board.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. /*
  2. * board.c
  3. *
  4. * Board functions for TI AM335X based boards
  5. *
  6. * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
  7. *
  8. * SPDX-License-Identifier: GPL-2.0+
  9. */
  10. #include <common.h>
  11. #include <dm.h>
  12. #include <errno.h>
  13. #include <spl.h>
  14. #include <serial.h>
  15. #include <asm/arch/cpu.h>
  16. #include <asm/arch/hardware.h>
  17. #include <asm/arch/omap.h>
  18. #include <asm/arch/ddr_defs.h>
  19. #include <asm/arch/clock.h>
  20. #include <asm/arch/clk_synthesizer.h>
  21. #include <asm/arch/gpio.h>
  22. #include <asm/arch/mmc_host_def.h>
  23. #include <asm/arch/sys_proto.h>
  24. #include <asm/arch/mem.h>
  25. #include <asm/io.h>
  26. #include <asm/emif.h>
  27. #include <asm/gpio.h>
  28. #include <asm/omap_common.h>
  29. #include <asm/omap_sec_common.h>
  30. #include <asm/omap_mmc.h>
  31. #include <i2c.h>
  32. #include <miiphy.h>
  33. #include <cpsw.h>
  34. #include <power/tps65217.h>
  35. #include <power/tps65910.h>
  36. #include <environment.h>
  37. #include <watchdog.h>
  38. #include <environment.h>
  39. #include "../common/board_detect.h"
  40. #include "board.h"
  41. DECLARE_GLOBAL_DATA_PTR;
  42. /* GPIO that controls power to DDR on EVM-SK */
  43. #define GPIO_TO_PIN(bank, gpio) (32 * (bank) + (gpio))
  44. #define GPIO_DDR_VTT_EN GPIO_TO_PIN(0, 7)
  45. #define ICE_GPIO_DDR_VTT_EN GPIO_TO_PIN(0, 18)
  46. #define GPIO_PR1_MII_CTRL GPIO_TO_PIN(3, 4)
  47. #define GPIO_MUX_MII_CTRL GPIO_TO_PIN(3, 10)
  48. #define GPIO_FET_SWITCH_CTRL GPIO_TO_PIN(0, 7)
  49. #define GPIO_PHY_RESET GPIO_TO_PIN(2, 5)
  50. #define GPIO_ETH0_MODE GPIO_TO_PIN(0, 11)
  51. #define GPIO_ETH1_MODE GPIO_TO_PIN(1, 26)
  52. static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
  53. #define GPIO0_RISINGDETECT (AM33XX_GPIO0_BASE + OMAP_GPIO_RISINGDETECT)
  54. #define GPIO1_RISINGDETECT (AM33XX_GPIO1_BASE + OMAP_GPIO_RISINGDETECT)
  55. #define GPIO0_IRQSTATUS1 (AM33XX_GPIO0_BASE + OMAP_GPIO_IRQSTATUS1)
  56. #define GPIO1_IRQSTATUS1 (AM33XX_GPIO1_BASE + OMAP_GPIO_IRQSTATUS1)
  57. #define GPIO0_IRQSTATUSRAW (AM33XX_GPIO0_BASE + 0x024)
  58. #define GPIO1_IRQSTATUSRAW (AM33XX_GPIO1_BASE + 0x024)
  59. /*
  60. * Read header information from EEPROM into global structure.
  61. */
  62. #ifdef CONFIG_TI_I2C_BOARD_DETECT
  63. void do_board_detect(void)
  64. {
  65. enable_i2c0_pin_mux();
  66. i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, CONFIG_SYS_OMAP24_I2C_SLAVE);
  67. if (ti_i2c_eeprom_am_get(CONFIG_EEPROM_BUS_ADDRESS,
  68. CONFIG_EEPROM_CHIP_ADDRESS))
  69. printf("ti_i2c_eeprom_init failed\n");
  70. }
  71. #endif
  72. #ifndef CONFIG_DM_SERIAL
  73. struct serial_device *default_serial_console(void)
  74. {
  75. if (board_is_icev2())
  76. return &eserial4_device;
  77. else
  78. return &eserial1_device;
  79. }
  80. #endif
  81. #ifndef CONFIG_SKIP_LOWLEVEL_INIT
  82. static const struct ddr_data ddr2_data = {
  83. .datardsratio0 = MT47H128M16RT25E_RD_DQS,
  84. .datafwsratio0 = MT47H128M16RT25E_PHY_FIFO_WE,
  85. .datawrsratio0 = MT47H128M16RT25E_PHY_WR_DATA,
  86. };
  87. static const struct cmd_control ddr2_cmd_ctrl_data = {
  88. .cmd0csratio = MT47H128M16RT25E_RATIO,
  89. .cmd1csratio = MT47H128M16RT25E_RATIO,
  90. .cmd2csratio = MT47H128M16RT25E_RATIO,
  91. };
  92. static const struct emif_regs ddr2_emif_reg_data = {
  93. .sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
  94. .ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
  95. .sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
  96. .sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
  97. .sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
  98. .emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
  99. };
  100. static const struct emif_regs ddr2_evm_emif_reg_data = {
