fsl_qspi.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124
  1. /*
  2. * Copyright 2013-2015 Freescale Semiconductor, Inc.
  3. *
  4. * Freescale Quad Serial Peripheral Interface (QSPI) driver
  5. *
  6. * SPDX-License-Identifier: GPL-2.0+
  7. */
  8. #include <common.h>
  9. #include <malloc.h>
  10. #include <spi.h>
  11. #include <asm/io.h>
  12. #include <linux/sizes.h>
  13. #include <dm.h>
  14. #include <errno.h>
  15. #include <watchdog.h>
  16. #include "fsl_qspi.h"
  17. DECLARE_GLOBAL_DATA_PTR;
  18. #define RX_BUFFER_SIZE 0x80
  19. #ifdef CONFIG_MX6SX
  20. #define TX_BUFFER_SIZE 0x200
  21. #else
  22. #define TX_BUFFER_SIZE 0x40
  23. #endif
  24. #define OFFSET_BITS_MASK GENMASK(23, 0)
  25. #define FLASH_STATUS_WEL 0x02
  26. /* SEQID */
  27. #define SEQID_WREN 1
  28. #define SEQID_FAST_READ 2
  29. #define SEQID_RDSR 3
  30. #define SEQID_SE 4
  31. #define SEQID_CHIP_ERASE 5
  32. #define SEQID_PP 6
  33. #define SEQID_RDID 7
  34. #define SEQID_BE_4K 8
  35. #ifdef CONFIG_SPI_FLASH_BAR
  36. #define SEQID_BRRD 9
  37. #define SEQID_BRWR 10
  38. #define SEQID_RDEAR 11
  39. #define SEQID_WREAR 12
  40. #endif
  41. /* QSPI CMD */
  42. #define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
  43. #define QSPI_CMD_RDSR 0x05 /* Read status register */
  44. #define QSPI_CMD_WREN 0x06 /* Write enable */
  45. #define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
  46. #define QSPI_CMD_BE_4K 0x20 /* 4K erase */
  47. #define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
  48. #define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
  49. #define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */
  50. /* Used for Micron, winbond and Macronix flashes */
  51. #define QSPI_CMD_WREAR 0xc5 /* EAR register write */
  52. #define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
  53. /* Used for Spansion flashes only. */
  54. #define QSPI_CMD_BRRD 0x16 /* Bank register read */
  55. #define QSPI_CMD_BRWR 0x17 /* Bank register write */
  56. /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
  57. #define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
  58. #define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
  59. #define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
  60. /* fsl_qspi_platdata flags */
  61. #define QSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0)
  62. /* default SCK frequency, unit: HZ */
  63. #define FSL_QSPI_DEFAULT_SCK_FREQ 50000000
  64. /* QSPI max chipselect signals number */
  65. #define FSL_QSPI_MAX_CHIPSELECT_NUM 4
  66. #ifdef CONFIG_DM_SPI
  67. /**
  68. * struct fsl_qspi_platdata - platform data for Freescale QSPI
  69. *
  70. * @flags: Flags for QSPI QSPI_FLAG_...
  71. * @speed_hz: Default SCK frequency
  72. * @reg_base: Base address of QSPI registers
  73. * @amba_base: Base address of QSPI memory mapping
  74. * @amba_total_size: size of QSPI memory mapping
  75. * @flash_num: Number of active slave devices
  76. * @num_chipselect: Number of QSPI chipselect signals
  77. */
  78. struct fsl_qspi_platdata {
  79. u32 flags;
  80. u32 speed_hz;
  81. fdt_addr_t reg_base;
  82. fdt_addr_t amba_base;
  83. fdt_size_t amba_total_size;
  84. u32 flash_num;
  85. u32 num_chipselect;
  86. };
  87. #endif
  88. /**
  89. * struct fsl_qspi_priv - private data for Freescale QSPI
  90. *
  91. * @flags: Flags for QSPI QSPI_FLAG_...
