, 0, NULL, NULL, SPI_XFER_MMAP);
  372. spi_flash_copy_mmap(data, flash->memory_map + offset, len);
  373. spi_xfer(flash->spi, 0, NULL, NULL, SPI_XFER_MMAP_END);
  374. spi_release_bus(flash->spi);
  375. return 0;
  376. }
  377. cmdsz = SPI_FLASH_CMD_LEN + flash->dummy_byte;
  378. cmd = calloc(1, cmdsz);
  379. if (!cmd) {
  380. debug("SF: Failed to allocate cmd\n");
  381. return -ENOMEM;
  382. }
  383. cmd[0] = flash->read_cmd;
  384. while (len) {
  385. read_addr = offset;
  386. #ifdef CONFIG_SF_DUAL_FLASH
  387. if (flash->dual_flash > SF_SINGLE_FLASH)
  388. spi_flash_dual(flash, &read_addr);
  389. #endif
  390. #ifdef CONFIG_SPI_FLASH_BAR
  391. ret = spi_flash_write_bar(flash, read_addr);
  392. if (ret < 0)
  393. return ret;
  394. bank_sel = flash->bank_curr;
  395. #endif
  396. remain_len = ((SPI_FLASH_16MB_BOUN << flash->shift) *
  397. (bank_sel + 1)) - offset;
  398. if (len < remain_len)
  399. read_len = len;
  400. else
  401. read_len = remain_len;
  402. spi_flash_addr(read_addr, cmd);
  403. ret = spi_flash_read_common(flash, cmd, cmdsz, data, read_len);
  404. if (ret < 0) {
  405. debug("SF: read failed\n");
  406. break;
  407. }
  408. offset += read_len;
  409. len -= read_len;
  410. data += read_len;
  411. }
  412. free(cmd);
  413. return ret;
  414. }
  415. #ifdef CONFIG_SPI_FLASH_SST
  416. static int sst_byte_write(struct spi_flash *flash, u32 offset, const void *buf)
  417. {
  418. int ret;
  419. u8 cmd[4] = {
  420. CMD_SST_BP,
  421. offset >> 16,
  422. offset >> 8,
  423. offset,
  424. };
  425. debug("BP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n",
  426. spi_w8r8(flash->spi, CMD_READ_STATUS), buf, cmd[0], offset);
  427. ret = spi_flash_cmd_write_enable(flash);
  428. if (ret)
  429. return ret;
  430. ret = spi_flash_cmd_write(flash->spi, cmd, sizeof(cmd), buf, 1);
  431. if (ret)
  432. return ret;
  433. return spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT);
  434. }
  435. int sst_write_wp(struct spi_flash *flash, u32 offset, size_t len,
  436. const void *buf)
  437. {
  438. size_t actual, cmd_len;
  439. int ret;
  440. u8 cmd[4];
  441. ret = spi_claim_bus(flash->spi);
  442. if (ret) {
  443. debug("SF: Unable to claim SPI bus\n");
  444. return ret;
  445. }
  446. /* If the data is not word aligned, write out leading single byte */
  447. actual = offset % 2;
  448. if (actual) {
  449. ret = sst_byte_write(flash, offset, buf);
  450. if (ret)
  451. goto done;
  452. }
  453. offset += actual;
  454. ret = spi_flash_cmd_write_enable(flash);
  455. if (ret)
  456. goto done;
  457. cmd_len = 4;
  458. cmd[0] = CMD_SST_AAI_WP;
  459. cmd[1] = offset >> 16;
  460. cmd[2] = offset >> 8;
  461. cmd[3] = offset;
  462. for (; actual < len - 1; actual += 2) {
  463. debug("WP[%02x]: 0x%p => cmd = { 0x%02x 0x%06x }\n",
  464. spi_w8r8(flash->spi, CMD_READ_STATUS), buf + actual,
  465. cmd[0], offset);
  466. ret = spi_flash_cmd_write(flash->spi, cmd, cmd_len,
  467. buf + actual, 2);
  468. if (ret) {
  469. debug("SF: sst word program failed\n");
  470. break;
  471. }
  472. ret = spi_flash_cmd_wait_ready(flash, SPI_FLASH_PROG_TIMEOUT);
  473. if (ret)
  474. break;
  475. cmd_len = 1;
  476. offset += 2;
  477. }
  478. if (!ret)
  479. ret = spi_flash_cmd_write_disable(flash);
  480. /* If there is a single trailing byte, write it out */
  481. if (!ret && actual != len)
  482. ret = sst_byte_write(flash, offset, buf + actual);
  483. done:
