clk_stm32f.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482
  1. /*
  2. * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
  3. * Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <clk-uclass.h>
  9. #include <dm.h>
  10. #include <stm32_rcc.h>
  11. #include <asm/io.h>
  12. #include <asm/arch/stm32.h>
  13. #include <asm/arch/stm32_pwr.h>
  14. #include <dt-bindings/mfd/stm32f7-rcc.h>
  15. #define RCC_CR_HSION BIT(0)
  16. #define RCC_CR_HSEON BIT(16)
  17. #define RCC_CR_HSERDY BIT(17)
  18. #define RCC_CR_HSEBYP BIT(18)
  19. #define RCC_CR_CSSON BIT(19)
  20. #define RCC_CR_PLLON BIT(24)
  21. #define RCC_CR_PLLRDY BIT(25)
  22. #define RCC_CR_PLLSAION BIT(28)
  23. #define RCC_CR_PLLSAIRDY BIT(29)
  24. #define RCC_PLLCFGR_PLLM_MASK GENMASK(5, 0)
  25. #define RCC_PLLCFGR_PLLN_MASK GENMASK(14, 6)
  26. #define RCC_PLLCFGR_PLLP_MASK GENMASK(17, 16)
  27. #define RCC_PLLCFGR_PLLQ_MASK GENMASK(27, 24)
  28. #define RCC_PLLCFGR_PLLSRC BIT(22)
  29. #define RCC_PLLCFGR_PLLM_SHIFT 0
  30. #define RCC_PLLCFGR_PLLN_SHIFT 6
  31. #define RCC_PLLCFGR_PLLP_SHIFT 16
  32. #define RCC_PLLCFGR_PLLQ_SHIFT 24
  33. #define RCC_CFGR_AHB_PSC_MASK GENMASK(7, 4)
  34. #define RCC_CFGR_APB1_PSC_MASK GENMASK(12, 10)
  35. #define RCC_CFGR_APB2_PSC_MASK GENMASK(15, 13)
  36. #define RCC_CFGR_SW0 BIT(0)
  37. #define RCC_CFGR_SW1 BIT(1)
  38. #define RCC_CFGR_SW_MASK GENMASK(1, 0)
  39. #define RCC_CFGR_SW_HSI 0
  40. #define RCC_CFGR_SW_HSE RCC_CFGR_SW0
  41. #define RCC_CFGR_SW_PLL RCC_CFGR_SW1
  42. #define RCC_CFGR_SWS0 BIT(2)
  43. #define RCC_CFGR_SWS1 BIT(3)
  44. #define RCC_CFGR_SWS_MASK GENMASK(3, 2)
  45. #define RCC_CFGR_SWS_HSI 0
  46. #define RCC_CFGR_SWS_HSE RCC_CFGR_SWS0
  47. #define RCC_CFGR_SWS_PLL RCC_CFGR_SWS1
  48. #define RCC_CFGR_HPRE_SHIFT 4
  49. #define RCC_CFGR_PPRE1_SHIFT 10
  50. #define RCC_CFGR_PPRE2_SHIFT 13
  51. #define RCC_PLLCFGR_PLLSAIN_MASK GENMASK(14, 6)
  52. #define RCC_PLLCFGR_PLLSAIP_MASK GENMASK(17, 16)
  53. #define RCC_PLLSAICFGR_PLLSAIN_SHIFT 6
  54. #define RCC_PLLSAICFGR_PLLSAIP_SHIFT 16
  55. #define RCC_PLLSAICFGR_PLLSAIP_4 BIT(17)
  56. #define RCC_PLLSAICFGR_PLLSAIQ_4 BIT(26)
  57. #define RCC_PLLSAICFGR_PLLSAIR_2 BIT(29)
  58. #define RCC_DCKCFGRX_CK48MSEL BIT(27)
  59. #define RCC_DCKCFGRX_SDMMC1SEL BIT(28)
  60. #define RCC_DCKCFGR2_SDMMC2SEL BIT(29)
  61. #define RCC_APB2ENR_SAI1EN BIT(22)
  62. /*
  63. * RCC AHB1ENR specific definitions
  64. */
  65. #define RCC_AHB1ENR_ETHMAC_EN BIT(25)
  66. #define RCC_AHB1ENR_ETHMAC_TX_EN BIT(26)
  67. #define RCC_AHB1ENR_ETHMAC_RX_EN BIT(27)
  68. /*
  69. * RCC APB1ENR specific definitions
  70. */
  71. #define RCC_APB1ENR_TIM2EN BIT(0)
  72. #define RCC_APB1ENR_PWREN BIT(28)
  73. /*
  74. * RCC APB2ENR specific definitions
  75. */
  76. #define RCC_APB2ENR_SYSCFGEN BIT(14)
  77. enum periph_clock {
  78. SYSCFG_CLOCK_CFG,
  79. TIMER2_CLOCK_CFG,
  80. STMMAC_CLOCK_CFG,
  81. };
  82. static const struct stm32_clk_info stm32f4_clk_info = {
  83. /* 180 MHz */
  84. .sys_pll_psc = {
