clk_stm32f.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. /*
  2. * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
  3. * Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <clk-uclass.h>
  9. #include <dm.h>
  10. #include <asm/io.h>
  11. #include <asm/arch/stm32.h>
  12. #include <asm/arch/stm32_periph.h>
  13. #include <asm/arch/stm32_pwr.h>
  14. #include <dt-bindings/mfd/stm32f7-rcc.h>
  15. #define RCC_CR_HSION BIT(0)
  16. #define RCC_CR_HSEON BIT(16)
  17. #define RCC_CR_HSERDY BIT(17)
  18. #define RCC_CR_HSEBYP BIT(18)
  19. #define RCC_CR_CSSON BIT(19)
  20. #define RCC_CR_PLLON BIT(24)
  21. #define RCC_CR_PLLRDY BIT(25)
  22. #define RCC_PLLCFGR_PLLM_MASK GENMASK(5, 0)
  23. #define RCC_PLLCFGR_PLLN_MASK GENMASK(14, 6)
  24. #define RCC_PLLCFGR_PLLP_MASK GENMASK(17, 16)
  25. #define RCC_PLLCFGR_PLLQ_MASK GENMASK(27, 24)
  26. #define RCC_PLLCFGR_PLLSRC BIT(22)
  27. #define RCC_PLLCFGR_PLLM_SHIFT 0
  28. #define RCC_PLLCFGR_PLLN_SHIFT 6
  29. #define RCC_PLLCFGR_PLLP_SHIFT 16
  30. #define RCC_PLLCFGR_PLLQ_SHIFT 24
  31. #define RCC_CFGR_AHB_PSC_MASK GENMASK(7, 4)
  32. #define RCC_CFGR_APB1_PSC_MASK GENMASK(12, 10)
  33. #define RCC_CFGR_APB2_PSC_MASK GENMASK(15, 13)
  34. #define RCC_CFGR_SW0 BIT(0)
  35. #define RCC_CFGR_SW1 BIT(1)
  36. #define RCC_CFGR_SW_MASK GENMASK(1, 0)
  37. #define RCC_CFGR_SW_HSI 0
  38. #define RCC_CFGR_SW_HSE RCC_CFGR_SW0
  39. #define RCC_CFGR_SW_PLL RCC_CFGR_SW1
  40. #define RCC_CFGR_SWS0 BIT(2)
  41. #define RCC_CFGR_SWS1 BIT(3)
  42. #define RCC_CFGR_SWS_MASK GENMASK(3, 2)
  43. #define RCC_CFGR_SWS_HSI 0
  44. #define RCC_CFGR_SWS_HSE RCC_CFGR_SWS0
  45. #define RCC_CFGR_SWS_PLL RCC_CFGR_SWS1
  46. #define RCC_CFGR_HPRE_SHIFT 4
  47. #define RCC_CFGR_PPRE1_SHIFT 10
  48. #define RCC_CFGR_PPRE2_SHIFT 13
  49. /*
  50. * RCC AHB1ENR specific definitions
  51. */
  52. #define RCC_AHB1ENR_ETHMAC_EN BIT(25)
  53. #define RCC_AHB1ENR_ETHMAC_TX_EN BIT(26)
  54. #define RCC_AHB1ENR_ETHMAC_RX_EN BIT(27)
  55. /*
  56. * RCC APB1ENR specific definitions
  57. */
  58. #define RCC_APB1ENR_TIM2EN BIT(0)
  59. #define RCC_APB1ENR_PWREN BIT(28)
  60. /*
  61. * RCC APB2ENR specific definitions
  62. */
  63. #define RCC_APB2ENR_SYSCFGEN BIT(14)
  64. struct pll_psc {
  65. u8 pll_m;
  66. u16 pll_n;
  67. u8 pll_p;
  68. u8 pll_q;
  69. u8 ahb_psc;
  70. u8 apb1_psc;
  71. u8 apb2_psc;
  72. };
  73. #define AHB_PSC_1 0
  74. #define AHB_PSC_2 0x8
  75. #define AHB_PSC_4 0x9
  76. #define AHB_PSC_8 0xA
  77. #define AHB_PSC_16 0xB
  78. #define AHB_PSC_64 0xC
  79. #define AHB_PSC_128 0xD
  80. #define AHB_PSC_256 0xE
  81. #define AHB_PSC_512 0xF
  82. #define APB_PSC_1 0
  83. #define APB_PSC_2 0x4
  84. #define APB_PSC_4 0x5
  85. #define APB_PSC_8 0x6
  86. #define APB_PSC_16 0x7
