sunxi_nand_spl.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. /*
  2. * Copyright (c) 2014-2015, Antmicro Ltd <www.antmicro.com>
  3. * Copyright (c) 2015, AW-SOM Technologies <www.aw-som.com>
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <asm/arch/clock.h>
  8. #include <asm/io.h>
  9. #include <common.h>
  10. #include <config.h>
  11. #include <nand.h>
  12. /* registers */
  13. #define NFC_CTL 0x00000000
  14. #define NFC_ST 0x00000004
  15. #define NFC_INT 0x00000008
  16. #define NFC_TIMING_CTL 0x0000000C
  17. #define NFC_TIMING_CFG 0x00000010
  18. #define NFC_ADDR_LOW 0x00000014
  19. #define NFC_ADDR_HIGH 0x00000018
  20. #define NFC_SECTOR_NUM 0x0000001C
  21. #define NFC_CNT 0x00000020
  22. #define NFC_CMD 0x00000024
  23. #define NFC_RCMD_SET 0x00000028
  24. #define NFC_WCMD_SET 0x0000002C
  25. #define NFC_IO_DATA 0x00000030
  26. #define NFC_ECC_CTL 0x00000034
  27. #define NFC_ECC_ST 0x00000038
  28. #define NFC_DEBUG 0x0000003C
  29. #define NFC_ECC_CNT0 0x00000040
  30. #define NFC_ECC_CNT1 0x00000044
  31. #define NFC_ECC_CNT2 0x00000048
  32. #define NFC_ECC_CNT3 0x0000004C
  33. #define NFC_USER_DATA_BASE 0x00000050
  34. #define NFC_EFNAND_STATUS 0x00000090
  35. #define NFC_SPARE_AREA 0x000000A0
  36. #define NFC_PATTERN_ID 0x000000A4
  37. #define NFC_RAM0_BASE 0x00000400
  38. #define NFC_RAM1_BASE 0x00000800
  39. #define NFC_CTL_EN (1 << 0)
  40. #define NFC_CTL_RESET (1 << 1)
  41. #define NFC_CTL_RAM_METHOD (1 << 14)
  42. #define NFC_CTL_PAGE_SIZE_MASK (0xf << 8)
  43. #define NFC_CTL_PAGE_SIZE(a) ((fls(a) - 11) << 8)
  44. #define NFC_ECC_EN (1 << 0)
  45. #define NFC_ECC_PIPELINE (1 << 3)
  46. #define NFC_ECC_EXCEPTION (1 << 4)
  47. #define NFC_ECC_BLOCK_SIZE (1 << 5)
  48. #define NFC_ECC_RANDOM_EN (1 << 9)
  49. #define NFC_ECC_RANDOM_DIRECTION (1 << 10)
  50. #define NFC_ADDR_NUM_OFFSET 16
  51. #define NFC_SEND_ADR (1 << 19)
  52. #define NFC_ACCESS_DIR (1 << 20)
  53. #define NFC_DATA_TRANS (1 << 21)
  54. #define NFC_SEND_CMD1 (1 << 22)
  55. #define NFC_WAIT_FLAG (1 << 23)
  56. #define NFC_SEND_CMD2 (1 << 24)
  57. #define NFC_SEQ (1 << 25)
  58. #define NFC_DATA_SWAP_METHOD (1 << 26)
  59. #define NFC_ROW_AUTO_INC (1 << 27)
  60. #define NFC_SEND_CMD3 (1 << 28)
  61. #define NFC_SEND_CMD4 (1 << 29)
  62. #define NFC_ST_CMD_INT_FLAG (1 << 1)
  63. #define NFC_ST_DMA_INT_FLAG (1 << 2)
  64. #define NFC_READ_CMD_OFFSET 0
  65. #define NFC_RANDOM_READ_CMD0_OFFSET 8
  66. #define NFC_RANDOM_READ_CMD1_OFFSET 16
  67. #define NFC_CMD_RNDOUTSTART 0xE0
  68. #define NFC_CMD_RNDOUT 0x05
  69. #define NFC_CMD_READSTART 0x30
  70. #define NFC_PAGE_CMD (2 << 30)
  71. #define SUNXI_DMA_CFG_REG0 0x300
  72. #define SUNXI_DMA_SRC_START_ADDR_REG0 0x304
  73. #define SUNXI_DMA_DEST_START_ADDRR_REG0 0x308
  74. #define SUNXI_DMA_DDMA_BC_REG0 0x30C
  75. #define SUNXI_DMA_DDMA_PARA_REG0 0x318
  76. #define SUNXI_DMA_DDMA_CFG_REG_LOADING (1 << 31)
  77. #define SUNXI_DMA_DDMA_CFG_REG_DMA_DEST_DATA_WIDTH_32 (2 << 25)
  78. #define SUNXI_DMA_DDMA_CFG_REG_DDMA_DST_DRQ_TYPE_DRAM (1 << 16)
  79. #define SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_DATA_WIDTH_32 (2 << 9)
  80. #define SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_ADDR_MODE_IO (1 << 5)