  85. .pll_n = 360,
  86. .pll_p = 2,
  87. .pll_q = 8,
  88. .ahb_psc = AHB_PSC_1,
  89. .apb1_psc = APB_PSC_4,
  90. .apb2_psc = APB_PSC_2,
  91. },
  92. .has_overdrive = false,
  93. .v2 = false,
  94. };
  95. static const struct stm32_clk_info stm32f7_clk_info = {
  96. /* 200 MHz */
  97. .sys_pll_psc = {
  98. .pll_n = 400,
  99. .pll_p = 2,
  100. .pll_q = 8,
  101. .ahb_psc = AHB_PSC_1,
  102. .apb1_psc = APB_PSC_4,
  103. .apb2_psc = APB_PSC_2,
  104. },
  105. .has_overdrive = true,
  106. .v2 = true,
  107. };
  108. struct stm32_clk {
  109. struct stm32_rcc_regs *base;
  110. struct stm32_pwr_regs *pwr_regs;
  111. struct stm32_clk_info info;
  112. unsigned long hse_rate;
  113. };
  114. static int configure_clocks(struct udevice *dev)
  115. {
  116. struct stm32_clk *priv = dev_get_priv(dev);
  117. struct stm32_rcc_regs *regs = priv->base;
  118. struct stm32_pwr_regs *pwr = priv->pwr_regs;
  119. struct pll_psc *sys_pll_psc = &priv->info.sys_pll_psc;
  120. u32 pllsaicfgr = 0;
  121. /* Reset RCC configuration */
  122. setbits_le32(&regs->cr, RCC_CR_HSION);
  123. writel(0, &regs->cfgr); /* Reset CFGR */
  124. clrbits_le32(&regs->cr, (RCC_CR_HSEON | RCC_CR_CSSON
  125. | RCC_CR_PLLON | RCC_CR_PLLSAION));
  126. writel(0x24003010, &regs->pllcfgr); /* Reset value from RM */
  127. clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
  128. writel(0, &regs->cir); /* Disable all interrupts */
  129. /* Configure for HSE+PLL operation */
  130. setbits_le32(&regs->cr, RCC_CR_HSEON);
  131. while (!(readl(&regs->cr) & RCC_CR_HSERDY))
  132. ;
  133. setbits_le32(&regs->cfgr, ((
  134. sys_pll_psc->ahb_psc << RCC_CFGR_HPRE_SHIFT)
  135. | (sys_pll_psc->apb1_psc << RCC_CFGR_PPRE1_SHIFT)
  136. | (sys_pll_psc->apb2_psc << RCC_CFGR_PPRE2_SHIFT)));
  137. /* Configure the main PLL */
  138. setbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLSRC); /* pll source HSE */
  139. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLM_MASK,
  140. sys_pll_psc->pll_m << RCC_PLLCFGR_PLLM_SHIFT);
  141. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLN_MASK,
  142. sys_pll_psc->pll_n << RCC_PLLCFGR_PLLN_SHIFT);
  143. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLP_MASK,
  144. ((sys_pll_psc->pll_p >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT);
  145. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLQ_MASK,
  146. sys_pll_psc->pll_q << RCC_PLLCFGR_PLLQ_SHIFT);
  147. /* Configure the SAI PLL to get a 48 MHz source */
  148. pllsaicfgr = RCC_PLLSAICFGR_PLLSAIR_2 | RCC_PLLSAICFGR_PLLSAIQ_4 |
  149. RCC_PLLSAICFGR_PLLSAIP_4;
  150. pllsaicfgr |= 192 << RCC_PLLSAICFGR_PLLSAIN_SHIFT;
  151. writel(pllsaicfgr, &regs->pllsaicfgr);
  152. /* Enable the main PLL */
  153. setbits_le32(&regs->cr, RCC_CR_PLLON);
  154. while (!(readl(&regs->cr) & RCC_CR_PLLRDY))
  155. ;
  156. if (priv->info.v2) { /*stm32f7 case */
  157. /* select PLLSAI as 48MHz clock source */
  158. setbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_CK48MSEL);
  159. /* select 48MHz as SDMMC1 clock source */