  484. debug("SF: sst: program %s %zu bytes @ 0x%zx\n",
  485. ret ? "failure" : "success", len, offset - actual);
  486. spi_release_bus(flash->spi);
  487. return ret;
  488. }
  489. int sst_write_bp(struct spi_flash *flash, u32 offset, size_t len,
  490. const void *buf)
  491. {
  492. size_t actual;
  493. int ret;
  494. ret = spi_claim_bus(flash->spi);
  495. if (ret) {
  496. debug("SF: Unable to claim SPI bus\n");
  497. return ret;
  498. }
  499. for (actual = 0; actual < len; actual++) {
  500. ret = sst_byte_write(flash, offset, buf + actual);
  501. if (ret) {
  502. debug("SF: sst byte program failed\n");
  503. break;
  504. }
  505. offset++;
  506. }
  507. if (!ret)
  508. ret = spi_flash_cmd_write_disable(flash);
  509. debug("SF: sst: program %s %zu bytes @ 0x%zx\n",
  510. ret ? "failure" : "success", len, offset - actual);
  511. spi_release_bus(flash->spi);
  512. return ret;
  513. }
  514. #endif
  515. #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
  516. static void stm_get_locked_range(struct spi_flash *flash, u8 sr, loff_t *ofs,
  517. u32 *len)
  518. {
  519. u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
  520. int shift = ffs(mask) - 1;
  521. int pow;
  522. if (!(sr & mask)) {
  523. /* No protection */
  524. *ofs = 0;
  525. *len = 0;
  526. } else {
  527. pow = ((sr & mask) ^ mask) >> shift;
  528. *len = flash->size >> pow;
  529. *ofs = flash->size - *len;
  530. }
  531. }
  532. /*
  533. * Return 1 if the entire region is locked, 0 otherwise
  534. */
  535. static int stm_is_locked_sr(struct spi_flash *flash, u32 ofs, u32 len,
  536. u8 sr)
  537. {
  538. loff_t lock_offs;
  539. u32 lock_len;
  540. stm_get_locked_range(flash, sr, &lock_offs, &lock_len);
  541. return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
  542. }
  543. /*
  544. * Check if a region of the flash is (completely) locked. See stm_lock() for
  545. * more info.
  546. *
  547. * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
  548. * negative on errors.
  549. */
  550. int stm_is_locked(struct spi_flash *flash, u32 ofs, size_t len)
  551. {
  552. int status;
  553. u8 sr;
  554. status = read_sr(flash, &sr);
  555. if (status < 0)
  556. return status;
  557. return stm_is_locked_sr(flash, ofs, len, sr);
  558. }
  559. /*
  560. * Lock a region of the flash. Compatible with ST Micro and similar flash.
  561. * Supports only the block protection bits BP{0,1,2} in the status register
  562. * (SR). Does not support these features found in newer SR bitfields:
  563. * - TB: top/bottom protect - only handle TB=0 (top protect)
  564. * - SEC: sector/block protect - only handle SEC=0 (block protect)
  565. * - CMP: complement protect - only support CMP=0 (range is not complemented)
  566. *
  567. * Sample table portion for 8MB flash (Winbond w25q64fw):
  568. *
  569. * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
  570. * --------------------------------------------------------------------------
  571. * X | X | 0 | 0 | 0 | NONE | NONE
  572. * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
  573. * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
  574. * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
  575. * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
  576. * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
  577. * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
  578. * X | X | 1 | 1 | 1 | 8 MB | ALL
  579. *
  580. * Returns negative on errors, 0 on success.