  87. struct stm32_clk_info {
  88. struct pll_psc sys_pll_psc;
  89. bool has_overdrive;
  90. };
  91. struct stm32_clk_info stm32f4_clk_info = {
  92. /* 180 MHz */
  93. .sys_pll_psc = {
  94. .pll_m = 8,
  95. .pll_n = 360,
  96. .pll_p = 2,
  97. .pll_q = 8,
  98. .ahb_psc = AHB_PSC_1,
  99. .apb1_psc = APB_PSC_4,
  100. .apb2_psc = APB_PSC_2,
  101. },
  102. .has_overdrive = false,
  103. };
  104. struct stm32_clk_info stm32f7_clk_info = {
  105. /* 200 MHz */
  106. .sys_pll_psc = {
  107. .pll_m = 25,
  108. .pll_n = 400,
  109. .pll_p = 2,
  110. .pll_q = 8,
  111. .ahb_psc = AHB_PSC_1,
  112. .apb1_psc = APB_PSC_4,
  113. .apb2_psc = APB_PSC_2,
  114. },
  115. .has_overdrive = true,
  116. };
  117. struct stm32_clk {
  118. struct stm32_rcc_regs *base;
  119. struct stm32_pwr_regs *pwr_regs;
  120. struct stm32_clk_info *info;
  121. };
  122. static int configure_clocks(struct udevice *dev)
  123. {
  124. struct stm32_clk *priv = dev_get_priv(dev);
  125. struct stm32_rcc_regs *regs = priv->base;
  126. struct stm32_pwr_regs *pwr = priv->pwr_regs;
  127. struct pll_psc sys_pll_psc = priv->info->sys_pll_psc;
  128. /* Reset RCC configuration */
  129. setbits_le32(&regs->cr, RCC_CR_HSION);
  130. writel(0, &regs->cfgr); /* Reset CFGR */
  131. clrbits_le32(&regs->cr, (RCC_CR_HSEON | RCC_CR_CSSON
  132. | RCC_CR_PLLON));
  133. writel(0x24003010, &regs->pllcfgr); /* Reset value from RM */
  134. clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
  135. writel(0, &regs->cir); /* Disable all interrupts */
  136. /* Configure for HSE+PLL operation */
  137. setbits_le32(&regs->cr, RCC_CR_HSEON);
  138. while (!(readl(&regs->cr) & RCC_CR_HSERDY))
  139. ;
  140. setbits_le32(&regs->cfgr, ((
  141. sys_pll_psc.ahb_psc << RCC_CFGR_HPRE_SHIFT)
  142. | (sys_pll_psc.apb1_psc << RCC_CFGR_PPRE1_SHIFT)
  143. | (sys_pll_psc.apb2_psc << RCC_CFGR_PPRE2_SHIFT)));
  144. /* Configure the main PLL */
  145. setbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLSRC); /* pll source HSE */
  146. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLM_MASK,
  147. sys_pll_psc.pll_m << RCC_PLLCFGR_PLLM_SHIFT);
  148. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLN_MASK,
  149. sys_pll_psc.pll_n << RCC_PLLCFGR_PLLN_SHIFT);
  150. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLP_MASK,
  151. ((sys_pll_psc.pll_p >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT);
  152. clrsetbits_le32(&regs->pllcfgr, RCC_PLLCFGR_PLLQ_MASK,
  153. sys_pll_psc.pll_q << RCC_PLLCFGR_PLLQ_SHIFT);
  154. /* Enable the main PLL */
  155. setbits_le32(&regs->cr, RCC_CR_PLLON);
  156. while (!(readl(&regs->cr) & RCC_CR_PLLRDY))
  157. ;
  158. setbits_le32(&regs->apb1enr, RCC_APB1ENR_PWREN);
  159. if (priv->info->has_overdrive) {
  160. /*