  101. .sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
  102. .ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
  103. .sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
  104. .sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
  105. .sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
  106. .ocp_config = EMIF_OCP_CONFIG_AM335X_EVM,
  107. .emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
  108. };
  109. static const struct ddr_data ddr3_data = {
  110. .datardsratio0 = MT41J128MJT125_RD_DQS,
  111. .datawdsratio0 = MT41J128MJT125_WR_DQS,
  112. .datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE,
  113. .datawrsratio0 = MT41J128MJT125_PHY_WR_DATA,
  114. };
  115. static const struct ddr_data ddr3_beagleblack_data = {
  116. .datardsratio0 = MT41K256M16HA125E_RD_DQS,
  117. .datawdsratio0 = MT41K256M16HA125E_WR_DQS,
  118. .datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
  119. .datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
  120. };
  121. static const struct ddr_data ddr3_evm_data = {
  122. .datardsratio0 = MT41J512M8RH125_RD_DQS,
  123. .datawdsratio0 = MT41J512M8RH125_WR_DQS,
  124. .datafwsratio0 = MT41J512M8RH125_PHY_FIFO_WE,
  125. .datawrsratio0 = MT41J512M8RH125_PHY_WR_DATA,
  126. };
  127. static const struct ddr_data ddr3_icev2_data = {
  128. .datardsratio0 = MT41J128MJT125_RD_DQS_400MHz,
  129. .datawdsratio0 = MT41J128MJT125_WR_DQS_400MHz,
  130. .datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE_400MHz,
  131. .datawrsratio0 = MT41J128MJT125_PHY_WR_DATA_400MHz,
  132. };
  133. static const struct cmd_control ddr3_cmd_ctrl_data = {
  134. .cmd0csratio = MT41J128MJT125_RATIO,
  135. .cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT,
  136. .cmd1csratio = MT41J128MJT125_RATIO,
  137. .cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT,
  138. .cmd2csratio = MT41J128MJT125_RATIO,
  139. .cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT,
  140. };
  141. static const struct cmd_control ddr3_beagleblack_cmd_ctrl_data = {
  142. .cmd0csratio = MT41K256M16HA125E_RATIO,
  143. .cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
  144. .cmd1csratio = MT41K256M16HA125E_RATIO,
  145. .cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
  146. .cmd2csratio = MT41K256M16HA125E_RATIO,
  147. .cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
  148. };
  149. static const struct cmd_control ddr3_evm_cmd_ctrl_data = {
  150. .cmd0csratio = MT41J512M8RH125_RATIO,
  151. .cmd0iclkout = MT41J512M8RH125_INVERT_CLKOUT,
  152. .cmd1csratio = MT41J512M8RH125_RATIO,
  153. .cmd1iclkout = MT41J512M8RH125_INVERT_CLKOUT,
  154. .cmd2csratio = MT41J512M8RH125_RATIO,
  155. .cmd2iclkout = MT41J512M8RH125_INVERT_CLKOUT,
  156. };
  157. static const struct cmd_control ddr3_icev2_cmd_ctrl_data = {
  158. .cmd0csratio = MT41J128MJT125_RATIO_400MHz,
  159. .cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
  160. .cmd1csratio = MT41J128MJT125_RATIO_400MHz,
  161. .cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
  162. .cmd2csratio = MT41J128MJT125_RATIO_400MHz,
  163. .cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
  164. };
  165. static struct emif_regs ddr3_emif_reg_data = {
  166. .sdram_config = MT41J128MJT125_EMIF_SDCFG,
  167. .ref_ctrl = MT41J128MJT125_EMIF_SDREF,
  168. .sdram_tim1 = MT41J128MJT125_EMIF_TIM1,
  169. .sdram_tim2 = MT41J128MJT125_EMIF_TIM2,
  170. .sdram_tim3 = MT41J128MJT125_EMIF_TIM3,
  171. .zq_config = MT41J128MJT125_ZQ_CFG,
  172. .emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY |
  173. PHY_EN_DYN_PWRDN,
  174. };
  175. static struct emif_regs ddr3_beagleblack_emif_reg_data = {
  176. .sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
  177. .ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
  178. .sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