  92. * @bus_clk: QSPI input clk frequency
  93. * @speed_hz: Default SCK frequency
  94. * @cur_seqid: current LUT table sequence id
  95. * @sf_addr: flash access offset
  96. * @amba_base: Base address of QSPI memory mapping of every CS
  97. * @amba_total_size: size of QSPI memory mapping
  98. * @cur_amba_base: Base address of QSPI memory mapping of current CS
  99. * @flash_num: Number of active slave devices
  100. * @num_chipselect: Number of QSPI chipselect signals
  101. * @regs: Point to QSPI register structure for I/O access
  102. */
  103. struct fsl_qspi_priv {
  104. u32 flags;
  105. u32 bus_clk;
  106. u32 speed_hz;
  107. u32 cur_seqid;
  108. u32 sf_addr;
  109. u32 amba_base[FSL_QSPI_MAX_CHIPSELECT_NUM];
  110. u32 amba_total_size;
  111. u32 cur_amba_base;
  112. u32 flash_num;
  113. u32 num_chipselect;
  114. struct fsl_qspi_regs *regs;
  115. };
  116. #ifndef CONFIG_DM_SPI
  117. struct fsl_qspi {
  118. struct spi_slave slave;
  119. struct fsl_qspi_priv priv;
  120. };
  121. #endif
  122. static u32 qspi_read32(u32 flags, u32 *addr)
  123. {
  124. return flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
  125. in_be32(addr) : in_le32(addr);
  126. }
  127. static void qspi_write32(u32 flags, u32 *addr, u32 val)
  128. {
  129. flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ?
  130. out_be32(addr, val) : out_le32(addr, val);
  131. }
  132. /* QSPI support swapping the flash read/write data
  133. * in hardware for LS102xA, but not for VF610 */
  134. static inline u32 qspi_endian_xchg(u32 data)
  135. {
  136. #ifdef CONFIG_VF610
  137. return swab32(data);
  138. #else
  139. return data;
  140. #endif
  141. }
  142. static void qspi_set_lut(struct fsl_qspi_priv *priv)
  143. {
  144. struct fsl_qspi_regs *regs = priv->regs;
  145. u32 lut_base;
  146. /* Unlock the LUT */
  147. qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
  148. qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_UNLOCK);
  149. /* Write Enable */
  150. lut_base = SEQID_WREN * 4;
  151. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
  152. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  153. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  154. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  155. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  156. /* Fast Read */
  157. lut_base = SEQID_FAST_READ * 4;
  158. #ifdef CONFIG_SPI_FLASH_BAR
  159. qspi_write32(priv->flags, &regs->lut[lut_base],
  160. OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
  161. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  162. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  163. #else
  164. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  165. qspi_write32(priv->flags, &regs->lut[lut_base],
  166. OPRND0(QSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
  167. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  168. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  169. else
  170. qspi_write32(priv->flags, &regs->lut[lut_base],
  171. OPRND0(QSPI_CMD_FAST_READ_4B) |
  172. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
  173. OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
  174. INSTR1(LUT_ADDR));
  175. #endif
  176. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  177. OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
  178. OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
  179. INSTR1(LUT_READ));
  180. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  181. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  182. /* Read Status */
  183. lut_base = SEQID_RDSR * 4;
  184. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
  185. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  186. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  187. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  188. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  189. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  190. /* Erase a sector */
  191. lut_base = SEQID_SE * 4;
  192. #ifdef CONFIG_SPI_FLASH_BAR
  193. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
  194. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  195. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  196. #else
  197. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  198. qspi_write32(priv->flags, &regs->lut[lut_base],
  199. OPRND0(QSPI_CMD_SE) | PAD0(LUT_PAD1) |
  200. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  201. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  202. else
  203. qspi_write32(priv->flags, &regs->lut[lut_base],
  204. OPRND0(QSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
  205. INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  206. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  207. #endif
  208. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  209. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  210. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  211. /* Erase the whole chip */
  212. lut_base = SEQID_CHIP_ERASE * 4;
  213. qspi_write32(priv->flags, &regs->lut[lut_base],
  214. OPRND0(QSPI_CMD_CHIP_ERASE) |
  215. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  216. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  217. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  218. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  219. /* Page Program */
  220. lut_base = SEQID_PP * 4;
  221. #ifdef CONFIG_SPI_FLASH_BAR
  222. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
  223. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  224. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  225. #else
  226. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  227. qspi_write32(priv->flags, &regs->lut[lut_base],
  228. OPRND0(QSPI_CMD_PP) | PAD0(LUT_PAD1) |
  229. INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  230. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  231. else
  232. qspi_write32(priv->flags, &regs->lut[lut_base],
  233. OPRND0(QSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
  234. INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  235. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  236. #endif
  237. #ifdef CONFIG_MX6SX
  238. /*
  239. * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
  240. * So, Use IDATSZ in IPCR to determine the size and here set 0.
  241. */
  242. qspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(0) |
  243. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  244. #else
  245. qspi_write32(priv->flags, &regs->lut[lut_base + 1],
  246. OPRND0(TX_BUFFER_SIZE) |
  247. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  248. #endif
  249. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  250. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  251. /* READ ID */
  252. lut_base = SEQID_RDID * 4;
  253. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
  254. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
  255. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  256. qspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
  257. qspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
  258. qspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
  259. /* SUB SECTOR 4K ERASE */
  260. lut_base = SEQID_BE_4K * 4;
  261. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
  262. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  263. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  264. #ifdef CONFIG_SPI_FLASH_BAR
  265. /*
  266. * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
  267. * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
  268. * initialization.
