clk_rk3399.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183
  1. /*
  2. * (C) Copyright 2015 Google, Inc
  3. * (C) 2017 Theobroma Systems Design und Consulting GmbH
  4. *
  5. * SPDX-License-Identifier: GPL-2.0
  6. */
  7. #include <common.h>
  8. #include <clk-uclass.h>
  9. #include <dm.h>
  10. #include <dt-structs.h>
  11. #include <errno.h>
  12. #include <mapmem.h>
  13. #include <syscon.h>
  14. #include <asm/io.h>
  15. #include <asm/arch/clock.h>
  16. #include <asm/arch/cru_rk3399.h>
  17. #include <asm/arch/hardware.h>
  18. #include <dm/lists.h>
  19. #include <dt-bindings/clock/rk3399-cru.h>
  20. DECLARE_GLOBAL_DATA_PTR;
  21. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  22. struct rk3399_clk_plat {
  23. struct dtd_rockchip_rk3399_cru dtd;
  24. };
  25. struct rk3399_pmuclk_plat {
  26. struct dtd_rockchip_rk3399_pmucru dtd;
  27. };
  28. #endif
  29. struct pll_div {
  30. u32 refdiv;
  31. u32 fbdiv;
  32. u32 postdiv1;
  33. u32 postdiv2;
  34. u32 frac;
  35. };
  36. #define RATE_TO_DIV(input_rate, output_rate) \
  37. ((input_rate) / (output_rate) - 1);
  38. #define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
  39. #define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
  40. .refdiv = _refdiv,\
  41. .fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
  42. .postdiv1 = _postdiv1, .postdiv2 = _postdiv2};
  43. #if defined(CONFIG_SPL_BUILD)
  44. static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
  45. static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2, 2);
  46. #else
  47. static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 2, 2, 1);
  48. #endif
  49. static const struct pll_div apll_l_1600_cfg = PLL_DIVISORS(1600*MHz, 3, 1, 1);
  50. static const struct pll_div apll_l_600_cfg = PLL_DIVISORS(600*MHz, 1, 2, 1);
  51. static const struct pll_div *apll_l_cfgs[] = {
  52. [APLL_L_1600_MHZ] = &apll_l_1600_cfg,
  53. [APLL_L_600_MHZ] = &apll_l_600_cfg,
  54. };
  55. enum {
  56. /* PLL_CON0 */
  57. PLL_FBDIV_MASK = 0xfff,
  58. PLL_FBDIV_SHIFT = 0,
  59. /* PLL_CON1 */
  60. PLL_POSTDIV2_SHIFT = 12,
  61. PLL_POSTDIV2_MASK = 0x7 << PLL_POSTDIV2_SHIFT,
  62. PLL_POSTDIV1_SHIFT = 8,
  63. PLL_POSTDIV1_MASK = 0x7 << PLL_POSTDIV1_SHIFT,
  64. PLL_REFDIV_MASK = 0x3f,
  65. PLL_REFDIV_SHIFT = 0,
  66. /* PLL_CON2 */
  67. PLL_LOCK_STATUS_SHIFT = 31,
  68. PLL_LOCK_STATUS_MASK = 1 << PLL_LOCK_STATUS_SHIFT,
  69. PLL_FRACDIV_MASK = 0xffffff,
  70. PLL_FRACDIV_SHIFT = 0,
  71. /* PLL_CON3 */
  72. PLL_MODE_SHIFT = 8,
  73. PLL_MODE_MASK = 3 << PLL_MODE_SHIFT,
  74. PLL_MODE_SLOW = 0,
  75. PLL_MODE_NORM,
  76. PLL_MODE_DEEP,
  77. PLL_DSMPD_SHIFT = 3,
  78. PLL_DSMPD_MASK = 1 << PLL_DSMPD_SHIFT,
  79. PLL_INTEGER_MODE = 1,
  80. /* PMUCRU_CLKSEL_CON0 */
  81. PMU_PCLK_DIV_CON_MASK = 0x1f,
  82. PMU_PCLK_DIV_CON_SHIFT = 0,
  83. /* PMUCRU_CLKSEL_CON1 */
  84. SPI3_PLL_SEL_SHIFT = 7,
  85. SPI3_PLL_SEL_MASK = 1 << SPI3_PLL_SEL_SHIFT,
  86. SPI3_PLL_SEL_24M = 0,
  87. SPI3_PLL_SEL_PPLL = 1,
  88. SPI3_DIV_CON_SHIFT = 0x0,
  89. SPI3_DIV_CON_MASK = 0x7f,
  90. /* PMUCRU_CLKSEL_CON2 */
  91. I2C_DIV_CON_MASK = 0x7f,
  92. CLK_I2C8_DIV_CON_SHIFT = 8,
  93. CLK_I2C0_DIV_CON_SHIFT = 0,
  94. /* PMUCRU_CLKSEL_CON3 */
  95. CLK_I2C4_DIV_CON_SHIFT = 0,
  96. /* CLKSEL_CON0 */
  97. ACLKM_CORE_L_DIV_CON_SHIFT = 8,
  98. ACLKM_CORE_L_DIV_CON_MASK = 0x1f << ACLKM_CORE_L_DIV_CON_SHIFT,
  99. CLK_CORE_L_PLL_SEL_SHIFT = 6,
  100. CLK_CORE_L_PLL_SEL_MASK = 3 << CLK_CORE_L_PLL_SEL_SHIFT,
  101. CLK_CORE_L_PLL_SEL_ALPLL = 0x0,
  102. CLK_CORE_L_PLL_SEL_ABPLL = 0x1,
  103. CLK_CORE_L_PLL_SEL_DPLL = 0x10,
  104. CLK_CORE_L_PLL_SEL_GPLL = 0x11,
  105. CLK_CORE_L_DIV_MASK = 0x1f,
  106. CLK_CORE_L_DIV_SHIFT = 0,
  107. /* CLKSEL_CON1 */
  108. PCLK_DBG_L_DIV_SHIFT = 0x8,
  109. PCLK_DBG_L_DIV_MASK = 0x1f << PCLK_DBG_L_DIV_SHIFT,
  110. ATCLK_CORE_L_DIV_SHIFT = 0,
  111. ATCLK_CORE_L_DIV_MASK = 0x1f << ATCLK_CORE_L_DIV_SHIFT,
  112. /* CLKSEL_CON14 */
  113. PCLK_PERIHP_DIV_CON_SHIFT = 12,
  114. PCLK_PERIHP_DIV_CON_MASK = 0x7 << PCLK_PERIHP_DIV_CON_SHIFT,
  115. HCLK_PERIHP_DIV_CON_SHIFT = 8,
  116. HCLK_PERIHP_DIV_CON_MASK = 3 << HCLK_PERIHP_DIV_CON_SHIFT,
  117. ACLK_PERIHP_PLL_SEL_SHIFT = 7,
  118. ACLK_PERIHP_PLL_SEL_MASK = 1 << ACLK_PERIHP_PLL_SEL_SHIFT,
  119. ACLK_PERIHP_PLL_SEL_CPLL = 0,
  120. ACLK_PERIHP_PLL_SEL_GPLL = 1,
  121. ACLK_PERIHP_DIV_CON_SHIFT = 0,
  122. ACLK_PERIHP_DIV_CON_MASK = 0x1f,
  123. /* CLKSEL_CON21 */
  124. ACLK_EMMC_PLL_SEL_SHIFT = 7,
  125. ACLK_EMMC_PLL_SEL_MASK = 0x1 << ACLK_EMMC_PLL_SEL_SHIFT,