  179. .sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
  180. .sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
  181. .ocp_config = EMIF_OCP_CONFIG_BEAGLEBONE_BLACK,
  182. .zq_config = MT41K256M16HA125E_ZQ_CFG,
  183. .emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY,
  184. };
  185. static struct emif_regs ddr3_evm_emif_reg_data = {
  186. .sdram_config = MT41J512M8RH125_EMIF_SDCFG,
  187. .ref_ctrl = MT41J512M8RH125_EMIF_SDREF,
  188. .sdram_tim1 = MT41J512M8RH125_EMIF_TIM1,
  189. .sdram_tim2 = MT41J512M8RH125_EMIF_TIM2,
  190. .sdram_tim3 = MT41J512M8RH125_EMIF_TIM3,
  191. .ocp_config = EMIF_OCP_CONFIG_AM335X_EVM,
  192. .zq_config = MT41J512M8RH125_ZQ_CFG,
  193. .emif_ddr_phy_ctlr_1 = MT41J512M8RH125_EMIF_READ_LATENCY |
  194. PHY_EN_DYN_PWRDN,
  195. };
  196. static struct emif_regs ddr3_icev2_emif_reg_data = {
  197. .sdram_config = MT41J128MJT125_EMIF_SDCFG_400MHz,
  198. .ref_ctrl = MT41J128MJT125_EMIF_SDREF_400MHz,
  199. .sdram_tim1 = MT41J128MJT125_EMIF_TIM1_400MHz,
  200. .sdram_tim2 = MT41J128MJT125_EMIF_TIM2_400MHz,
  201. .sdram_tim3 = MT41J128MJT125_EMIF_TIM3_400MHz,
  202. .zq_config = MT41J128MJT125_ZQ_CFG_400MHz,
  203. .emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY_400MHz |
  204. PHY_EN_DYN_PWRDN,
  205. };
  206. #ifdef CONFIG_SPL_OS_BOOT
  207. int spl_start_uboot(void)
  208. {
  209. /* break into full u-boot on 'c' */
  210. if (serial_tstc() && serial_getc() == 'c')
  211. return 1;
  212. #ifdef CONFIG_SPL_ENV_SUPPORT
  213. env_init();
  214. env_load();
  215. if (env_get_yesno("boot_os") != 1)
  216. return 1;
  217. #endif
  218. return 0;
  219. }
  220. #endif
  221. const struct dpll_params *get_dpll_ddr_params(void)
  222. {
  223. int ind = get_sys_clk_index();
  224. if (board_is_evm_sk())
  225. return &dpll_ddr3_303MHz[ind];
  226. else if (board_is_bone_lt() || board_is_icev2())
  227. return &dpll_ddr3_400MHz[ind];
  228. else if (board_is_evm_15_or_later())
  229. return &dpll_ddr3_303MHz[ind];
  230. else
  231. return &dpll_ddr2_266MHz[ind];
  232. }
  233. static u8 bone_not_connected_to_ac_power(void)
  234. {
  235. if (board_is_bone()) {
  236. uchar pmic_status_reg;
  237. if (tps65217_reg_read(TPS65217_STATUS,
  238. &pmic_status_reg))
  239. return 1;
  240. if (!(pmic_status_reg & TPS65217_PWR_SRC_AC_BITMASK)) {
  241. puts("No AC power, switching to default OPP\n");
  242. return 1;
  243. }
  244. }
  245. return 0;
  246. }
  247. const struct dpll_params *get_dpll_mpu_params(void)
  248. {
  249. int ind = get_sys_clk_index();
  250. int freq = am335x_get_efuse_mpu_max_freq(cdev);
  251. if (bone_not_connected_to_ac_power())
  252. freq = MPUPLL_M_600;
  253. if (board_is_bone_lt())
  254. freq = MPUPLL_M_1000;
  255. switch (freq) {
  256. case MPUPLL_M_1000:
  257. return &dpll_mpu_opp[ind][5];
  258. case MPUPLL_M_800:
  259. return &dpll_mpu_opp[ind][4];
  260. case MPUPLL_M_720:
  261. return &dpll_mpu_opp[ind][3];
  262. case MPUPLL_M_600:
  263. return &dpll_mpu_opp[ind][2];
  264. case MPUPLL_M_500:
  265. return &dpll_mpu_opp100;
  266. case MPUPLL_M_300:
  267. return &dpll_mpu_opp[ind][0];
  268. }
  269. return &dpll_mpu_opp[ind][0];
  270. }
  271. static void scale_vcores_bone(int freq)
  272. {
  273. int usb_cur_lim, mpu_vdd;
  274. /*
  275. * Only perform PMIC configurations if board rev > A1
  276. * on Beaglebone White
  277. */
  278. if (board_is_bone() && !strncmp(board_ti_get_rev(), "00A1", 4))
  279. return;
  280. if (i2c_probe(TPS65217_CHIP_PM))
  281. return;
  282. /*
  283. * On Beaglebone White we need to ensure we have AC power
  284. * before increasing the frequency.
  285. */
  286. if (bone_not_connected_to_ac_power())
  287. freq = MPUPLL_M_600;
  288. /*
  289. * Override what we have detected since we know if we have
  290. * a Beaglebone Black it supports 1GHz.