  81. #define SUNXI_DMA_DDMA_CFG_REG_DDMA_SRC_DRQ_TYPE_NFC (3 << 0)
  82. #define SUNXI_DMA_DDMA_PARA_REG_SRC_WAIT_CYC (0x0F << 0)
  83. #define SUNXI_DMA_DDMA_PARA_REG_SRC_BLK_SIZE (0x7F << 8)
  84. /* minimal "boot0" style NAND support for Allwinner A20 */
  85. /* random seed used by linux */
  86. const uint16_t random_seed[128] = {
  87. 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
  88. 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
  89. 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
  90. 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
  91. 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
  92. 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
  93. 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
  94. 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
  95. 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
  96. 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
  97. 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
  98. 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
  99. 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
  100. 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
  101. 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
  102. 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
  103. };
  104. #define MAX_RETRIES 10
  105. static int check_value_inner(int offset, int expected_bits,
  106. int max_number_of_retries, int negation)
  107. {
  108. int retries = 0;
  109. do {
  110. int val = readl(offset) & expected_bits;
  111. if (negation ? !val : val)
  112. return 1;
  113. mdelay(1);
  114. retries++;
  115. } while (retries < max_number_of_retries);
  116. return 0;
  117. }
  118. static inline int check_value(int offset, int expected_bits,
  119. int max_number_of_retries)
  120. {
  121. return check_value_inner(offset, expected_bits,
  122. max_number_of_retries, 0);
  123. }
  124. static inline int check_value_negated(int offset, int unexpected_bits,
  125. int max_number_of_retries)
  126. {
  127. return check_value_inner(offset, unexpected_bits,
  128. max_number_of_retries, 1);
  129. }
  130. void nand_init(void)
  131. {
  132. uint32_t val;
  133. board_nand_init();
  134. val = readl(SUNXI_NFC_BASE + NFC_CTL);
  135. /* enable and reset CTL */
  136. writel(val | NFC_CTL_EN | NFC_CTL_RESET,
  137. SUNXI_NFC_BASE + NFC_CTL);
  138. if (!check_value_negated(SUNXI_NFC_BASE + NFC_CTL,
  139. NFC_CTL_RESET, MAX_RETRIES)) {
  140. printf("Couldn't initialize nand\n");
  141. }
  142. /* reset NAND */
  143. writel(NFC_ST_CMD_INT_FLAG, SUNXI_NFC_BASE + NFC_ST);
  144. writel(NFC_SEND_CMD1 | NFC_WAIT_FLAG | NAND_CMD_RESET,
  145. SUNXI_NFC_BASE + NFC_CMD);
  146. if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_INT_FLAG,
  147. MAX_RETRIES)) {
  148. printf("Error timeout waiting for nand reset\n");
  149. return;
  150. }
  151. writel(NFC_ST_CMD_INT_FLAG, SUNXI_NFC_BASE + NFC_ST);
  152. }
  153. static int nand_read_page(int page_size, int ecc_strength, int ecc_page_size,
  154. int addr_cycles, uint32_t real_addr, dma_addr_t dst)
  155. {
  156. uint32_t val;
  157. int i, ecc_off = 0;
  158. uint16_t ecc_mode = 0;
  159. uint16_t rand_seed;
  160. uint32_t page;
  161. uint16_t column;
  162. static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