  161. * Enable high performance mode
  162. * System frequency up to 200 MHz
  163. */
  164. setbits_le32(&pwr->cr1, PWR_CR1_ODEN);
  165. /* Infinite wait! */
  166. while (!(readl(&pwr->csr1) & PWR_CSR1_ODRDY))
  167. ;
  168. /* Enable the Over-drive switch */
  169. setbits_le32(&pwr->cr1, PWR_CR1_ODSWEN);
  170. /* Infinite wait! */
  171. while (!(readl(&pwr->csr1) & PWR_CSR1_ODSWRDY))
  172. ;
  173. }
  174. stm32_flash_latency_cfg(5);
  175. clrbits_le32(&regs->cfgr, (RCC_CFGR_SW0 | RCC_CFGR_SW1));
  176. setbits_le32(&regs->cfgr, RCC_CFGR_SW_PLL);
  177. while ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) !=
  178. RCC_CFGR_SWS_PLL)
  179. ;
  180. return 0;
  181. }
  182. static unsigned long stm32_clk_get_rate(struct clk *clk)
  183. {
  184. struct stm32_clk *priv = dev_get_priv(clk->dev);
  185. struct stm32_rcc_regs *regs = priv->base;
  186. u32 sysclk = 0;
  187. u32 shift = 0;
  188. u16 pllm, plln, pllp;
  189. /* Prescaler table lookups for clock computation */
  190. u8 ahb_psc_table[16] = {
  191. 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9
  192. };
  193. u8 apb_psc_table[8] = {
  194. 0, 0, 0, 0, 1, 2, 3, 4
  195. };
  196. if ((readl(&regs->cfgr) & RCC_CFGR_SWS_MASK) ==
  197. RCC_CFGR_SWS_PLL) {
  198. pllm = (readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLM_MASK);
  199. plln = ((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLN_MASK)
  200. >> RCC_PLLCFGR_PLLN_SHIFT);
  201. pllp = ((((readl(&regs->pllcfgr) & RCC_PLLCFGR_PLLP_MASK)
  202. >> RCC_PLLCFGR_PLLP_SHIFT) + 1) << 1);
  203. sysclk = ((CONFIG_STM32_HSE_HZ / pllm) * plln) / pllp;
  204. } else {
  205. return -EINVAL;
  206. }
  207. switch (clk->id) {
  208. /*
  209. * AHB CLOCK: 3 x 32 bits consecutive registers are used :
  210. * AHB1, AHB2 and AHB3
  211. */
  212. case STM32F7_AHB1_CLOCK(GPIOA) ... STM32F7_AHB3_CLOCK(QSPI):
  213. shift = ahb_psc_table[(
  214. (readl(&regs->cfgr) & RCC_CFGR_AHB_PSC_MASK)
  215. >> RCC_CFGR_HPRE_SHIFT)];
  216. return sysclk >>= shift;
  217. /* APB1 CLOCK */
  218. case STM32F7_APB1_CLOCK(TIM2) ... STM32F7_APB1_CLOCK(UART8):
  219. shift = apb_psc_table[(
  220. (readl(&regs->cfgr) & RCC_CFGR_APB1_PSC_MASK)
  221. >> RCC_CFGR_PPRE1_SHIFT)];
  222. return sysclk >>= shift;
  223. /* APB2 CLOCK */
  224. case STM32F7_APB2_CLOCK(TIM1) ... STM32F7_APB2_CLOCK(LTDC):
  225. shift = apb_psc_table[(
  226. (readl(&regs->cfgr) & RCC_CFGR_APB2_PSC_MASK)
  227. >> RCC_CFGR_PPRE2_SHIFT)];
  228. return sysclk >>= shift;
  229. default:
  230. pr_err("clock index %ld out of range\n", clk->id);
  231. return -EINVAL;
  232. }
  233. }
  234. static int stm32_clk_enable(struct clk *clk)
  235. {
  236. struct stm32_clk *priv = dev_get_priv(clk->dev);
  237. struct stm32_rcc_regs *regs = priv->base;