  126. ACLK_EMMC_PLL_SEL_GPLL = 0x1,
  127. ACLK_EMMC_DIV_CON_SHIFT = 0,
  128. ACLK_EMMC_DIV_CON_MASK = 0x1f,
  129. /* CLKSEL_CON22 */
  130. CLK_EMMC_PLL_SHIFT = 8,
  131. CLK_EMMC_PLL_MASK = 0x7 << CLK_EMMC_PLL_SHIFT,
  132. CLK_EMMC_PLL_SEL_GPLL = 0x1,
  133. CLK_EMMC_PLL_SEL_24M = 0x5,
  134. CLK_EMMC_DIV_CON_SHIFT = 0,
  135. CLK_EMMC_DIV_CON_MASK = 0x7f << CLK_EMMC_DIV_CON_SHIFT,
  136. /* CLKSEL_CON23 */
  137. PCLK_PERILP0_DIV_CON_SHIFT = 12,
  138. PCLK_PERILP0_DIV_CON_MASK = 0x7 << PCLK_PERILP0_DIV_CON_SHIFT,
  139. HCLK_PERILP0_DIV_CON_SHIFT = 8,
  140. HCLK_PERILP0_DIV_CON_MASK = 3 << HCLK_PERILP0_DIV_CON_SHIFT,
  141. ACLK_PERILP0_PLL_SEL_SHIFT = 7,
  142. ACLK_PERILP0_PLL_SEL_MASK = 1 << ACLK_PERILP0_PLL_SEL_SHIFT,
  143. ACLK_PERILP0_PLL_SEL_CPLL = 0,
  144. ACLK_PERILP0_PLL_SEL_GPLL = 1,
  145. ACLK_PERILP0_DIV_CON_SHIFT = 0,
  146. ACLK_PERILP0_DIV_CON_MASK = 0x1f,
  147. /* CLKSEL_CON25 */
  148. PCLK_PERILP1_DIV_CON_SHIFT = 8,
  149. PCLK_PERILP1_DIV_CON_MASK = 0x7 << PCLK_PERILP1_DIV_CON_SHIFT,
  150. HCLK_PERILP1_PLL_SEL_SHIFT = 7,
  151. HCLK_PERILP1_PLL_SEL_MASK = 1 << HCLK_PERILP1_PLL_SEL_SHIFT,
  152. HCLK_PERILP1_PLL_SEL_CPLL = 0,
  153. HCLK_PERILP1_PLL_SEL_GPLL = 1,
  154. HCLK_PERILP1_DIV_CON_SHIFT = 0,
  155. HCLK_PERILP1_DIV_CON_MASK = 0x1f,
  156. /* CLKSEL_CON26 */
  157. CLK_SARADC_DIV_CON_SHIFT = 8,
  158. CLK_SARADC_DIV_CON_MASK = 0xff << CLK_SARADC_DIV_CON_SHIFT,
  159. /* CLKSEL_CON27 */
  160. CLK_TSADC_SEL_X24M = 0x0,
  161. CLK_TSADC_SEL_SHIFT = 15,
  162. CLK_TSADC_SEL_MASK = 1 << CLK_TSADC_SEL_SHIFT,
  163. CLK_TSADC_DIV_CON_SHIFT = 0,
  164. CLK_TSADC_DIV_CON_MASK = 0x3ff,
  165. /* CLKSEL_CON47 & CLKSEL_CON48 */
  166. ACLK_VOP_PLL_SEL_SHIFT = 6,
  167. ACLK_VOP_PLL_SEL_MASK = 0x3 << ACLK_VOP_PLL_SEL_SHIFT,
  168. ACLK_VOP_PLL_SEL_CPLL = 0x1,
  169. ACLK_VOP_DIV_CON_SHIFT = 0,
  170. ACLK_VOP_DIV_CON_MASK = 0x1f << ACLK_VOP_DIV_CON_SHIFT,
  171. /* CLKSEL_CON49 & CLKSEL_CON50 */
  172. DCLK_VOP_DCLK_SEL_SHIFT = 11,
  173. DCLK_VOP_DCLK_SEL_MASK = 1 << DCLK_VOP_DCLK_SEL_SHIFT,
  174. DCLK_VOP_DCLK_SEL_DIVOUT = 0,
  175. DCLK_VOP_PLL_SEL_SHIFT = 8,
  176. DCLK_VOP_PLL_SEL_MASK = 3 << DCLK_VOP_PLL_SEL_SHIFT,
  177. DCLK_VOP_PLL_SEL_VPLL = 0,
  178. DCLK_VOP_DIV_CON_MASK = 0xff,
  179. DCLK_VOP_DIV_CON_SHIFT = 0,
  180. /* CLKSEL_CON58 */
  181. CLK_SPI_PLL_SEL_WIDTH = 1,
  182. CLK_SPI_PLL_SEL_MASK = ((1 < CLK_SPI_PLL_SEL_WIDTH) - 1),
  183. CLK_SPI_PLL_SEL_CPLL = 0,
  184. CLK_SPI_PLL_SEL_GPLL = 1,
  185. CLK_SPI_PLL_DIV_CON_WIDTH = 7,
  186. CLK_SPI_PLL_DIV_CON_MASK = ((1 << CLK_SPI_PLL_DIV_CON_WIDTH) - 1),
  187. CLK_SPI5_PLL_DIV_CON_SHIFT = 8,
  188. CLK_SPI5_PLL_SEL_SHIFT = 15,
  189. /* CLKSEL_CON59 */
  190. CLK_SPI1_PLL_SEL_SHIFT = 15,
  191. CLK_SPI1_PLL_DIV_CON_SHIFT = 8,
  192. CLK_SPI0_PLL_SEL_SHIFT = 7,
  193. CLK_SPI0_PLL_DIV_CON_SHIFT = 0,
  194. /* CLKSEL_CON60 */
  195. CLK_SPI4_PLL_SEL_SHIFT = 15,
  196. CLK_SPI4_PLL_DIV_CON_SHIFT = 8,
  197. CLK_SPI2_PLL_SEL_SHIFT = 7,
  198. CLK_SPI2_PLL_DIV_CON_SHIFT = 0,
  199. /* CLKSEL_CON61 */
  200. CLK_I2C_PLL_SEL_MASK = 1,
  201. CLK_I2C_PLL_SEL_CPLL = 0,
  202. CLK_I2C_PLL_SEL_GPLL = 1,
  203. CLK_I2C5_PLL_SEL_SHIFT = 15,
  204. CLK_I2C5_DIV_CON_SHIFT = 8,
  205. CLK_I2C1_PLL_SEL_SHIFT = 7,
  206. CLK_I2C1_DIV_CON_SHIFT = 0,
  207. /* CLKSEL_CON62 */
  208. CLK_I2C6_PLL_SEL_SHIFT = 15,
  209. CLK_I2C6_DIV_CON_SHIFT = 8,
  210. CLK_I2C2_PLL_SEL_SHIFT = 7,
  211. CLK_I2C2_DIV_CON_SHIFT = 0,
  212. /* CLKSEL_CON63 */
  213. CLK_I2C7_PLL_SEL_SHIFT = 15,
  214. CLK_I2C7_DIV_CON_SHIFT = 8,
  215. CLK_I2C3_PLL_SEL_SHIFT = 7,
  216. CLK_I2C3_DIV_CON_SHIFT = 0,
  217. /* CRU_SOFTRST_CON4 */
  218. RESETN_DDR0_REQ_SHIFT = 8,
  219. RESETN_DDR0_REQ_MASK = 1 << RESETN_DDR0_REQ_SHIFT,
  220. RESETN_DDRPHY0_REQ_SHIFT = 9,
  221. RESETN_DDRPHY0_REQ_MASK = 1 << RESETN_DDRPHY0_REQ_SHIFT,
  222. RESETN_DDR1_REQ_SHIFT = 12,
  223. RESETN_DDR1_REQ_MASK = 1 << RESETN_DDR1_REQ_SHIFT,
  224. RESETN_DDRPHY1_REQ_SHIFT = 13,
  225. RESETN_DDRPHY1_REQ_MASK = 1 << RESETN_DDRPHY1_REQ_SHIFT,
  226. };
  227. #define VCO_MAX_KHZ (3200 * (MHz / KHz))
  228. #define VCO_MIN_KHZ (800 * (MHz / KHz))
  229. #define OUTPUT_MAX_KHZ (3200 * (MHz / KHz))
  230. #define OUTPUT_MIN_KHZ (16 * (MHz / KHz))
  231. /*
  232. * the div restructions of pll in integer mode, these are defined in
  233. * * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
  234. */
  235. #define PLL_DIV_MIN 16
  236. #define PLL_DIV_MAX 3200
  237. /*
  238. * How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