  160. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGRX_SDMMC1SEL);
  161. /* select 48MHz as SDMMC2 clock source */
  162. clrbits_le32(&regs->dckcfgr2, RCC_DCKCFGR2_SDMMC2SEL);
  163. } else { /* stm32f4 case */
  164. /* select PLLSAI as 48MHz clock source */
  165. setbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_CK48MSEL);
  166. /* select 48MHz as SDMMC1 clock source */
  167. clrbits_le32(&regs->dckcfgr, RCC_DCKCFGRX_SDMMC1SEL);
  168. }
  169. /* Enable the SAI PLL */
  170. setbits_le32(&regs->cr, RCC_CR_PLLSAION);
  171. while (!(readl(&regs->cr) & RCC_CR_PLLSAIRDY))
  172. ;
  173. setbits_le32(&regs->apb1enr, RCC_APB1ENR_PWREN);
  174. if (priv->info.has_overdrive) {
  175. /*
  176. * Enable high performance mode
  177. * System frequency up to 200 MHz
  178. */
  179. setbits_le32(&pwr->cr1, PWR_CR1_ODEN);
  180. /* Infinite wait! */
  181. while (!(readl(&pwr->csr1) & PWR_CSR1_ODRDY))
  182. ;
  183. /* Enable the Over-drive switch */
  184. setbits_le32(&pwr->cr1, PWR_CR1_ODSWEN);
  185. /* Infinite wait! */
  186. while (!(readl(&pwr->csr1) & PWR_CSR1_ODSWRDY))
  187. ;
  188. }
  189. stm32_flash_latency_cfg(5);
  190. clrbits_le32(&regs->cfgr, (RCC_CFGR_SW0 | RCC_CFGR_SW1));
  191. setbits_le32(&regs->cfgr, RCC_CFGR_SW_PLL);
  192. while ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) !=
  193. RCC_CFGR_SWS_PLL)
  194. ;
  195. /* gate the SAI clock, needed for MMC 1&2 clocks */
  196. setbits_le32(&regs->apb2enr, RCC_APB2ENR_SAI1EN);
  197. return 0;
  198. }
  199. static unsigned long stm32_clk_pll48clk_rate(struct stm32_clk *priv,
  200. u32 sysclk)
  201. {
  202. struct stm32_rcc_regs *regs = priv->base;
  203. u16 pllq, pllm, pllsain, pllsaip;
  204. bool pllsai;
  205. pllq = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLQ_MASK)
  206. >> RCC_PLLCFGR_PLLQ_SHIFT;
  207. if (priv->info.v2) /*stm32f7 case */
  208. pllsai = readl(&regs->dckcfgr2) & RCC_DCKCFGRX_CK48MSEL;
  209. else
  210. pllsai = readl(&regs->dckcfgr) & RCC_DCKCFGRX_CK48MSEL;
  211. if (pllsai) {
  212. /* PLL48CLK is selected from PLLSAI, get PLLSAI value */
  213. pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
  214. pllsain = ((readl(&regs->pllsaicfgr) & RCC_PLLCFGR_PLLSAIN_MASK)
  215. >> RCC_PLLSAICFGR_PLLSAIN_SHIFT);
  216. pllsaip = ((((readl(&regs->pllsaicfgr) & RCC_PLLCFGR_PLLSAIP_MASK)
  217. >> RCC_PLLSAICFGR_PLLSAIP_SHIFT) + 1) << 1);
  218. return ((priv->hse_rate / pllm) * pllsain) / pllsaip;
  219. }
  220. /* PLL48CLK is selected from PLLQ */
  221. return sysclk / pllq;
  222. }
  223. static unsigned long stm32_clk_get_rate(struct clk *clk)
  224. {
  225. struct stm32_clk *priv = dev_get_priv(clk->dev);
  226. struct stm32_rcc_regs *regs = priv->base;
  227. u32 sysclk = 0;
  228. u32 shift = 0;
  229. u16 pllm, plln, pllp;
  230. /* Prescaler table lookups for clock computation */
  231. u8 ahb_psc_table[16] = {
  232. 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9
  233. };
  234. u8 apb_psc_table[8] = {
  235. 0, 0, 0, 0, 1, 2, 3, 4