  291. */
  292. if (board_is_bone_lt())
  293. freq = MPUPLL_M_1000;
  294. switch (freq) {
  295. case MPUPLL_M_1000:
  296. mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
  297. usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1800MA;
  298. break;
  299. case MPUPLL_M_800:
  300. mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
  301. usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
  302. break;
  303. case MPUPLL_M_720:
  304. mpu_vdd = TPS65217_DCDC_VOLT_SEL_1200MV;
  305. usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
  306. break;
  307. case MPUPLL_M_600:
  308. case MPUPLL_M_500:
  309. case MPUPLL_M_300:
  310. default:
  311. mpu_vdd = TPS65217_DCDC_VOLT_SEL_1100MV;
  312. usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
  313. break;
  314. }
  315. if (tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
  316. TPS65217_POWER_PATH,
  317. usb_cur_lim,
  318. TPS65217_USB_INPUT_CUR_LIMIT_MASK))
  319. puts("tps65217_reg_write failure\n");
  320. /* Set DCDC3 (CORE) voltage to 1.10V */
  321. if (tps65217_voltage_update(TPS65217_DEFDCDC3,
  322. TPS65217_DCDC_VOLT_SEL_1100MV)) {
  323. puts("tps65217_voltage_update failure\n");
  324. return;
  325. }
  326. /* Set DCDC2 (MPU) voltage */
  327. if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
  328. puts("tps65217_voltage_update failure\n");
  329. return;
  330. }
  331. /*
  332. * Set LDO3, LDO4 output voltage to 3.3V for Beaglebone.
  333. * Set LDO3 to 1.8V and LDO4 to 3.3V for Beaglebone Black.
  334. */
  335. if (board_is_bone()) {
  336. if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
  337. TPS65217_DEFLS1,
  338. TPS65217_LDO_VOLTAGE_OUT_3_3,
  339. TPS65217_LDO_MASK))
  340. puts("tps65217_reg_write failure\n");
  341. } else {
  342. if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
  343. TPS65217_DEFLS1,
  344. TPS65217_LDO_VOLTAGE_OUT_1_8,
  345. TPS65217_LDO_MASK))
  346. puts("tps65217_reg_write failure\n");
  347. }
  348. if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
  349. TPS65217_DEFLS2,
  350. TPS65217_LDO_VOLTAGE_OUT_3_3,
  351. TPS65217_LDO_MASK))
  352. puts("tps65217_reg_write failure\n");
  353. }
  354. void scale_vcores_generic(int freq)
  355. {
  356. int sil_rev, mpu_vdd;
  357. /*
  358. * The GP EVM, IDK and EVM SK use a TPS65910 PMIC. For all
  359. * MPU frequencies we support we use a CORE voltage of
  360. * 1.10V. For MPU voltage we need to switch based on
  361. * the frequency we are running at.
  362. */
  363. if (i2c_probe(TPS65910_CTRL_I2C_ADDR))
  364. return;
  365. /*
  366. * Depending on MPU clock and PG we will need a different
  367. * VDD to drive at that speed.
  368. */
  369. sil_rev = readl(&cdev->deviceid) >> 28;
  370. mpu_vdd = am335x_get_tps65910_mpu_vdd(sil_rev, freq);
  371. /* Tell the TPS65910 to use i2c */
  372. tps65910_set_i2c_control();
  373. /* First update MPU voltage. */
  374. if (tps65910_voltage_update(MPU, mpu_vdd))
  375. return;
  376. /* Second, update the CORE voltage. */
  377. if (tps65910_voltage_update(CORE, TPS65910_OP_REG_SEL_1_1_0))
  378. return;
  379. }
  380. void gpi2c_init(void)
  381. {
  382. /* When needed to be invoked prior to BSS initialization */
  383. static bool first_time = true;
  384. if (first_time) {
  385. enable_i2c0_pin_mux();
  386. i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED,
  387. CONFIG_SYS_OMAP24_I2C_SLAVE);
  388. first_time = false;
  389. }
  390. }
  391. void scale_vcores(void)
  392. {
  393. int freq;
  394. gpi2c_init();
  395. freq = am335x_get_efuse_mpu_max_freq(cdev);
  396. if (board_is_beaglebonex())
  397. scale_vcores_bone(freq);
  398. else
  399. scale_vcores_generic(freq);
  400. }
  401. void set_uart_mux_conf(void)
  402. {
  403. #if CONFIG_CONS_INDEX == 1
  404. enable_uart0_pin_mux();
  405. #elif CONFIG_CONS_INDEX == 2
  406. enable_uart1_pin_mux();
  407. #elif CONFIG_CONS_INDEX == 3
  408. enable_uart2_pin_mux();
  409. #elif CONFIG_CONS_INDEX == 4
  410. enable_uart3_pin_mux();
  411. #elif CONFIG_CONS_INDEX == 5
  412. enable_uart4_pin_mux();
  413. #elif CONFIG_CONS_INDEX == 6
  414. enable_uart5_pin_mux();