  239. * Formulas also embedded within the Fractional PLL Verilog model:
  240. * If DSMPD = 1 (DSM is disabled, "integer mode")
  241. * FOUTVCO = FREF / REFDIV * FBDIV
  242. * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
  243. * Where:
  244. * FOUTVCO = Fractional PLL non-divided output frequency
  245. * FOUTPOSTDIV = Fractional PLL divided output frequency
  246. * (output of second post divider)
  247. * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
  248. * REFDIV = Fractional PLL input reference clock divider
  249. * FBDIV = Integer value programmed into feedback divide
  250. *
  251. */
  252. static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div)
  253. {
  254. /* All 8 PLLs have same VCO and output frequency range restrictions. */
  255. u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
  256. u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
  257. debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, "
  258. "postdiv2=%d, vco=%u khz, output=%u khz\n",
  259. pll_con, div->fbdiv, div->refdiv, div->postdiv1,
  260. div->postdiv2, vco_khz, output_khz);
  261. assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
  262. output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
  263. div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
  264. /*
  265. * When power on or changing PLL setting,
  266. * we must force PLL into slow mode to ensure output stable clock.
  267. */
  268. rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
  269. PLL_MODE_SLOW << PLL_MODE_SHIFT);
  270. /* use integer mode */
  271. rk_clrsetreg(&pll_con[3], PLL_DSMPD_MASK,
  272. PLL_INTEGER_MODE << PLL_DSMPD_SHIFT);
  273. rk_clrsetreg(&pll_con[0], PLL_FBDIV_MASK,
  274. div->fbdiv << PLL_FBDIV_SHIFT);
  275. rk_clrsetreg(&pll_con[1],
  276. PLL_POSTDIV2_MASK | PLL_POSTDIV1_MASK |
  277. PLL_REFDIV_MASK | PLL_REFDIV_SHIFT,
  278. (div->postdiv2 << PLL_POSTDIV2_SHIFT) |
  279. (div->postdiv1 << PLL_POSTDIV1_SHIFT) |
  280. (div->refdiv << PLL_REFDIV_SHIFT));
  281. /* waiting for pll lock */
  282. while (!(readl(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT)))
  283. udelay(1);
  284. /* pll enter normal mode */
  285. rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
  286. PLL_MODE_NORM << PLL_MODE_SHIFT);
  287. }
  288. static int pll_para_config(u32 freq_hz, struct pll_div *div)
  289. {
  290. u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0;
  291. u32 postdiv1, postdiv2 = 1;
  292. u32 fref_khz;
  293. u32 diff_khz, best_diff_khz;
  294. const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16;
  295. const u32 max_postdiv1 = 7, max_postdiv2 = 7;
  296. u32 vco_khz;
  297. u32 freq_khz = freq_hz / KHz;
  298. if (!freq_hz) {
  299. printf("%s: the frequency can't be 0 Hz\n", __func__);
  300. return -1;
  301. }
  302. postdiv1 = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz);
  303. if (postdiv1 > max_postdiv1) {
  304. postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1);
  305. postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2);
  306. }
  307. vco_khz = freq_khz * postdiv1 * postdiv2;
  308. if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ ||
  309. postdiv2 > max_postdiv2) {
  310. printf("%s: Cannot find out a supported VCO"
  311. " for Frequency (%uHz).\n", __func__, freq_hz);
  312. return -1;
  313. }
  314. div->postdiv1 = postdiv1;
  315. div->postdiv2 = postdiv2;
  316. best_diff_khz = vco_khz;
  317. for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) {
  318. fref_khz = ref_khz / refdiv;
  319. fbdiv = vco_khz / fref_khz;
  320. if ((fbdiv >= max_fbdiv) || (fbdiv <= min_fbdiv))
  321. continue;
  322. diff_khz = vco_khz - fbdiv * fref_khz;
  323. if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) {
  324. fbdiv++;
  325. diff_khz = fref_khz - diff_khz;
  326. }
  327. if (diff_khz >= best_diff_khz)
  328. continue;
  329. best_diff_khz = diff_khz;
  330. div->refdiv = refdiv;
  331. div->fbdiv = fbdiv;
  332. }
  333. if (best_diff_khz > 4 * (MHz/KHz)) {
  334. printf("%s: Failed to match output frequency %u, "
  335. "difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz,
  336. best_diff_khz * KHz);
  337. return -1;
  338. }
  339. return 0;
  340. }
  341. #ifdef CONFIG_SPL_BUILD
  342. static void rkclk_init(struct rk3399_cru *cru)
  343. {
  344. u32 aclk_div;
  345. u32 hclk_div;
  346. u32 pclk_div;
  347. /*
  348. * some cru registers changed by bootrom, we'd better reset them to
  349. * reset/default values described in TRM to avoid confusion in kernel.