  236. };
  237. if ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) ==
  238. RCC_CFGR_SWS_PLL) {
  239. pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
  240. plln = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLN_MASK)
  241. >> RCC_PLLCFGR_PLLN_SHIFT);
  242. pllp = ((((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLP_MASK)
  243. >> RCC_PLLCFGR_PLLP_SHIFT) + 1) << 1);
  244. sysclk = ((priv->hse_rate / pllm) * plln) / pllp;
  245. } else {
  246. return -EINVAL;
  247. }
  248. switch (clk->id) {
  249. /*
  250. * AHB CLOCK: 3 x 32 bits consecutive registers are used :
  251. * AHB1, AHB2 and AHB3
  252. */
  253. case STM32F7_AHB1_CLOCK(GPIOA) ... STM32F7_AHB3_CLOCK(QSPI):
  254. shift = ahb_psc_table[(
  255. (readl(&regs->cfgr) & RCC_CFGR_AHB_PSC_MASK)
  256. >> RCC_CFGR_HPRE_SHIFT)];
  257. return sysclk >>= shift;
  258. /* APB1 CLOCK */
  259. case STM32F7_APB1_CLOCK(TIM2) ... STM32F7_APB1_CLOCK(UART8):
  260. shift = apb_psc_table[(
  261. (readl(&regs->cfgr) & RCC_CFGR_APB1_PSC_MASK)
  262. >> RCC_CFGR_PPRE1_SHIFT)];
  263. return sysclk >>= shift;
  264. /* APB2 CLOCK */
  265. case STM32F7_APB2_CLOCK(TIM1) ... STM32F7_APB2_CLOCK(LTDC):
  266. /*
  267. * particular case for SDMMC1 and SDMMC2 :
  268. * 48Mhz source clock can be from main PLL or from
  269. * SAI PLL
  270. */
  271. switch (clk->id) {
  272. case STM32F7_APB2_CLOCK(SDMMC1):
  273. if (readl(&regs->dckcfgr2) & RCC_DCKCFGRX_SDMMC1SEL)
  274. /* System clock is selected as SDMMC1 clock */
  275. return sysclk;
  276. else
  277. return stm32_clk_pll48clk_rate(priv, sysclk);
  278. break;
  279. case STM32F7_APB2_CLOCK(SDMMC2):
  280. if (readl(&regs->dckcfgr2) & RCC_DCKCFGR2_SDMMC2SEL)
  281. /* System clock is selected as SDMMC2 clock */
  282. return sysclk;
  283. else
  284. return stm32_clk_pll48clk_rate(priv, sysclk);
  285. break;
  286. }
  287. shift = apb_psc_table[(
  288. (readl(&regs->cfgr) & RCC_CFGR_APB2_PSC_MASK)
  289. >> RCC_CFGR_PPRE2_SHIFT)];
  290. return sysclk >>= shift;
  291. default:
  292. pr_err("clock index %ld out of range\n", clk->id);
  293. return -EINVAL;
  294. }
  295. }
  296. static int stm32_clk_enable(struct clk *clk)
  297. {
  298. struct stm32_clk *priv = dev_get_priv(clk->dev);
  299. struct stm32_rcc_regs *regs = priv->base;
  300. u32 offset = clk->id / 32;
  301. u32 bit_index = clk->id % 32;
  302. debug("%s: clkid = %ld, offset from AHB1ENR is %d, bit_index = %d\n",
  303. __func__, clk->id, offset, bit_index);
  304. setbits_le32(&regs->ahb1enr + offset, BIT(bit_index));
  305. return 0;
  306. }
  307. void clock_setup(int peripheral)
  308. {
  309. switch (peripheral) {
  310. case SYSCFG_CLOCK_CFG:
  311. setbits_le32(&STM32_RCC->apb2enr, RCC_APB2ENR_SYSCFGEN);
  312. break;
  313. case TIMER2_CLOCK_CFG:
  314. setbits_le32(&STM32_RCC->apb1enr, RCC_APB1ENR_TIM2EN);
  315. break;
  316. case STMMAC_CLOCK_CFG:
  317. setbits_le32(&STM32_RCC->ahb1enr, RCC_AHB1ENR_ETHMAC_EN);
  318. setbits_le32(&STM32_RCC->ahb1enr, RCC_AHB1ENR_ETHMAC_RX_EN);