  238. u32 offset = clk->id / 32;
  239. u32 bit_index = clk->id % 32;
  240. debug("%s: clkid = %ld, offset from AHB1ENR is %d, bit_index = %d\n",
  241. __func__, clk->id, offset, bit_index);
  242. setbits_le32(&regs->ahb1enr + offset, BIT(bit_index));
  243. return 0;
  244. }
  245. void clock_setup(int peripheral)
  246. {
  247. switch (peripheral) {
  248. case SYSCFG_CLOCK_CFG:
  249. setbits_le32(&STM32_RCC->apb2enr, RCC_APB2ENR_SYSCFGEN);
  250. break;
  251. case TIMER2_CLOCK_CFG:
  252. setbits_le32(&STM32_RCC->apb1enr, RCC_APB1ENR_TIM2EN);
  253. break;
  254. case STMMAC_CLOCK_CFG:
  255. setbits_le32(&STM32_RCC->ahb1enr, RCC_AHB1ENR_ETHMAC_EN);
  256. setbits_le32(&STM32_RCC->ahb1enr, RCC_AHB1ENR_ETHMAC_RX_EN);
  257. setbits_le32(&STM32_RCC->ahb1enr, RCC_AHB1ENR_ETHMAC_TX_EN);
  258. break;
  259. default:
  260. break;
  261. }
  262. }
  263. static int stm32_clk_probe(struct udevice *dev)
  264. {
  265. struct ofnode_phandle_args args;
  266. int err;
  267. debug("%s\n", __func__);
  268. struct stm32_clk *priv = dev_get_priv(dev);
  269. fdt_addr_t addr;
  270. addr = dev_read_addr(dev);
  271. if (addr == FDT_ADDR_T_NONE)
  272. return -EINVAL;
  273. priv->base = (struct stm32_rcc_regs *)addr;
  274. priv->info = (struct stm32_clk_info *)dev_get_driver_data(dev);
  275. if (priv->info->has_overdrive) {
  276. err = dev_read_phandle_with_args(dev, "st,syscfg", NULL, 0, 0,
  277. &args);
  278. if (err) {
  279. debug("%s: can't find syscon device (%d)\n", __func__,
  280. err);
  281. return err;
  282. }
  283. priv->pwr_regs = (struct stm32_pwr_regs *)ofnode_get_addr(args.node);
  284. }
  285. configure_clocks(dev);
  286. return 0;
  287. }
  288. static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args)
  289. {
  290. debug("%s(clk=%p)\n", __func__, clk);
  291. if (args->args_count != 2) {
  292. debug("Invaild args_count: %d\n", args->args_count);
  293. return -EINVAL;
  294. }
  295. if (args->args_count)
  296. clk->id = args->args[1];
  297. else
  298. clk->id = 0;
  299. return 0;
  300. }
  301. static struct clk_ops stm32_clk_ops = {
  302. .of_xlate = stm32_clk_of_xlate,
  303. .enable = stm32_clk_enable,
  304. .get_rate = stm32_clk_get_rate,
  305. };
  306. static const struct udevice_id stm32_clk_ids[] = {
  307. { .compatible = "st,stm32f42xx-rcc", .data = (ulong)&stm32f4_clk_info},
  308. { .compatible = "st,stm32f746-rcc", .data = (ulong)&stm32f7_clk_info},
  309. {}
  310. };
  311. U_BOOT_DRIVER(stm32fx_clk) = {
  312. .name = "stm32fx_clk",
  313. .id = UCLASS_CLK,
  314. .of_match = stm32_clk_ids,
  315. .ops = &stm32_clk_ops,
  316. .probe = stm32_clk_probe,
  317. .priv_auto_alloc_size = sizeof(struct stm32_clk),
  318. .flags = DM_FLAG_PRE_RELOC,
  319. };