  350. * Please consider these three lines as a fix of bootrom bug.
  351. */
  352. rk_clrsetreg(&cru->clksel_con[12], 0xffff, 0x4101);
  353. rk_clrsetreg(&cru->clksel_con[19], 0xffff, 0x033f);
  354. rk_clrsetreg(&cru->clksel_con[56], 0x0003, 0x0003);
  355. /* configure gpll cpll */
  356. rkclk_set_pll(&cru->gpll_con[0], &gpll_init_cfg);
  357. rkclk_set_pll(&cru->cpll_con[0], &cpll_init_cfg);
  358. /* configure perihp aclk, hclk, pclk */
  359. aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
  360. assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
  361. hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
  362. assert((hclk_div + 1) * PERIHP_HCLK_HZ ==
  363. PERIHP_ACLK_HZ && (hclk_div < 0x4));
  364. pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
  365. assert((pclk_div + 1) * PERIHP_PCLK_HZ ==
  366. PERIHP_ACLK_HZ && (pclk_div < 0x7));
  367. rk_clrsetreg(&cru->clksel_con[14],
  368. PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK |
  369. ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK,
  370. pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
  371. hclk_div << HCLK_PERIHP_DIV_CON_SHIFT |
  372. ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT |
  373. aclk_div << ACLK_PERIHP_DIV_CON_SHIFT);
  374. /* configure perilp0 aclk, hclk, pclk */
  375. aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1;
  376. assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
  377. hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1;
  378. assert((hclk_div + 1) * PERILP0_HCLK_HZ ==
  379. PERILP0_ACLK_HZ && (hclk_div < 0x4));
  380. pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1;
  381. assert((pclk_div + 1) * PERILP0_PCLK_HZ ==
  382. PERILP0_ACLK_HZ && (pclk_div < 0x7));
  383. rk_clrsetreg(&cru->clksel_con[23],
  384. PCLK_PERILP0_DIV_CON_MASK | HCLK_PERILP0_DIV_CON_MASK |
  385. ACLK_PERILP0_PLL_SEL_MASK | ACLK_PERILP0_DIV_CON_MASK,
  386. pclk_div << PCLK_PERILP0_DIV_CON_SHIFT |
  387. hclk_div << HCLK_PERILP0_DIV_CON_SHIFT |
  388. ACLK_PERILP0_PLL_SEL_GPLL << ACLK_PERILP0_PLL_SEL_SHIFT |
  389. aclk_div << ACLK_PERILP0_DIV_CON_SHIFT);
  390. /* perilp1 hclk select gpll as source */
  391. hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1;
  392. assert((hclk_div + 1) * PERILP1_HCLK_HZ ==
  393. GPLL_HZ && (hclk_div < 0x1f));
  394. pclk_div = PERILP1_HCLK_HZ / PERILP1_HCLK_HZ - 1;
  395. assert((pclk_div + 1) * PERILP1_HCLK_HZ ==
  396. PERILP1_HCLK_HZ && (hclk_div < 0x7));
  397. rk_clrsetreg(&cru->clksel_con[25],
  398. PCLK_PERILP1_DIV_CON_MASK | HCLK_PERILP1_DIV_CON_MASK |
  399. HCLK_PERILP1_PLL_SEL_MASK,
  400. pclk_div << PCLK_PERILP1_DIV_CON_SHIFT |
  401. hclk_div << HCLK_PERILP1_DIV_CON_SHIFT |
  402. HCLK_PERILP1_PLL_SEL_GPLL << HCLK_PERILP1_PLL_SEL_SHIFT);
  403. }
  404. #endif
  405. void rk3399_configure_cpu(struct rk3399_cru *cru,
  406. enum apll_l_frequencies apll_l_freq)
  407. {
  408. u32 aclkm_div;
  409. u32 pclk_dbg_div;
  410. u32 atclk_div;
  411. rkclk_set_pll(&cru->apll_l_con[0], apll_l_cfgs[apll_l_freq]);
  412. aclkm_div = APLL_HZ / ACLKM_CORE_HZ - 1;
  413. assert((aclkm_div + 1) * ACLKM_CORE_HZ == APLL_HZ &&
  414. aclkm_div < 0x1f);
  415. pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ - 1;
  416. assert((pclk_dbg_div + 1) * PCLK_DBG_HZ == APLL_HZ &&
  417. pclk_dbg_div < 0x1f);
  418. atclk_div = APLL_HZ / ATCLK_CORE_HZ - 1;
  419. assert((atclk_div + 1) * ATCLK_CORE_HZ == APLL_HZ &&
  420. atclk_div < 0x1f);
  421. rk_clrsetreg(&cru->clksel_con[0],
  422. ACLKM_CORE_L_DIV_CON_MASK | CLK_CORE_L_PLL_SEL_MASK |
  423. CLK_CORE_L_DIV_MASK,
  424. aclkm_div << ACLKM_CORE_L_DIV_CON_SHIFT |
  425. CLK_CORE_L_PLL_SEL_ALPLL << CLK_CORE_L_PLL_SEL_SHIFT |
  426. 0 << CLK_CORE_L_DIV_SHIFT);
  427. rk_clrsetreg(&cru->clksel_con[1],