  319. setbits_le32(&STM32_RCC->ahb1enr, RCC_AHB1ENR_ETHMAC_TX_EN);
  320. break;
  321. default:
  322. break;
  323. }
  324. }
  325. static int stm32_clk_probe(struct udevice *dev)
  326. {
  327. struct ofnode_phandle_args args;
  328. struct udevice *fixed_clock_dev = NULL;
  329. struct clk clk;
  330. int err;
  331. debug("%s\n", __func__);
  332. struct stm32_clk *priv = dev_get_priv(dev);
  333. fdt_addr_t addr;
  334. addr = dev_read_addr(dev);
  335. if (addr == FDT_ADDR_T_NONE)
  336. return -EINVAL;
  337. priv->base = (struct stm32_rcc_regs *)addr;
  338. switch (dev_get_driver_data(dev)) {
  339. case STM32F4:
  340. memcpy(&priv->info, &stm32f4_clk_info,
  341. sizeof(struct stm32_clk_info));
  342. break;
  343. case STM32F7:
  344. memcpy(&priv->info, &stm32f7_clk_info,
  345. sizeof(struct stm32_clk_info));
  346. break;
  347. default:
  348. return -EINVAL;
  349. }
  350. /* retrieve HSE frequency (external oscillator) */
  351. err = uclass_get_device_by_name(UCLASS_CLK, "clk-hse",
  352. &fixed_clock_dev);
  353. if (err) {
  354. pr_err("Can't find fixed clock (%d)", err);
  355. return err;
  356. }
  357. err = clk_request(fixed_clock_dev, &clk);
  358. if (err) {
  359. pr_err("Can't request %s clk (%d)", fixed_clock_dev->name,
  360. err);
  361. return err;
  362. }
  363. /*
  364. * set pllm factor accordingly to the external oscillator
  365. * frequency (HSE). For STM32F4 and STM32F7, we want VCO
  366. * freq at 1MHz
  367. * if input PLL frequency is 25Mhz, divide it by 25
  368. */
  369. clk.id = 0;
  370. priv->hse_rate = clk_get_rate(&clk);
  371. if (priv->hse_rate < 1000000) {
  372. pr_err("%s: unexpected HSE clock rate = %ld \"n", __func__,
  373. priv->hse_rate);
  374. return -EINVAL;
  375. }
  376. priv->info.sys_pll_psc.pll_m = priv->hse_rate / 1000000;
  377. if (priv->info.has_overdrive) {
  378. err = dev_read_phandle_with_args(dev, "st,syscfg", NULL, 0, 0,
  379. &args);
  380. if (err) {
  381. debug("%s: can't find syscon device (%d)\n", __func__,
  382. err);
  383. return err;
  384. }
  385. priv->pwr_regs = (struct stm32_pwr_regs *)ofnode_get_addr(args.node);
  386. }
  387. configure_clocks(dev);
  388. return 0;
  389. }
  390. static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args)
  391. {
  392. debug("%s(clk=%p)\n", __func__, clk);
  393. if (args->args_count != 2) {
  394. debug("Invaild args_count: %d\n", args->args_count);
  395. return -EINVAL;
  396. }
  397. if (args->args_count)
  398. clk->id = args->args[1];
  399. else
  400. clk->id = 0;
  401. return 0;
  402. }
  403. static struct clk_ops stm32_clk_ops = {
  404. .of_xlate = stm32_clk_of_xlate,
  405. .enable = stm32_clk_enable,
  406. .get_rate = stm32_clk_get_rate,
  407. };
  408. U_BOOT_DRIVER(stm32fx_clk) = {
  409. .name = "stm32fx_rcc_clock",
  410. .id = UCLASS_CLK,
  411. .ops = &stm32_clk_ops,
  412. .probe = stm32_clk_probe,
  413. .priv_auto_alloc_size = sizeof(struct stm32_clk),
  414. .flags = DM_FLAG_PRE_RELOC,
  415. };