  581. */
  582. int stm_lock(struct spi_flash *flash, u32 ofs, size_t len)
  583. {
  584. u8 status_old, status_new;
  585. u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
  586. u8 shift = ffs(mask) - 1, pow, val;
  587. int ret;
  588. ret = read_sr(flash, &status_old);
  589. if (ret < 0)
  590. return ret;
  591. /* SPI NOR always locks to the end */
  592. if (ofs + len != flash->size) {
  593. /* Does combined region extend to end? */
  594. if (!stm_is_locked_sr(flash, ofs + len, flash->size - ofs - len,
  595. status_old))
  596. return -EINVAL;
  597. len = flash->size - ofs;
  598. }
  599. /*
  600. * Need smallest pow such that:
  601. *
  602. * 1 / (2^pow) <= (len / size)
  603. *
  604. * so (assuming power-of-2 size) we do:
  605. *
  606. * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
  607. */
  608. pow = ilog2(flash->size) - ilog2(len);
  609. val = mask - (pow << shift);
  610. if (val & ~mask)
  611. return -EINVAL;
  612. /* Don't "lock" with no region! */
  613. if (!(val & mask))
  614. return -EINVAL;
  615. status_new = (status_old & ~mask) | val;
  616. /* Only modify protection if it will not unlock other areas */
  617. if ((status_new & mask) <= (status_old & mask))
  618. return -EINVAL;
  619. write_sr(flash, status_new);
  620. return 0;
  621. }
  622. /*
  623. * Unlock a region of the flash. See stm_lock() for more info
  624. *
  625. * Returns negative on errors, 0 on success.
  626. */
  627. int stm_unlock(struct spi_flash *flash, u32 ofs, size_t len)
  628. {
  629. uint8_t status_old, status_new;
  630. u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
  631. u8 shift = ffs(mask) - 1, pow, val;
  632. int ret;
  633. ret = read_sr(flash, &status_old);
  634. if (ret < 0)
  635. return ret;
  636. /* Cannot unlock; would unlock larger region than requested */
  637. if (stm_is_locked_sr(flash, status_old, ofs - flash->erase_size,
  638. flash->erase_size))
  639. return -EINVAL;
  640. /*
  641. * Need largest pow such that:
  642. *
  643. * 1 / (2^pow) >= (len / size)
  644. *
  645. * so (assuming power-of-2 size) we do:
  646. *
  647. * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
  648. */
  649. pow = ilog2(flash->size) - order_base_2(flash->size - (ofs + len));
  650. if (ofs + len == flash->size) {
  651. val = 0; /* fully unlocked */
  652. } else {
  653. val = mask - (pow << shift);
  654. /* Some power-of-two sizes are not supported */
  655. if (val & ~mask)
  656. return -EINVAL;
  657. }
  658. status_new = (status_old & ~mask) | val;
  659. /* Only modify protection if it will not lock other areas */
  660. if ((status_new & mask) >= (status_old & mask))
  661. return -EINVAL;
  662. write_sr(flash, status_new);
  663. return 0;
  664. }
  665. #endif
  666. #ifdef CONFIG_SPI_FLASH_MACRONIX
  667. static int spi_flash_set_qeb_mxic(struct spi_flash *flash)
  668. {
  669. u8 qeb_status;
  670. int ret;
  671. ret = read_sr(flash, &qeb_status);
  672. if (ret < 0)
  673. return ret;
  674. if (qeb_status & STATUS_QEB_MXIC) {
  675. debug("SF: mxic: QEB is already set\n");