  428. PCLK_DBG_L_DIV_MASK | ATCLK_CORE_L_DIV_MASK,
  429. pclk_dbg_div << PCLK_DBG_L_DIV_SHIFT |
  430. atclk_div << ATCLK_CORE_L_DIV_SHIFT);
  431. }
  432. #define I2C_CLK_REG_MASK(bus) \
  433. (I2C_DIV_CON_MASK << \
  434. CLK_I2C ##bus## _DIV_CON_SHIFT | \
  435. CLK_I2C_PLL_SEL_MASK << \
  436. CLK_I2C ##bus## _PLL_SEL_SHIFT)
  437. #define I2C_CLK_REG_VALUE(bus, clk_div) \
  438. ((clk_div - 1) << \
  439. CLK_I2C ##bus## _DIV_CON_SHIFT | \
  440. CLK_I2C_PLL_SEL_GPLL << \
  441. CLK_I2C ##bus## _PLL_SEL_SHIFT)
  442. #define I2C_CLK_DIV_VALUE(con, bus) \
  443. (con >> CLK_I2C ##bus## _DIV_CON_SHIFT) & \
  444. I2C_DIV_CON_MASK;
  445. #define I2C_PMUCLK_REG_MASK(bus) \
  446. (I2C_DIV_CON_MASK << \
  447. CLK_I2C ##bus## _DIV_CON_SHIFT)
  448. #define I2C_PMUCLK_REG_VALUE(bus, clk_div) \
  449. ((clk_div - 1) << \
  450. CLK_I2C ##bus## _DIV_CON_SHIFT)
  451. static ulong rk3399_i2c_get_clk(struct rk3399_cru *cru, ulong clk_id)
  452. {
  453. u32 div, con;
  454. switch (clk_id) {
  455. case SCLK_I2C1:
  456. con = readl(&cru->clksel_con[61]);
  457. div = I2C_CLK_DIV_VALUE(con, 1);
  458. break;
  459. case SCLK_I2C2:
  460. con = readl(&cru->clksel_con[62]);
  461. div = I2C_CLK_DIV_VALUE(con, 2);
  462. break;
  463. case SCLK_I2C3:
  464. con = readl(&cru->clksel_con[63]);
  465. div = I2C_CLK_DIV_VALUE(con, 3);
  466. break;
  467. case SCLK_I2C5:
  468. con = readl(&cru->clksel_con[61]);
  469. div = I2C_CLK_DIV_VALUE(con, 5);
  470. break;
  471. case SCLK_I2C6:
  472. con = readl(&cru->clksel_con[62]);
  473. div = I2C_CLK_DIV_VALUE(con, 6);
  474. break;
  475. case SCLK_I2C7:
  476. con = readl(&cru->clksel_con[63]);
  477. div = I2C_CLK_DIV_VALUE(con, 7);
  478. break;
  479. default:
  480. printf("do not support this i2c bus\n");
  481. return -EINVAL;
  482. }
  483. return DIV_TO_RATE(GPLL_HZ, div);
  484. }
  485. static ulong rk3399_i2c_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
  486. {
  487. int src_clk_div;
  488. /* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll*/
  489. src_clk_div = GPLL_HZ / hz;
  490. assert(src_clk_div - 1 < 127);
  491. switch (clk_id) {
  492. case SCLK_I2C1:
  493. rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(1),
  494. I2C_CLK_REG_VALUE(1, src_clk_div));
  495. break;
  496. case SCLK_I2C2:
  497. rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(2),
  498. I2C_CLK_REG_VALUE(2, src_clk_div));
  499. break;
  500. case SCLK_I2C3:
  501. rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(3),
  502. I2C_CLK_REG_VALUE(3, src_clk_div));
  503. break;
  504. case SCLK_I2C5:
  505. rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(5),
  506. I2C_CLK_REG_VALUE(5, src_clk_div));
  507. break;
  508. case SCLK_I2C6:
  509. rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(6),
  510. I2C_CLK_REG_VALUE(6, src_clk_div));
  511. break;
  512. case SCLK_I2C7:
  513. rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(7),
  514. I2C_CLK_REG_VALUE(7, src_clk_div));
  515. break;
  516. default:
  517. printf("do not support this i2c bus\n");
  518. return -EINVAL;
  519. }
  520. return rk3399_i2c_get_clk(cru, clk_id);
  521. }
  522. /*
  523. * RK3399 SPI clocks have a common divider-width (7 bits) and a single bit
  524. * to select either CPLL or GPLL as the clock-parent. The location within
  525. * the enclosing CLKSEL_CON (i.e. div_shift and sel_shift) are variable.
  526. */
  527. struct spi_clkreg {
  528. uint8_t reg; /* CLKSEL_CON[reg] register in CRU */
  529. uint8_t div_shift;
  530. uint8_t sel_shift;
  531. };
  532. /*
  533. * The entries are numbered relative to their offset from SCLK_SPI0.
  534. *
  535. * Note that SCLK_SPI3 (which is configured via PMUCRU and requires different
  536. * logic is not supported).