  415. #endif
  416. }
  417. void set_mux_conf_regs(void)
  418. {
  419. enable_board_pin_mux();
  420. }
  421. const struct ctrl_ioregs ioregs_evmsk = {
  422. .cm0ioctl = MT41J128MJT125_IOCTRL_VALUE,
  423. .cm1ioctl = MT41J128MJT125_IOCTRL_VALUE,
  424. .cm2ioctl = MT41J128MJT125_IOCTRL_VALUE,
  425. .dt0ioctl = MT41J128MJT125_IOCTRL_VALUE,
  426. .dt1ioctl = MT41J128MJT125_IOCTRL_VALUE,
  427. };
  428. const struct ctrl_ioregs ioregs_bonelt = {
  429. .cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
  430. .cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
  431. .cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
  432. .dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
  433. .dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
  434. };
  435. const struct ctrl_ioregs ioregs_evm15 = {
  436. .cm0ioctl = MT41J512M8RH125_IOCTRL_VALUE,
  437. .cm1ioctl = MT41J512M8RH125_IOCTRL_VALUE,
  438. .cm2ioctl = MT41J512M8RH125_IOCTRL_VALUE,
  439. .dt0ioctl = MT41J512M8RH125_IOCTRL_VALUE,
  440. .dt1ioctl = MT41J512M8RH125_IOCTRL_VALUE,
  441. };
  442. const struct ctrl_ioregs ioregs = {
  443. .cm0ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
  444. .cm1ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
  445. .cm2ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
  446. .dt0ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
  447. .dt1ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
  448. };
  449. void sdram_init(void)
  450. {
  451. if (board_is_evm_sk()) {
  452. /*
  453. * EVM SK 1.2A and later use gpio0_7 to enable DDR3.
  454. * This is safe enough to do on older revs.
  455. */
  456. gpio_request(GPIO_DDR_VTT_EN, "ddr_vtt_en");
  457. gpio_direction_output(GPIO_DDR_VTT_EN, 1);
  458. }
  459. if (board_is_icev2()) {
  460. gpio_request(ICE_GPIO_DDR_VTT_EN, "ddr_vtt_en");
  461. gpio_direction_output(ICE_GPIO_DDR_VTT_EN, 1);
  462. }
  463. if (board_is_evm_sk())
  464. config_ddr(303, &ioregs_evmsk, &ddr3_data,
  465. &ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0);
  466. else if (board_is_bone_lt())
  467. config_ddr(400, &ioregs_bonelt,
  468. &ddr3_beagleblack_data,
  469. &ddr3_beagleblack_cmd_ctrl_data,
  470. &ddr3_beagleblack_emif_reg_data, 0);
  471. else if (board_is_evm_15_or_later())
  472. config_ddr(303, &ioregs_evm15, &ddr3_evm_data,
  473. &ddr3_evm_cmd_ctrl_data, &ddr3_evm_emif_reg_data, 0);
  474. else if (board_is_icev2())
  475. config_ddr(400, &ioregs_evmsk, &ddr3_icev2_data,
  476. &ddr3_icev2_cmd_ctrl_data, &ddr3_icev2_emif_reg_data,
  477. 0);
  478. else if (board_is_gp_evm())
  479. config_ddr(266, &ioregs, &ddr2_data,
  480. &ddr2_cmd_ctrl_data, &ddr2_evm_emif_reg_data, 0);
  481. else
  482. config_ddr(266, &ioregs, &ddr2_data,
  483. &ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0);
  484. }
  485. #endif
  486. #if !defined(CONFIG_SPL_BUILD) || \
  487. (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
  488. static void request_and_set_gpio(int gpio, char *name, int val)
  489. {
  490. int ret;
  491. ret = gpio_request(gpio, name);
  492. if (ret < 0) {
  493. printf("%s: Unable to request %s\n", __func__, name);
  494. return;
  495. }
  496. ret = gpio_direction_output(gpio, 0);
  497. if (ret < 0) {
  498. printf("%s: Unable to set %s as output\n", __func__, name);
  499. goto err_free_gpio;
  500. }
  501. gpio_set_value(gpio, val);
  502. return;
  503. err_free_gpio:
  504. gpio_free(gpio);
  505. }
  506. #define REQUEST_AND_SET_GPIO(N) request_and_set_gpio(N, #N, 1);
  507. #define REQUEST_AND_CLR_GPIO(N) request_and_set_gpio(N, #N, 0);
  508. /**
  509. * RMII mode on ICEv2 board needs 50MHz clock. Given the clock
  510. * synthesizer With a capacitor of 18pF, and 25MHz input clock cycle
  511. * PLL1 gives an output of 100MHz. So, configuring the div2/3 as 2 to
  512. * give 50MHz output for Eth0 and 1.
  513. */
  514. static struct clk_synth cdce913_data = {
  515. .id = 0x81,
  516. .capacitor = 0x90,
  517. .mux = 0x6d,
  518. .pdiv2 = 0x2,
  519. .pdiv3 = 0x2,
  520. };
  521. #endif
  522. /*
  523. * Basic board specific setup. Pinmux has been handled already.