  676. } else {
  677. ret = write_sr(flash, STATUS_QEB_MXIC);
  678. if (ret < 0)
  679. return ret;
  680. }
  681. return ret;
  682. }
  683. #endif
  684. #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
  685. static int spi_flash_set_qeb_winspan(struct spi_flash *flash)
  686. {
  687. u8 qeb_status;
  688. int ret;
  689. ret = read_cr(flash, &qeb_status);
  690. if (ret < 0)
  691. return ret;
  692. if (qeb_status & STATUS_QEB_WINSPAN) {
  693. debug("SF: winspan: QEB is already set\n");
  694. } else {
  695. ret = write_cr(flash, STATUS_QEB_WINSPAN);
  696. if (ret < 0)
  697. return ret;
  698. }
  699. return ret;
  700. }
  701. #endif
  702. static int spi_flash_set_qeb(struct spi_flash *flash, u8 idcode0)
  703. {
  704. switch (idcode0) {
  705. #ifdef CONFIG_SPI_FLASH_MACRONIX
  706. case SPI_FLASH_CFI_MFR_MACRONIX:
  707. return spi_flash_set_qeb_mxic(flash);
  708. #endif
  709. #if defined(CONFIG_SPI_FLASH_SPANSION) || defined(CONFIG_SPI_FLASH_WINBOND)
  710. case SPI_FLASH_CFI_MFR_SPANSION:
  711. case SPI_FLASH_CFI_MFR_WINBOND:
  712. return spi_flash_set_qeb_winspan(flash);
  713. #endif
  714. #ifdef CONFIG_SPI_FLASH_STMICRO
  715. case SPI_FLASH_CFI_MFR_STMICRO:
  716. debug("SF: QEB is volatile for %02x flash\n", idcode0);
  717. return 0;
  718. #endif
  719. default:
  720. printf("SF: Need set QEB func for %02x flash\n", idcode0);
  721. return -1;
  722. }
  723. }
  724. #if CONFIG_IS_ENABLED(OF_CONTROL)
  725. int spi_flash_decode_fdt(const void *blob, struct spi_flash *flash)
  726. {
  727. fdt_addr_t addr;
  728. fdt_size_t size;
  729. int node;
  730. /* If there is no node, do nothing */
  731. node = fdtdec_next_compatible(blob, 0, COMPAT_GENERIC_SPI_FLASH);
  732. if (node < 0)
  733. return 0;
  734. addr = fdtdec_get_addr_size(blob, node, "memory-map", &size);
  735. if (addr == FDT_ADDR_T_NONE) {
  736. debug("%s: Cannot decode address\n", __func__);
  737. return 0;
  738. }
  739. if (flash->size != size) {
  740. debug("%s: Memory map must cover entire device\n", __func__);
  741. return -1;
  742. }
  743. flash->memory_map = map_sysmem(addr, size);
  744. return 0;
  745. }
  746. #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
  747. int spi_flash_scan(struct spi_flash *flash)
  748. {
  749. struct spi_slave *spi = flash->spi;
  750. const struct spi_flash_params *params;
  751. u16 jedec, ext_jedec;
  752. u8 idcode[5];
  753. u8 cmd;
  754. int ret;
  755. /* Read the ID codes */
  756. ret = spi_flash_cmd(spi, CMD_READ_ID, idcode, sizeof(idcode));
  757. if (ret) {
  758. printf("SF: Failed to get idcodes\n");
  759. return -EINVAL;
  760. }
  761. #ifdef DEBUG
  762. printf("SF: Got idcodes\n");
  763. print_buffer(0, idcode, 1, sizeof(idcode), 0);
  764. #endif
  765. jedec = idcode[1] << 8 | idcode[2];
  766. ext_jedec = idcode[3] << 8 | idcode[4];
  767. /* Validate params from spi_flash_params table */
  768. params = spi_flash_params_table;
  769. for (; params->name != NULL; params++) {
  770. if ((params->jedec >> 16) == idcode[0]) {
  771. if ((params->jedec & 0xFFFF) == jedec) {