  537. */
  538. static const struct spi_clkreg spi_clkregs[] = {
  539. [0] = { .reg = 59,
  540. .div_shift = CLK_SPI0_PLL_DIV_CON_SHIFT,
  541. .sel_shift = CLK_SPI0_PLL_SEL_SHIFT, },
  542. [1] = { .reg = 59,
  543. .div_shift = CLK_SPI1_PLL_DIV_CON_SHIFT,
  544. .sel_shift = CLK_SPI1_PLL_SEL_SHIFT, },
  545. [2] = { .reg = 60,
  546. .div_shift = CLK_SPI2_PLL_DIV_CON_SHIFT,
  547. .sel_shift = CLK_SPI2_PLL_SEL_SHIFT, },
  548. [3] = { .reg = 60,
  549. .div_shift = CLK_SPI4_PLL_DIV_CON_SHIFT,
  550. .sel_shift = CLK_SPI4_PLL_SEL_SHIFT, },
  551. [4] = { .reg = 58,
  552. .div_shift = CLK_SPI5_PLL_DIV_CON_SHIFT,
  553. .sel_shift = CLK_SPI5_PLL_SEL_SHIFT, },
  554. };
  555. static inline u32 extract_bits(u32 val, unsigned width, unsigned shift)
  556. {
  557. return (val >> shift) & ((1 << width) - 1);
  558. }
  559. static ulong rk3399_spi_get_clk(struct rk3399_cru *cru, ulong clk_id)
  560. {
  561. const struct spi_clkreg *spiclk = NULL;
  562. u32 div, val;
  563. switch (clk_id) {
  564. case SCLK_SPI0 ... SCLK_SPI5:
  565. spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
  566. break;
  567. default:
  568. error("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
  569. return -EINVAL;
  570. }
  571. val = readl(&cru->clksel_con[spiclk->reg]);
  572. div = extract_bits(val, CLK_SPI_PLL_DIV_CON_WIDTH, spiclk->div_shift);
  573. return DIV_TO_RATE(GPLL_HZ, div);
  574. }
  575. static ulong rk3399_spi_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
  576. {
  577. const struct spi_clkreg *spiclk = NULL;
  578. int src_clk_div;
  579. src_clk_div = DIV_ROUND_UP(GPLL_HZ, hz) - 1;
  580. assert(src_clk_div < 128);
  581. switch (clk_id) {
  582. case SCLK_SPI1 ... SCLK_SPI5:
  583. spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
  584. break;
  585. default:
  586. error("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
  587. return -EINVAL;
  588. }
  589. rk_clrsetreg(&cru->clksel_con[spiclk->reg],
  590. ((CLK_SPI_PLL_DIV_CON_MASK << spiclk->div_shift) |
  591. (CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)),
  592. ((src_clk_div << spiclk->div_shift) |
  593. (CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)));
  594. return rk3399_spi_get_clk(cru, clk_id);
  595. }
  596. static ulong rk3399_vop_set_clk(struct rk3399_cru *cru, ulong clk_id, u32 hz)
  597. {
  598. struct pll_div vpll_config = {0};
  599. int aclk_vop = 198*MHz;
  600. void *aclkreg_addr, *dclkreg_addr;
  601. u32 div;
  602. switch (clk_id) {
  603. case DCLK_VOP0:
  604. aclkreg_addr = &cru->clksel_con[47];
  605. dclkreg_addr = &cru->clksel_con[49];
  606. break;
  607. case DCLK_VOP1:
  608. aclkreg_addr = &cru->clksel_con[48];
  609. dclkreg_addr = &cru->clksel_con[50];
  610. break;
  611. default:
  612. return -EINVAL;
  613. }
  614. /* vop aclk source clk: cpll */
  615. div = CPLL_HZ / aclk_vop;
  616. assert(div - 1 < 32);
  617. rk_clrsetreg(aclkreg_addr,
  618. ACLK_VOP_PLL_SEL_MASK | ACLK_VOP_DIV_CON_MASK,
  619. ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT |
  620. (div - 1) << ACLK_VOP_DIV_CON_SHIFT);
  621. /* vop dclk source from vpll, and equals to vpll(means div == 1) */
  622. if (pll_para_config(hz, &vpll_config))
  623. return -1;
  624. rkclk_set_pll(&cru->vpll_con[0], &vpll_config);
  625. rk_clrsetreg(dclkreg_addr,
  626. DCLK_VOP_DCLK_SEL_MASK | DCLK_VOP_PLL_SEL_MASK|
  627. DCLK_VOP_DIV_CON_MASK,
  628. DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT |
  629. DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT |
  630. (1 - 1) << DCLK_VOP_DIV_CON_SHIFT);
  631. return hz;
  632. }
  633. static ulong rk3399_mmc_get_clk(struct rk3399_cru *cru, uint clk_id)
  634. {
  635. u32 div, con;
  636. switch (clk_id) {
  637. case HCLK_SDMMC:
  638. case SCLK_SDMMC:
  639. con = readl(&cru->clksel_con[16]);
  640. /* dwmmc controller have internal div 2 */
  641. div = 2;
  642. break;
  643. case SCLK_EMMC:
  644. con = readl(&cru->clksel_con[21]);
  645. div = 1;
  646. break;
  647. default:
  648. return -EINVAL;
  649. }
  650. div *= (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT;
  651. if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT
  652. == CLK_EMMC_PLL_SEL_24M)
  653. return DIV_TO_RATE(OSC_HZ, div);
  654. else
  655. return DIV_TO_RATE(GPLL_HZ, div);
  656. }
  657. static ulong rk3399_mmc_set_clk(struct rk3399_cru *cru,
  658. ulong clk_id, ulong set_rate)
  659. {
  660. int src_clk_div;
  661. int aclk_emmc = 198*MHz;
  662. switch (clk_id) {
  663. case HCLK_SDMMC:
  664. case SCLK_SDMMC:
  665. /* Select clk_sdmmc source from GPLL by default */
  666. /* mmc clock defaulg div 2 internal, provide double in cru */
  667. src_clk_div = DIV_ROUND_UP(GPLL_HZ / 2, set_rate);
  668. if (src_clk_div > 128) {
  669. /* use 24MHz source for 400KHz clock */
  670. src_clk_div = DIV_ROUND_UP(OSC_HZ / 2, set_rate);
  671. assert(src_clk_div - 1 < 128);
  672. rk_clrsetreg(&cru->clksel_con[16],
  673. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  674. CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT |
  675. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  676. } else {
  677. rk_clrsetreg(&cru->clksel_con[16],
  678. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  679. CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
  680. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  681. }
  682. break;
  683. case SCLK_EMMC:
  684. /* Select aclk_emmc source from GPLL */