  524. */
  525. int board_init(void)
  526. {
  527. #if defined(CONFIG_HW_WATCHDOG)
  528. hw_watchdog_init();
  529. #endif
  530. gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
  531. #if defined(CONFIG_NOR) || defined(CONFIG_NAND)
  532. gpmc_init();
  533. #endif
  534. #if !defined(CONFIG_SPL_BUILD) || \
  535. (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
  536. if (board_is_icev2()) {
  537. int rv;
  538. u32 reg;
  539. REQUEST_AND_SET_GPIO(GPIO_PR1_MII_CTRL);
  540. /* Make J19 status available on GPIO1_26 */
  541. REQUEST_AND_CLR_GPIO(GPIO_MUX_MII_CTRL);
  542. REQUEST_AND_SET_GPIO(GPIO_FET_SWITCH_CTRL);
  543. /*
  544. * Both ports can be set as RMII-CPSW or MII-PRU-ETH using
  545. * jumpers near the port. Read the jumper value and set
  546. * the pinmux, external mux and PHY clock accordingly.
  547. * As jumper line is overridden by PHY RX_DV pin immediately
  548. * after bootstrap (power-up/reset), we need to sample
  549. * it during PHY reset using GPIO rising edge detection.
  550. */
  551. REQUEST_AND_SET_GPIO(GPIO_PHY_RESET);
  552. /* Enable rising edge IRQ on GPIO0_11 and GPIO 1_26 */
  553. reg = readl(GPIO0_RISINGDETECT) | BIT(11);
  554. writel(reg, GPIO0_RISINGDETECT);
  555. reg = readl(GPIO1_RISINGDETECT) | BIT(26);
  556. writel(reg, GPIO1_RISINGDETECT);
  557. /* Reset PHYs to capture the Jumper setting */
  558. gpio_set_value(GPIO_PHY_RESET, 0);
  559. udelay(2); /* PHY datasheet states 1uS min. */
  560. gpio_set_value(GPIO_PHY_RESET, 1);
  561. reg = readl(GPIO0_IRQSTATUSRAW) & BIT(11);
  562. if (reg) {
  563. writel(reg, GPIO0_IRQSTATUS1); /* clear irq */
  564. /* RMII mode */
  565. printf("ETH0, CPSW\n");
  566. } else {
  567. /* MII mode */
  568. printf("ETH0, PRU\n");
  569. cdce913_data.pdiv3 = 4; /* 25MHz PHY clk */
  570. }
  571. reg = readl(GPIO1_IRQSTATUSRAW) & BIT(26);
  572. if (reg) {
  573. writel(reg, GPIO1_IRQSTATUS1); /* clear irq */
  574. /* RMII mode */
  575. printf("ETH1, CPSW\n");
  576. gpio_set_value(GPIO_MUX_MII_CTRL, 1);
  577. } else {
  578. /* MII mode */
  579. printf("ETH1, PRU\n");
  580. cdce913_data.pdiv2 = 4; /* 25MHz PHY clk */
  581. }
  582. /* disable rising edge IRQs */
  583. reg = readl(GPIO0_RISINGDETECT) & ~BIT(11);
  584. writel(reg, GPIO0_RISINGDETECT);
  585. reg = readl(GPIO1_RISINGDETECT) & ~BIT(26);
  586. writel(reg, GPIO1_RISINGDETECT);
  587. rv = setup_clock_synthesizer(&cdce913_data);
  588. if (rv) {
  589. printf("Clock synthesizer setup failed %d\n", rv);
  590. return rv;
  591. }
  592. /* reset PHYs */
  593. gpio_set_value(GPIO_PHY_RESET, 0);
  594. udelay(2); /* PHY datasheet states 1uS min. */
  595. gpio_set_value(GPIO_PHY_RESET, 1);
  596. }
  597. #endif
  598. return 0;
  599. }
  600. #ifdef CONFIG_BOARD_LATE_INIT
  601. int board_late_init(void)
  602. {
  603. #if !defined(CONFIG_SPL_BUILD)
  604. uint8_t mac_addr[6];
  605. uint32_t mac_hi, mac_lo;
  606. #endif
  607. #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
  608. char *name = NULL;
  609. if (board_is_bone_lt()) {
  610. /* BeagleBoard.org BeagleBone Black Wireless: */
  611. if (!strncmp(board_ti_get_rev(), "BWA", 3)) {
  612. name = "BBBW";
  613. }
  614. /* SeeedStudio BeagleBone Green Wireless */
  615. if (!strncmp(board_ti_get_rev(), "GW1", 3)) {
  616. name = "BBGW";
  617. }
  618. /* BeagleBoard.org BeagleBone Blue */
  619. if (!strncmp(board_ti_get_rev(), "BLA", 3)) {
  620. name = "BBBL";
  621. }
  622. }
  623. if (board_is_bbg1())
  624. name = "BBG1";
  625. set_board_info_env(name);
  626. /*
  627. * Default FIT boot on HS devices. Non FIT images are not allowed
  628. * on HS devices.