  163. for (i = 0; i < ARRAY_SIZE(strengths); i++) {
  164. if (ecc_strength == strengths[i]) {
  165. ecc_mode = i;
  166. break;
  167. }
  168. }
  169. /* HW ECC always request ECC bytes for 1024 bytes blocks */
  170. ecc_off = DIV_ROUND_UP(ecc_strength * fls(8 * 1024), 8);
  171. /* HW ECC always work with even numbers of ECC bytes */
  172. ecc_off += (ecc_off & 1);
  173. ecc_off += 4; /* prepad */
  174. page = real_addr / page_size;
  175. column = real_addr % page_size;
  176. /* clear ecc status */
  177. writel(0, SUNXI_NFC_BASE + NFC_ECC_ST);
  178. /* Choose correct seed */
  179. rand_seed = random_seed[page % 128];
  180. writel((rand_seed << 16) | NFC_ECC_RANDOM_EN | NFC_ECC_EN
  181. | NFC_ECC_PIPELINE | (ecc_mode << 12),
  182. SUNXI_NFC_BASE + NFC_ECC_CTL);
  183. val = readl(SUNXI_NFC_BASE + NFC_CTL);
  184. writel(val | NFC_CTL_RAM_METHOD, SUNXI_NFC_BASE + NFC_CTL);
  185. writel(page_size + (column / ecc_page_size) * ecc_off,
  186. SUNXI_NFC_BASE + NFC_SPARE_AREA);
  187. flush_dcache_range(dst, ALIGN(dst + ecc_page_size, ARCH_DMA_MINALIGN));
  188. /* SUNXI_DMA */
  189. writel(0x0, SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0); /* clr dma cmd */
  190. /* read from REG_IO_DATA */
  191. writel(SUNXI_NFC_BASE + NFC_IO_DATA,
  192. SUNXI_DMA_BASE + SUNXI_DMA_SRC_START_ADDR_REG0);
  193. /* read to RAM */
  194. writel(dst, SUNXI_DMA_BASE + SUNXI_DMA_DEST_START_ADDRR_REG0);
  195. writel(SUNXI_DMA_DDMA_PARA_REG_SRC_WAIT_CYC
  196. | SUNXI_DMA_DDMA_PARA_REG_SRC_BLK_SIZE,
  197. SUNXI_DMA_BASE + SUNXI_DMA_DDMA_PARA_REG0);
  198. writel(ecc_page_size,
  199. SUNXI_DMA_BASE + SUNXI_DMA_DDMA_BC_REG0); /* 1kB */
  200. writel(SUNXI_DMA_DDMA_CFG_REG_LOADING
  201. | SUNXI_DMA_DDMA_CFG_REG_DMA_DEST_DATA_WIDTH_32
  202. | SUNXI_DMA_DDMA_CFG_REG_DDMA_DST_DRQ_TYPE_DRAM
  203. | SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_DATA_WIDTH_32
  204. | SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_ADDR_MODE_IO
  205. | SUNXI_DMA_DDMA_CFG_REG_DDMA_SRC_DRQ_TYPE_NFC,
  206. SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0);
  207. writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET)
  208. | (NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET)
  209. | (NFC_CMD_READSTART | NFC_READ_CMD_OFFSET), SUNXI_NFC_BASE
  210. + NFC_RCMD_SET);
  211. writel(1, SUNXI_NFC_BASE + NFC_SECTOR_NUM);
  212. writel(((page & 0xFFFF) << 16) | column,
  213. SUNXI_NFC_BASE + NFC_ADDR_LOW);
  214. writel((page >> 16) & 0xFF, SUNXI_NFC_BASE + NFC_ADDR_HIGH);
  215. writel(NFC_ST_DMA_INT_FLAG, SUNXI_NFC_BASE + NFC_ST);
  216. writel(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_DATA_TRANS |
  217. NFC_PAGE_CMD | NFC_WAIT_FLAG |
  218. ((addr_cycles - 1) << NFC_ADDR_NUM_OFFSET) |
  219. NFC_SEND_ADR | NFC_DATA_SWAP_METHOD,
  220. SUNXI_NFC_BASE + NFC_CMD);
  221. if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_DMA_INT_FLAG,
  222. MAX_RETRIES)) {
  223. printf("Error while initializing dma interrupt\n");
  224. return -1;
  225. }
  226. writel(NFC_ST_DMA_INT_FLAG, SUNXI_NFC_BASE + NFC_ST);
  227. if (!check_value_negated(SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0,
  228. SUNXI_DMA_DDMA_CFG_REG_LOADING, MAX_RETRIES)) {
  229. printf("Error while waiting for dma transfer to finish\n");