  685. src_clk_div = DIV_ROUND_UP(GPLL_HZ , aclk_emmc);
  686. assert(src_clk_div - 1 < 32);
  687. rk_clrsetreg(&cru->clksel_con[21],
  688. ACLK_EMMC_PLL_SEL_MASK | ACLK_EMMC_DIV_CON_MASK,
  689. ACLK_EMMC_PLL_SEL_GPLL << ACLK_EMMC_PLL_SEL_SHIFT |
  690. (src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT);
  691. /* Select clk_emmc source from GPLL too */
  692. src_clk_div = DIV_ROUND_UP(GPLL_HZ, set_rate);
  693. assert(src_clk_div - 1 < 128);
  694. rk_clrsetreg(&cru->clksel_con[22],
  695. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  696. CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
  697. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  698. break;
  699. default:
  700. return -EINVAL;
  701. }
  702. return rk3399_mmc_get_clk(cru, clk_id);
  703. }
  704. #define PMUSGRF_DDR_RGN_CON16 0xff330040
  705. static ulong rk3399_ddr_set_clk(struct rk3399_cru *cru,
  706. ulong set_rate)
  707. {
  708. struct pll_div dpll_cfg;
  709. /* IC ECO bug, need to set this register */
  710. writel(0xc000c000, PMUSGRF_DDR_RGN_CON16);
  711. /* clk_ddrc == DPLL = 24MHz / refdiv * fbdiv / postdiv1 / postdiv2 */
  712. switch (set_rate) {
  713. case 200*MHz:
  714. dpll_cfg = (struct pll_div)
  715. {.refdiv = 1, .fbdiv = 50, .postdiv1 = 6, .postdiv2 = 1};
  716. break;
  717. case 300*MHz:
  718. dpll_cfg = (struct pll_div)
  719. {.refdiv = 2, .fbdiv = 100, .postdiv1 = 4, .postdiv2 = 1};
  720. break;
  721. case 666*MHz:
  722. dpll_cfg = (struct pll_div)
  723. {.refdiv = 2, .fbdiv = 111, .postdiv1 = 2, .postdiv2 = 1};
  724. break;
  725. case 800*MHz:
  726. dpll_cfg = (struct pll_div)
  727. {.refdiv = 1, .fbdiv = 100, .postdiv1 = 3, .postdiv2 = 1};
  728. break;
  729. case 933*MHz:
  730. dpll_cfg = (struct pll_div)
  731. {.refdiv = 1, .fbdiv = 116, .postdiv1 = 3, .postdiv2 = 1};
  732. break;
  733. default:
  734. error("Unsupported SDRAM frequency!,%ld\n", set_rate);
  735. }
  736. rkclk_set_pll(&cru->dpll_con[0], &dpll_cfg);
  737. return set_rate;
  738. }
  739. static ulong rk3399_clk_get_rate(struct clk *clk)
  740. {
  741. struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
  742. ulong rate = 0;
  743. switch (clk->id) {
  744. case 0 ... 63:
  745. return 0;
  746. case HCLK_SDMMC:
  747. case SCLK_SDMMC:
  748. case SCLK_EMMC:
  749. rate = rk3399_mmc_get_clk(priv->cru, clk->id);
  750. break;
  751. case SCLK_I2C1:
  752. case SCLK_I2C2:
  753. case SCLK_I2C3:
  754. case SCLK_I2C5:
  755. case SCLK_I2C6:
  756. case SCLK_I2C7:
  757. rate = rk3399_i2c_get_clk(priv->cru, clk->id);
  758. break;
  759. case SCLK_SPI0...SCLK_SPI5:
  760. rate = rk3399_spi_get_clk(priv->cru, clk->id);
  761. break;
  762. case SCLK_UART0:
  763. case SCLK_UART2:
  764. return 24000000;
  765. break;
  766. case PCLK_HDMI_CTRL:
  767. break;
  768. case DCLK_VOP0:
  769. case DCLK_VOP1:
  770. break;
  771. case PCLK_EFUSE1024NS:
  772. break;
  773. default:
  774. return -ENOENT;
  775. }
  776. return rate;
  777. }
  778. static ulong rk3399_clk_set_rate(struct clk *clk, ulong rate)
  779. {
  780. struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
  781. ulong ret = 0;
  782. switch (clk->id) {
  783. case 0 ... 63:
  784. return 0;
  785. case HCLK_SDMMC:
  786. case SCLK_SDMMC:
  787. case SCLK_EMMC:
  788. ret = rk3399_mmc_set_clk(priv->cru, clk->id, rate);
  789. break;
  790. case SCLK_MAC:
  791. /* nothing to do, as this is an external clock */
  792. ret = rate;
  793. break;
  794. case SCLK_I2C1:
  795. case SCLK_I2C2:
  796. case SCLK_I2C3:
  797. case SCLK_I2C5:
  798. case SCLK_I2C6:
  799. case SCLK_I2C7:
  800. ret = rk3399_i2c_set_clk(priv->cru, clk->id, rate);
  801. break;
  802. case SCLK_SPI0...SCLK_SPI5:
  803. ret = rk3399_spi_set_clk(priv->cru, clk->id, rate);
  804. break;
  805. case PCLK_HDMI_CTRL:
  806. case PCLK_VIO_GRF:
  807. /* the PCLK gates for video are enabled by default */
  808. break;
  809. case DCLK_VOP0:
  810. case DCLK_VOP1:
  811. ret = rk3399_vop_set_clk(priv->cru, clk->id, rate);
  812. break;
  813. case SCLK_DDRCLK:
  814. ret = rk3399_ddr_set_clk(priv->cru, rate);
  815. break;
  816. case PCLK_EFUSE1024NS:
  817. break;
  818. default:
  819. return -ENOENT;
  820. }
  821. return ret;
  822. }
  823. static struct clk_ops rk3399_clk_ops = {
  824. .get_rate = rk3399_clk_get_rate,
  825. .set_rate = rk3399_clk_set_rate,
  826. };
  827. static int rk3399_clk_probe(struct udevice *dev)
  828. {
  829. #ifdef CONFIG_SPL_BUILD
  830. struct rk3399_clk_priv *priv = dev_get_priv(dev);
  831. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  832. struct rk3399_clk_plat *plat = dev_get_platdata(dev);
  833. priv->cru = map_sysmem(plat->dtd.reg[0], plat->dtd.reg[1]);
  834. #endif
  835. rkclk_init(priv->cru);
  836. #endif
  837. return 0;
  838. }
  839. static int rk3399_clk_ofdata_to_platdata(struct udevice *dev)
  840. {
  841. #if !CONFIG_IS_ENABLED(OF_PLATDATA)
  842. struct rk3399_clk_priv *priv = dev_get_priv(dev);
  843. priv->cru = (struct rk3399_cru *)devfdt_get_addr(dev);
  844. #endif
  845. return 0;
  846. }
  847. static int rk3399_clk_bind(struct udevice *dev)
  848. {
  849. int ret;
  850. /* The reset driver does not have a device node, so bind it here */
  851. ret = device_bind_driver(gd->dm_root, "rk3399_sysreset", "reset", &dev);
  852. if (ret)
  853. printf("Warning: No RK3399 reset driver: ret=%d\n", ret);
  854. return 0;