  629. */
  630. if (get_device_type() == HS_DEVICE)
  631. env_set("boot_fit", "1");
  632. #endif
  633. #if !defined(CONFIG_SPL_BUILD)
  634. /* try reading mac address from efuse */
  635. mac_lo = readl(&cdev->macid0l);
  636. mac_hi = readl(&cdev->macid0h);
  637. mac_addr[0] = mac_hi & 0xFF;
  638. mac_addr[1] = (mac_hi & 0xFF00) >> 8;
  639. mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
  640. mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
  641. mac_addr[4] = mac_lo & 0xFF;
  642. mac_addr[5] = (mac_lo & 0xFF00) >> 8;
  643. if (!env_get("ethaddr")) {
  644. printf("<ethaddr> not set. Validating first E-fuse MAC\n");
  645. if (is_valid_ethaddr(mac_addr))
  646. eth_env_set_enetaddr("ethaddr", mac_addr);
  647. }
  648. mac_lo = readl(&cdev->macid1l);
  649. mac_hi = readl(&cdev->macid1h);
  650. mac_addr[0] = mac_hi & 0xFF;
  651. mac_addr[1] = (mac_hi & 0xFF00) >> 8;
  652. mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
  653. mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
  654. mac_addr[4] = mac_lo & 0xFF;
  655. mac_addr[5] = (mac_lo & 0xFF00) >> 8;
  656. if (!env_get("eth1addr")) {
  657. if (is_valid_ethaddr(mac_addr))
  658. eth_env_set_enetaddr("eth1addr", mac_addr);
  659. }
  660. #endif
  661. return 0;
  662. }
  663. #endif
  664. #ifndef CONFIG_DM_ETH
  665. #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
  666. (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
  667. static void cpsw_control(int enabled)
  668. {
  669. /* VTP can be added here */
  670. return;
  671. }
  672. static struct cpsw_slave_data cpsw_slaves[] = {
  673. {
  674. .slave_reg_ofs = 0x208,
  675. .sliver_reg_ofs = 0xd80,
  676. .phy_addr = 0,
  677. },
  678. {
  679. .slave_reg_ofs = 0x308,
  680. .sliver_reg_ofs = 0xdc0,
  681. .phy_addr = 1,
  682. },
  683. };
  684. static struct cpsw_platform_data cpsw_data = {
  685. .mdio_base = CPSW_MDIO_BASE,
  686. .cpsw_base = CPSW_BASE,
  687. .mdio_div = 0xff,
  688. .channels = 8,
  689. .cpdma_reg_ofs = 0x800,
  690. .slaves = 1,
  691. .slave_data = cpsw_slaves,
  692. .ale_reg_ofs = 0xd00,
  693. .ale_entries = 1024,
  694. .host_port_reg_ofs = 0x108,
  695. .hw_stats_reg_ofs = 0x900,
  696. .bd_ram_ofs = 0x2000,
  697. .mac_control = (1 << 5),
  698. .control = cpsw_control,
  699. .host_port_num = 0,
  700. .version = CPSW_CTRL_VERSION_2,
  701. };
  702. #endif
  703. #if ((defined(CONFIG_SPL_ETH_SUPPORT) || defined(CONFIG_SPL_USBETH_SUPPORT)) &&\
  704. defined(CONFIG_SPL_BUILD)) || \
  705. ((defined(CONFIG_DRIVER_TI_CPSW) || \
  706. defined(CONFIG_USB_ETHER) && defined(CONFIG_MUSB_GADGET)) && \
  707. !defined(CONFIG_SPL_BUILD))
  708. /*
  709. * This function will:
  710. * Read the eFuse for MAC addresses, and set ethaddr/eth1addr/usbnet_devaddr
  711. * in the environment
  712. * Perform fixups to the PHY present on certain boards. We only need this
  713. * function in:
  714. * - SPL with either CPSW or USB ethernet support
  715. * - Full U-Boot, with either CPSW or USB ethernet
  716. * Build in only these cases to avoid warnings about unused variables
  717. * when we build an SPL that has neither option but full U-Boot will.