  230. return -1;
  231. }
  232. invalidate_dcache_range(dst,
  233. ALIGN(dst + ecc_page_size, ARCH_DMA_MINALIGN));
  234. if (readl(SUNXI_NFC_BASE + NFC_ECC_ST))
  235. return -1;
  236. return 0;
  237. }
  238. static int nand_read_ecc(int page_size, int ecc_strength, int ecc_page_size,
  239. int addr_cycles, uint32_t offs, uint32_t size, void *dest)
  240. {
  241. void *end = dest + size;
  242. clrsetbits_le32(SUNXI_NFC_BASE + NFC_CTL, NFC_CTL_PAGE_SIZE_MASK,
  243. NFC_CTL_PAGE_SIZE(page_size));
  244. for ( ;dest < end; dest += ecc_page_size, offs += ecc_page_size) {
  245. if (nand_read_page(page_size, ecc_strength, ecc_page_size,
  246. addr_cycles, offs, (dma_addr_t)dest))
  247. return -1;
  248. }
  249. return 0;
  250. }
  251. static int nand_read_buffer(uint32_t offs, unsigned int size, void *dest)
  252. {
  253. const struct {
  254. int page_size;
  255. int ecc_strength;
  256. int ecc_page_size;
  257. int addr_cycles;
  258. } nand_configs[] = {
  259. { 8192, 40, 1024, 5 },
  260. { 16384, 56, 1024, 5 },
  261. { 8192, 24, 1024, 5 },
  262. { 4096, 24, 1024, 5 },
  263. };
  264. static int nand_config = -1;
  265. int i;
  266. if (nand_config == -1) {
  267. for (i = 0; i < ARRAY_SIZE(nand_configs); i++) {
  268. debug("nand: trying page %d ecc %d / %d addr %d: ",
  269. nand_configs[i].page_size,
  270. nand_configs[i].ecc_strength,
  271. nand_configs[i].ecc_page_size,
  272. nand_configs[i].addr_cycles);
  273. if (nand_read_ecc(nand_configs[i].page_size,
  274. nand_configs[i].ecc_strength,
  275. nand_configs[i].ecc_page_size,
  276. nand_configs[i].addr_cycles,
  277. offs, size, dest) == 0) {
  278. debug("success\n");
  279. nand_config = i;
  280. return 0;
  281. }
  282. debug("failed\n");
  283. }
  284. return -1;
  285. }
  286. return nand_read_ecc(nand_configs[nand_config].page_size,
  287. nand_configs[nand_config].ecc_strength,
  288. nand_configs[nand_config].ecc_page_size,
  289. nand_configs[nand_config].addr_cycles,
  290. offs, size, dest);
  291. }
  292. int nand_spl_load_image(uint32_t offs, unsigned int size, void *dest)
  293. {
  294. /*
  295. * u-boot partition sits after 2 eraseblocks (spl, spl-backup), look
  296. * for backup u-boot 1 erase block further.
  297. */
  298. const uint32_t eraseblock_size = CONFIG_SYS_NAND_U_BOOT_OFFS / 2;
  299. const uint32_t boot_offsets[] = {
  300. CONFIG_SYS_NAND_U_BOOT_OFFS,
  301. CONFIG_SYS_NAND_U_BOOT_OFFS + eraseblock_size,
  302. };
  303. int i;
  304. if (offs == CONFIG_SYS_NAND_U_BOOT_OFFS) {
  305. for (i = 0; i < ARRAY_SIZE(boot_offsets); i++) {
  306. if (nand_read_buffer(boot_offsets[i], size,
  307. dest) == 0)
  308. return 0;
  309. }
  310. return -1;
  311. }
  312. return nand_read_buffer(offs, size, dest);
  313. }
  314. void nand_deselect(void)
  315. {
  316. struct sunxi_ccm_reg *const ccm =
  317. (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  318. clrbits_le32(&ccm->ahb_gate0, (CLK_GATE_OPEN << AHB_GATE_OFFSET_NAND0));
  319. #ifdef CONFIG_MACH_SUN9I
  320. clrbits_le32(&ccm->ahb_gate1, (1 << AHB_GATE_OFFSET_DMA));
  321. #else
  322. clrbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_DMA));
  323. #endif
  324. clrbits_le32(&ccm->nand0_clk_cfg, CCM_NAND_CTRL_ENABLE | AHB_DIV_1);
  325. }