  269. */
  270. lut_base = SEQID_BRRD * 4;
  271. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
  272. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  273. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  274. lut_base = SEQID_BRWR * 4;
  275. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
  276. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  277. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  278. lut_base = SEQID_RDEAR * 4;
  279. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
  280. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  281. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  282. lut_base = SEQID_WREAR * 4;
  283. qspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
  284. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  285. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  286. #endif
  287. /* Lock the LUT */
  288. qspi_write32(priv->flags, &regs->lutkey, LUT_KEY_VALUE);
  289. qspi_write32(priv->flags, &regs->lckcr, QSPI_LCKCR_LOCK);
  290. }
  291. #if defined(CONFIG_SYS_FSL_QSPI_AHB)
  292. /*
  293. * If we have changed the content of the flash by writing or erasing,
  294. * we need to invalidate the AHB buffer. If we do not do so, we may read out
  295. * the wrong data. The spec tells us reset the AHB domain and Serial Flash
  296. * domain at the same time.
  297. */
  298. static inline void qspi_ahb_invalid(struct fsl_qspi_priv *priv)
  299. {
  300. struct fsl_qspi_regs *regs = priv->regs;
  301. u32 reg;
  302. reg = qspi_read32(priv->flags, &regs->mcr);
  303. reg |= QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK;
  304. qspi_write32(priv->flags, &regs->mcr, reg);
  305. /*
  306. * The minimum delay : 1 AHB + 2 SFCK clocks.
  307. * Delay 1 us is enough.
  308. */
  309. udelay(1);
  310. reg &= ~(QSPI_MCR_SWRSTHD_MASK | QSPI_MCR_SWRSTSD_MASK);
  311. qspi_write32(priv->flags, &regs->mcr, reg);
  312. }
  313. /* Read out the data from the AHB buffer. */
  314. static inline void qspi_ahb_read(struct fsl_qspi_priv *priv, u8 *rxbuf, int len)
  315. {
  316. struct fsl_qspi_regs *regs = priv->regs;
  317. u32 mcr_reg;
  318. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  319. qspi_write32(priv->flags, &regs->mcr,
  320. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  321. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  322. /* Read out the data directly from the AHB buffer. */
  323. memcpy(rxbuf, (u8 *)(priv->cur_amba_base + priv->sf_addr), len);
  324. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  325. }
  326. static void qspi_enable_ddr_mode(struct fsl_qspi_priv *priv)
  327. {
  328. u32 reg, reg2;
  329. struct fsl_qspi_regs *regs = priv->regs;
  330. reg = qspi_read32(priv->flags, &regs->mcr);
  331. /* Disable the module */
  332. qspi_write32(priv->flags, &regs->mcr, reg | QSPI_MCR_MDIS_MASK);
  333. /* Set the Sampling Register for DDR */
  334. reg2 = qspi_read32(priv->flags, &regs->smpr);
  335. reg2 &= ~QSPI_SMPR_DDRSMP_MASK;
  336. reg2 |= (2 << QSPI_SMPR_DDRSMP_SHIFT);
  337. qspi_write32(priv->flags, &regs->smpr, reg2);
  338. /* Enable the module again (enable the DDR too) */
  339. reg |= QSPI_MCR_DDR_EN_MASK;
  340. /* Enable bit 29 for imx6sx */
  341. reg |= BIT(29);
  342. qspi_write32(priv->flags, &regs->mcr, reg);
  343. }
  344. /*
  345. * There are two different ways to read out the data from the flash:
  346. * the "IP Command Read" and the "AHB Command Read".
  347. *
  348. * The IC guy suggests we use the "AHB Command Read" which is faster
  349. * then the "IP Command Read". (What's more is that there is a bug in
  350. * the "IP Command Read" in the Vybrid.)