  855. }
  856. static const struct udevice_id rk3399_clk_ids[] = {
  857. { .compatible = "rockchip,rk3399-cru" },
  858. { }
  859. };
  860. U_BOOT_DRIVER(clk_rk3399) = {
  861. .name = "rockchip_rk3399_cru",
  862. .id = UCLASS_CLK,
  863. .of_match = rk3399_clk_ids,
  864. .priv_auto_alloc_size = sizeof(struct rk3399_clk_priv),
  865. .ofdata_to_platdata = rk3399_clk_ofdata_to_platdata,
  866. .ops = &rk3399_clk_ops,
  867. .bind = rk3399_clk_bind,
  868. .probe = rk3399_clk_probe,
  869. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  870. .platdata_auto_alloc_size = sizeof(struct rk3399_clk_plat),
  871. #endif
  872. };
  873. static ulong rk3399_i2c_get_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id)
  874. {
  875. u32 div, con;
  876. switch (clk_id) {
  877. case SCLK_I2C0_PMU:
  878. con = readl(&pmucru->pmucru_clksel[2]);
  879. div = I2C_CLK_DIV_VALUE(con, 0);
  880. break;
  881. case SCLK_I2C4_PMU:
  882. con = readl(&pmucru->pmucru_clksel[3]);
  883. div = I2C_CLK_DIV_VALUE(con, 4);
  884. break;
  885. case SCLK_I2C8_PMU:
  886. con = readl(&pmucru->pmucru_clksel[2]);
  887. div = I2C_CLK_DIV_VALUE(con, 8);
  888. break;
  889. default:
  890. printf("do not support this i2c bus\n");
  891. return -EINVAL;
  892. }
  893. return DIV_TO_RATE(PPLL_HZ, div);
  894. }
  895. static ulong rk3399_i2c_set_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id,
  896. uint hz)
  897. {
  898. int src_clk_div;
  899. src_clk_div = PPLL_HZ / hz;
  900. assert(src_clk_div - 1 < 127);
  901. switch (clk_id) {
  902. case SCLK_I2C0_PMU:
  903. rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(0),
  904. I2C_PMUCLK_REG_VALUE(0, src_clk_div));
  905. break;
  906. case SCLK_I2C4_PMU:
  907. rk_clrsetreg(&pmucru->pmucru_clksel[3], I2C_PMUCLK_REG_MASK(4),
  908. I2C_PMUCLK_REG_VALUE(4, src_clk_div));
  909. break;
  910. case SCLK_I2C8_PMU:
  911. rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(8),
  912. I2C_PMUCLK_REG_VALUE(8, src_clk_div));
  913. break;
  914. default:
  915. printf("do not support this i2c bus\n");
  916. return -EINVAL;
  917. }
  918. return DIV_TO_RATE(PPLL_HZ, src_clk_div);
  919. }
  920. static ulong rk3399_pwm_get_clk(struct rk3399_pmucru *pmucru)
  921. {
  922. u32 div, con;
  923. /* PWM closk rate is same as pclk_pmu */
  924. con = readl(&pmucru->pmucru_clksel[0]);
  925. div = con & PMU_PCLK_DIV_CON_MASK;
  926. return DIV_TO_RATE(PPLL_HZ, div);
  927. }
  928. static ulong rk3399_pmuclk_get_rate(struct clk *clk)
  929. {
  930. struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
  931. ulong rate = 0;
  932. switch (clk->id) {
  933. case PCLK_RKPWM_PMU:
  934. rate = rk3399_pwm_get_clk(priv->pmucru);
  935. break;
  936. case SCLK_I2C0_PMU:
  937. case SCLK_I2C4_PMU:
  938. case SCLK_I2C8_PMU:
  939. rate = rk3399_i2c_get_pmuclk(priv->pmucru, clk->id);
  940. break;
  941. default:
  942. return -ENOENT;
  943. }
  944. return rate;
  945. }
  946. static ulong rk3399_pmuclk_set_rate(struct clk *clk, ulong rate)
  947. {
  948. struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
  949. ulong ret = 0;
  950. switch (clk->id) {
  951. case SCLK_I2C0_PMU:
  952. case SCLK_I2C4_PMU:
  953. case SCLK_I2C8_PMU:
  954. ret = rk3399_i2c_set_pmuclk(priv->pmucru, clk->id, rate);
  955. break;
  956. default:
  957. return -ENOENT;
  958. }
  959. return ret;
  960. }
  961. static struct clk_ops rk3399_pmuclk_ops = {
  962. .get_rate = rk3399_pmuclk_get_rate,
  963. .set_rate = rk3399_pmuclk_set_rate,
  964. };
  965. #ifndef CONFIG_SPL_BUILD
  966. static void pmuclk_init(struct rk3399_pmucru *pmucru)
  967. {
  968. u32 pclk_div;
  969. /* configure pmu pll(ppll) */
  970. rkclk_set_pll(&pmucru->ppll_con[0], &ppll_init_cfg);
  971. /* configure pmu pclk */
  972. pclk_div = PPLL_HZ / PMU_PCLK_HZ - 1;
  973. rk_clrsetreg(&pmucru->pmucru_clksel[0],
  974. PMU_PCLK_DIV_CON_MASK,
  975. pclk_div << PMU_PCLK_DIV_CON_SHIFT);
  976. }
  977. #endif
  978. static int rk3399_pmuclk_probe(struct udevice *dev)
  979. {
  980. #if CONFIG_IS_ENABLED(OF_PLATDATA) || !defined(CONFIG_SPL_BUILD)
  981. struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
  982. #endif
  983. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  984. struct rk3399_pmuclk_plat *plat = dev_get_platdata(dev);
  985. priv->pmucru = map_sysmem(plat->dtd.reg[0], plat->dtd.reg[1]);
  986. #endif
  987. #ifndef CONFIG_SPL_BUILD
  988. pmuclk_init(priv->pmucru);
  989. #endif
  990. return 0;
  991. }
  992. static int rk3399_pmuclk_ofdata_to_platdata(struct udevice *dev)
  993. {
  994. #if !CONFIG_IS_ENABLED(OF_PLATDATA)
  995. struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
  996. priv->pmucru = (struct rk3399_pmucru *)devfdt_get_addr(dev);
  997. #endif
  998. return 0;
  999. }
  1000. static const struct udevice_id rk3399_pmuclk_ids[] = {
  1001. { .compatible = "rockchip,rk3399-pmucru" },
  1002. { }
  1003. };
  1004. U_BOOT_DRIVER(rockchip_rk3399_pmuclk) = {
  1005. .name = "rockchip_rk3399_pmucru",
  1006. .id = UCLASS_CLK,
  1007. .of_match = rk3399_pmuclk_ids,
  1008. .priv_auto_alloc_size = sizeof(struct rk3399_pmuclk_priv),
  1009. .ofdata_to_platdata = rk3399_pmuclk_ofdata_to_platdata,
  1010. .ops = &rk3399_pmuclk_ops,
  1011. .probe = rk3399_pmuclk_probe,
  1012. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  1013. .platdata_auto_alloc_size = sizeof(struct rk3399_pmuclk_plat),
  1014. #endif
  1015. };