  772. if (params->ext_jedec == 0)
  773. break;
  774. else if (params->ext_jedec == ext_jedec)
  775. break;
  776. }
  777. }
  778. }
  779. if (!params->name) {
  780. printf("SF: Unsupported flash IDs: ");
  781. printf("manuf %02x, jedec %04x, ext_jedec %04x\n",
  782. idcode[0], jedec, ext_jedec);
  783. return -EPROTONOSUPPORT;
  784. }
  785. /* Flash powers up read-only, so clear BP# bits */
  786. if (idcode[0] == SPI_FLASH_CFI_MFR_ATMEL ||
  787. idcode[0] == SPI_FLASH_CFI_MFR_MACRONIX ||
  788. idcode[0] == SPI_FLASH_CFI_MFR_SST)
  789. write_sr(flash, 0);
  790. /* Assign spi data */
  791. flash->name = params->name;
  792. flash->memory_map = spi->memory_map;
  793. flash->dual_flash = flash->spi->option;
  794. /* Assign spi flash flags */
  795. if (params->flags & SST_WR)
  796. flash->flags |= SNOR_F_SST_WR;
  797. /* Assign spi_flash ops */
  798. #ifndef CONFIG_DM_SPI_FLASH
  799. flash->write = spi_flash_cmd_write_ops;
  800. #if defined(CONFIG_SPI_FLASH_SST)
  801. if (flash->flags & SNOR_F_SST_WR) {
  802. if (flash->spi->op_mode_tx & SPI_OPM_TX_BP)
  803. flash->write = sst_write_bp;
  804. else
  805. flash->write = sst_write_wp;
  806. }
  807. #endif
  808. flash->erase = spi_flash_cmd_erase_ops;
  809. flash->read = spi_flash_cmd_read_ops;
  810. #endif
  811. /* lock hooks are flash specific - assign them based on idcode0 */
  812. switch (idcode[0]) {
  813. #if defined(CONFIG_SPI_FLASH_STMICRO) || defined(CONFIG_SPI_FLASH_SST)
  814. case SPI_FLASH_CFI_MFR_STMICRO:
  815. case SPI_FLASH_CFI_MFR_SST:
  816. flash->flash_lock = stm_lock;
  817. flash->flash_unlock = stm_unlock;
  818. flash->flash_is_locked = stm_is_locked;
  819. #endif
  820. break;
  821. default:
  822. debug("SF: Lock ops not supported for %02x flash\n", idcode[0]);
  823. }
  824. /* Compute the flash size */
  825. flash->shift = (flash->dual_flash & SF_DUAL_PARALLEL_FLASH) ? 1 : 0;
  826. /*
  827. * The Spansion S25FL032P and S25FL064P have 256b pages, yet use the
  828. * 0x4d00 Extended JEDEC code. The rest of the Spansion flashes with
  829. * the 0x4d00 Extended JEDEC code have 512b pages. All of the others
  830. * have 256b pages.
  831. */
  832. if (ext_jedec == 0x4d00) {
  833. if ((jedec == 0x0215) || (jedec == 0x216))
  834. flash->page_size = 256;
  835. else
  836. flash->page_size = 512;
  837. } else {
  838. flash->page_size = 256;
  839. }
  840. flash->page_size <<= flash->shift;
  841. flash->sector_size = params->sector_size << flash->shift;
  842. flash->size = flash->sector_size * params->nr_sectors << flash->shift;
  843. #ifdef CONFIG_SF_DUAL_FLASH
  844. if (flash->dual_flash & SF_DUAL_STACKED_FLASH)
  845. flash->size <<= 1;
  846. #endif
  847. /* Compute erase sector and command */
  848. if (params->flags & SECT_4K) {
  849. flash->erase_cmd = CMD_ERASE_4K;
  850. flash->erase_size = 4096 << flash->shift;
  851. } else if (params->flags & SECT_32K) {
  852. flash->erase_cmd = CMD_ERASE_32K;
  853. flash->erase_size = 32768 << flash->shift;
  854. } else {
  855. flash->erase_cmd = CMD_ERASE_64K;
  856. flash->erase_size = flash->sector_size;