  351. *
  352. * After we set up the registers for the "AHB Command Read", we can use
  353. * the memcpy to read the data directly. A "missed" access to the buffer
  354. * causes the controller to clear the buffer, and use the sequence pointed
  355. * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
  356. */
  357. static void qspi_init_ahb_read(struct fsl_qspi_priv *priv)
  358. {
  359. struct fsl_qspi_regs *regs = priv->regs;
  360. /* AHB configuration for access buffer 0/1/2 .*/
  361. qspi_write32(priv->flags, &regs->buf0cr, QSPI_BUFXCR_INVALID_MSTRID);
  362. qspi_write32(priv->flags, &regs->buf1cr, QSPI_BUFXCR_INVALID_MSTRID);
  363. qspi_write32(priv->flags, &regs->buf2cr, QSPI_BUFXCR_INVALID_MSTRID);
  364. qspi_write32(priv->flags, &regs->buf3cr, QSPI_BUF3CR_ALLMST_MASK |
  365. (0x80 << QSPI_BUF3CR_ADATSZ_SHIFT));
  366. /* We only use the buffer3 */
  367. qspi_write32(priv->flags, &regs->buf0ind, 0);
  368. qspi_write32(priv->flags, &regs->buf1ind, 0);
  369. qspi_write32(priv->flags, &regs->buf2ind, 0);
  370. /*
  371. * Set the default lut sequence for AHB Read.
  372. * Parallel mode is disabled.
  373. */
  374. qspi_write32(priv->flags, &regs->bfgencr,
  375. SEQID_FAST_READ << QSPI_BFGENCR_SEQID_SHIFT);
  376. /*Enable DDR Mode*/
  377. qspi_enable_ddr_mode(priv);
  378. }
  379. #endif
  380. #ifdef CONFIG_SPI_FLASH_BAR
  381. /* Bank register read/write, EAR register read/write */
  382. static void qspi_op_rdbank(struct fsl_qspi_priv *priv, u8 *rxbuf, u32 len)
  383. {
  384. struct fsl_qspi_regs *regs = priv->regs;
  385. u32 reg, mcr_reg, data, seqid;
  386. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  387. qspi_write32(priv->flags, &regs->mcr,
  388. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  389. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  390. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  391. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  392. if (priv->cur_seqid == QSPI_CMD_BRRD)
  393. seqid = SEQID_BRRD;
  394. else
  395. seqid = SEQID_RDEAR;
  396. qspi_write32(priv->flags, &regs->ipcr,
  397. (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
  398. /* Wait previous command complete */
  399. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  400. ;
  401. while (1) {
  402. reg = qspi_read32(priv->flags, &regs->rbsr);
  403. if (reg & QSPI_RBSR_RDBFL_MASK) {
  404. data = qspi_read32(priv->flags, &regs->rbdr[0]);
  405. data = qspi_endian_xchg(data);
  406. memcpy(rxbuf, &data, len);
  407. qspi_write32(priv->flags, &regs->mcr,
  408. qspi_read32(priv->flags, &regs->mcr) |
  409. QSPI_MCR_CLR_RXF_MASK);
  410. break;
  411. }
  412. }
  413. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  414. }
  415. #endif
  416. static void qspi_op_rdid(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
  417. {
  418. struct fsl_qspi_regs *regs = priv->regs;
  419. u32 mcr_reg, rbsr_reg, data, size;
  420. int i;
  421. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  422. qspi_write32(priv->flags, &regs->mcr,
  423. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  424. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  425. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  426. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  427. qspi_write32(priv->flags, &regs->ipcr,
  428. (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
  429. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  430. ;
  431. i = 0;
  432. while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
  433. rbsr_reg = qspi_read32(priv->flags, &regs->rbsr);
  434. if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
  435. data = qspi_read32(priv->flags, &regs->rbdr[i]);
  436. data = qspi_endian_xchg(data);
  437. size = (len < 4) ? len : 4;
  438. memcpy(rxbuf, &data, size);
  439. len -= size;
  440. rxbuf++;
  441. i++;
  442. }
  443. }
  444. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  445. }
  446. #ifndef CONFIG_SYS_FSL_QSPI_AHB
  447. /* If not use AHB read, read data from ip interface */
  448. static void qspi_op_read(struct fsl_qspi_priv *priv, u32 *rxbuf, u32 len)
  449. {
  450. struct fsl_qspi_regs *regs = priv->regs;
  451. u32 mcr_reg, data;
  452. int i, size;
  453. u32 to_or_from;
  454. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  455. qspi_write32(priv->flags, &regs->mcr,
  456. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  457. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  458. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  459. to_or_from = priv->sf_addr + priv->cur_amba_base;
  460. while (len > 0) {
  461. WATCHDOG_RESET();
  462. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  463. size = (len > RX_BUFFER_SIZE) ?