  718. */
  719. int board_eth_init(bd_t *bis)
  720. {
  721. int rv, n = 0;
  722. #if defined(CONFIG_USB_ETHER) && \
  723. (!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT))
  724. uint8_t mac_addr[6];
  725. uint32_t mac_hi, mac_lo;
  726. /*
  727. * use efuse mac address for USB ethernet as we know that
  728. * both CPSW and USB ethernet will never be active at the same time
  729. */
  730. mac_lo = readl(&cdev->macid0l);
  731. mac_hi = readl(&cdev->macid0h);
  732. mac_addr[0] = mac_hi & 0xFF;
  733. mac_addr[1] = (mac_hi & 0xFF00) >> 8;
  734. mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
  735. mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
  736. mac_addr[4] = mac_lo & 0xFF;
  737. mac_addr[5] = (mac_lo & 0xFF00) >> 8;
  738. #endif
  739. #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
  740. (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
  741. #ifdef CONFIG_DRIVER_TI_CPSW
  742. if (board_is_bone() || board_is_bone_lt() ||
  743. board_is_idk()) {
  744. writel(MII_MODE_ENABLE, &cdev->miisel);
  745. cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if =
  746. PHY_INTERFACE_MODE_MII;
  747. } else if (board_is_icev2()) {
  748. writel(RMII_MODE_ENABLE | RMII_CHIPCKL_ENABLE, &cdev->miisel);
  749. cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RMII;
  750. cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_RMII;
  751. cpsw_slaves[0].phy_addr = 1;
  752. cpsw_slaves[1].phy_addr = 3;
  753. } else {
  754. writel((RGMII_MODE_ENABLE | RGMII_INT_DELAY), &cdev->miisel);
  755. cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if =
  756. PHY_INTERFACE_MODE_RGMII;
  757. }
  758. rv = cpsw_register(&cpsw_data);
  759. if (rv < 0)
  760. printf("Error %d registering CPSW switch\n", rv);
  761. else
  762. n += rv;
  763. #endif
  764. /*
  765. *
  766. * CPSW RGMII Internal Delay Mode is not supported in all PVT
  767. * operating points. So we must set the TX clock delay feature
  768. * in the AR8051 PHY. Since we only support a single ethernet
  769. * device in U-Boot, we only do this for the first instance.
  770. */
  771. #define AR8051_PHY_DEBUG_ADDR_REG 0x1d
  772. #define AR8051_PHY_DEBUG_DATA_REG 0x1e
  773. #define AR8051_DEBUG_RGMII_CLK_DLY_REG 0x5
  774. #define AR8051_RGMII_TX_CLK_DLY 0x100
  775. if (board_is_evm_sk() || board_is_gp_evm()) {
  776. const char *devname;
  777. devname = miiphy_get_current_dev();
  778. miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_ADDR_REG,
  779. AR8051_DEBUG_RGMII_CLK_DLY_REG);
  780. miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_DATA_REG,
  781. AR8051_RGMII_TX_CLK_DLY);
  782. }
  783. #endif
  784. #if defined(CONFIG_USB_ETHER) && \
  785. (!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT))
  786. if (is_valid_ethaddr(mac_addr))
  787. eth_env_set_enetaddr("usbnet_devaddr", mac_addr);
  788. rv = usb_eth_initialize(bis);
  789. if (rv < 0)
  790. printf("Error %d registering USB_ETHER\n", rv);
  791. else
  792. n += rv;
  793. #endif
  794. return n;
  795. }
  796. #endif
  797. #endif /* CONFIG_DM_ETH */
  798. #ifdef CONFIG_SPL_LOAD_FIT
  799. int board_fit_config_name_match(const char *name)
  800. {
  801. if (board_is_gp_evm() && !strcmp(name, "am335x-evm"))
  802. return 0;
  803. else if (board_is_bone() && !strcmp(name, "am335x-bone"))
  804. return 0;
  805. else if (board_is_bone_lt() && !strcmp(name, "am335x-boneblack"))
  806. return 0;
  807. else if (board_is_evm_sk() && !strcmp(name, "am335x-evmsk"))
  808. return 0;
  809. else if (board_is_bbg1() && !strcmp(name, "am335x-bonegreen"))
  810. return 0;
  811. else if (board_is_icev2() && !strcmp(name, "am335x-icev2"))
  812. return 0;
  813. else
  814. return -1;
  815. }
  816. #endif
  817. #ifdef CONFIG_TI_SECURE_DEVICE
  818. void board_fit_image_post_process(void **p_image, size_t *p_size)
  819. {
  820. secure_boot_verify_image(p_image, p_size);
  821. }
  822. #endif
  823. #if !CONFIG_IS_ENABLED(OF_CONTROL)
  824. static const struct omap_hsmmc_plat am335x_mmc0_platdata = {
  825. .base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE,
  826. .cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_4BIT,
  827. .cfg.f_min = 400000,
  828. .cfg.f_max = 52000000,
  829. .cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195,
  830. .cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT,
  831. };
  832. U_BOOT_DEVICE(am335x_mmc0) = {
  833. .name = "omap_hsmmc",
  834. .platdata = &am335x_mmc0_platdata,
  835. };
  836. static const struct omap_hsmmc_plat am335x_mmc1_platdata = {
  837. .base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE,
  838. .cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_8BIT,
  839. .cfg.f_min = 400000,
  840. .cfg.f_max = 52000000,
  841. .cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195,
  842. .cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT,
  843. };
  844. U_BOOT_DEVICE(am335x_mmc1) = {
  845. .name = "omap_hsmmc",
  846. .platdata = &am335x_mmc1_platdata,
  847. };
  848. #endif