  857. }
  858. /* Now erase size becomes valid sector size */
  859. flash->sector_size = flash->erase_size;
  860. /* Look for the fastest read cmd */
  861. cmd = fls(params->e_rd_cmd & flash->spi->op_mode_rx);
  862. if (cmd) {
  863. cmd = spi_read_cmds_array[cmd - 1];
  864. flash->read_cmd = cmd;
  865. } else {
  866. /* Go for default supported read cmd */
  867. flash->read_cmd = CMD_READ_ARRAY_FAST;
  868. }
  869. /* Not require to look for fastest only two write cmds yet */
  870. if (params->flags & WR_QPP && flash->spi->op_mode_tx & SPI_OPM_TX_QPP)
  871. flash->write_cmd = CMD_QUAD_PAGE_PROGRAM;
  872. else
  873. /* Go for default supported write cmd */
  874. flash->write_cmd = CMD_PAGE_PROGRAM;
  875. /* Set the quad enable bit - only for quad commands */
  876. if ((flash->read_cmd == CMD_READ_QUAD_OUTPUT_FAST) ||
  877. (flash->read_cmd == CMD_READ_QUAD_IO_FAST) ||
  878. (flash->write_cmd == CMD_QUAD_PAGE_PROGRAM)) {
  879. ret = spi_flash_set_qeb(flash, idcode[0]);
  880. if (ret) {
  881. debug("SF: Fail to set QEB for %02x\n", idcode[0]);
  882. return -EINVAL;
  883. }
  884. }
  885. /* Read dummy_byte: dummy byte is determined based on the
  886. * dummy cycles of a particular command.
  887. * Fast commands - dummy_byte = dummy_cycles/8
  888. * I/O commands- dummy_byte = (dummy_cycles * no.of lines)/8
  889. * For I/O commands except cmd[0] everything goes on no.of lines
  890. * based on particular command but incase of fast commands except
  891. * data all go on single line irrespective of command.
  892. */
  893. switch (flash->read_cmd) {
  894. case CMD_READ_QUAD_IO_FAST:
  895. flash->dummy_byte = 2;
  896. break;
  897. case CMD_READ_ARRAY_SLOW:
  898. flash->dummy_byte = 0;
  899. break;
  900. default:
  901. flash->dummy_byte = 1;
  902. }
  903. #ifdef CONFIG_SPI_FLASH_STMICRO
  904. if (params->flags & E_FSR)
  905. flash->flags |= SNOR_F_USE_FSR;
  906. #endif
  907. /* Configure the BAR - discover bank cmds and read current bank */
  908. #ifdef CONFIG_SPI_FLASH_BAR
  909. ret = spi_flash_read_bar(flash, idcode[0]);
  910. if (ret < 0)
  911. return ret;
  912. #endif
  913. #if CONFIG_IS_ENABLED(OF_CONTROL)
  914. ret = spi_flash_decode_fdt(gd->fdt_blob, flash);
  915. if (ret) {
  916. debug("SF: FDT decode error\n");
  917. return -EINVAL;
  918. }
  919. #endif
  920. #ifndef CONFIG_SPL_BUILD
  921. printf("SF: Detected %s with page size ", flash->name);
  922. print_size(flash->page_size, ", erase size ");
  923. print_size(flash->erase_size, ", total ");
  924. print_size(flash->size, "");
  925. if (flash->memory_map)
  926. printf(", mapped at %p", flash->memory_map);
  927. puts("\n");
  928. #endif
  929. #ifndef CONFIG_SPI_FLASH_BAR
  930. if (((flash->dual_flash == SF_SINGLE_FLASH) &&
  931. (flash->size > SPI_FLASH_16MB_BOUN)) ||
  932. ((flash->dual_flash > SF_SINGLE_FLASH) &&
  933. (flash->size > SPI_FLASH_16MB_BOUN << 1))) {
  934. puts("SF: Warning - Only lower 16MiB accessible,");
  935. puts(" Full access #define CONFIG_SPI_FLASH_BAR\n");
  936. }
  937. #endif
  938. return ret;
  939. }