  464. RX_BUFFER_SIZE : len;
  465. qspi_write32(priv->flags, &regs->ipcr,
  466. (SEQID_FAST_READ << QSPI_IPCR_SEQID_SHIFT) |
  467. size);
  468. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  469. ;
  470. to_or_from += size;
  471. len -= size;
  472. i = 0;
  473. while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
  474. data = qspi_read32(priv->flags, &regs->rbdr[i]);
  475. data = qspi_endian_xchg(data);
  476. memcpy(rxbuf, &data, 4);
  477. rxbuf++;
  478. size -= 4;
  479. i++;
  480. }
  481. qspi_write32(priv->flags, &regs->mcr,
  482. qspi_read32(priv->flags, &regs->mcr) |
  483. QSPI_MCR_CLR_RXF_MASK);
  484. }
  485. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  486. }
  487. #endif
  488. static void qspi_op_write(struct fsl_qspi_priv *priv, u8 *txbuf, u32 len)
  489. {
  490. struct fsl_qspi_regs *regs = priv->regs;
  491. u32 mcr_reg, data, reg, status_reg, seqid;
  492. int i, size, tx_size;
  493. u32 to_or_from = 0;
  494. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  495. qspi_write32(priv->flags, &regs->mcr,
  496. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  497. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  498. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  499. status_reg = 0;
  500. while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
  501. WATCHDOG_RESET();
  502. qspi_write32(priv->flags, &regs->ipcr,
  503. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  504. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  505. ;
  506. qspi_write32(priv->flags, &regs->ipcr,
  507. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
  508. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  509. ;
  510. reg = qspi_read32(priv->flags, &regs->rbsr);
  511. if (reg & QSPI_RBSR_RDBFL_MASK) {
  512. status_reg = qspi_read32(priv->flags, &regs->rbdr[0]);
  513. status_reg = qspi_endian_xchg(status_reg);
  514. }
  515. qspi_write32(priv->flags, &regs->mcr,
  516. qspi_read32(priv->flags, &regs->mcr) |
  517. QSPI_MCR_CLR_RXF_MASK);
  518. }
  519. /* Default is page programming */
  520. seqid = SEQID_PP;
  521. #ifdef CONFIG_SPI_FLASH_BAR
  522. if (priv->cur_seqid == QSPI_CMD_BRWR)
  523. seqid = SEQID_BRWR;
  524. else if (priv->cur_seqid == QSPI_CMD_WREAR)
  525. seqid = SEQID_WREAR;
  526. #endif
  527. to_or_from = priv->sf_addr + priv->cur_amba_base;
  528. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  529. tx_size = (len > TX_BUFFER_SIZE) ?
  530. TX_BUFFER_SIZE : len;
  531. size = tx_size / 4;
  532. for (i = 0; i < size; i++) {
  533. memcpy(&data, txbuf, 4);
  534. data = qspi_endian_xchg(data);
  535. qspi_write32(priv->flags, &regs->tbdr, data);
  536. txbuf += 4;
  537. }
  538. size = tx_size % 4;
  539. if (size) {
  540. data = 0;
  541. memcpy(&data, txbuf, size);
  542. data = qspi_endian_xchg(data);
  543. qspi_write32(priv->flags, &regs->tbdr, data);
  544. }
  545. qspi_write32(priv->flags, &regs->ipcr,
  546. (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
  547. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  548. ;
  549. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  550. }
  551. static void qspi_op_rdsr(struct fsl_qspi_priv *priv, void *rxbuf, u32 len)
  552. {
  553. struct fsl_qspi_regs *regs = priv->regs;
  554. u32 mcr_reg, reg, data;
  555. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  556. qspi_write32(priv->flags, &regs->mcr,
  557. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  558. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  559. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  560. qspi_write32(priv->flags, &regs->sfar, priv->cur_amba_base);
  561. qspi_write32(priv->flags, &regs->ipcr,
  562. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
  563. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  564. ;
  565. while (1) {
  566. reg = qspi_read32(priv->flags, &regs->rbsr);
  567. if (reg & QSPI_RBSR_RDBFL_MASK) {
  568. data = qspi_read32(priv->flags, &regs->rbdr[0]);
  569. data = qspi_endian_xchg(data);
  570. memcpy(rxbuf, &data, len);
  571. qspi_write32(priv->flags, &regs->mcr,
  572. qspi_read32(priv->flags, &regs->mcr) |
  573. QSPI_MCR_CLR_RXF_MASK);
  574. break;
  575. }
  576. }
  577. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  578. }
  579. static void qspi_op_erase(struct fsl_qspi_priv *priv)
  580. {
  581. struct fsl_qspi_regs *regs = priv->regs;
  582. u32 mcr_reg;
  583. u32 to_or_from = 0;
  584. mcr_reg = qspi_read32(priv->flags, &regs->mcr);
  585. qspi_write32(priv->flags, &regs->mcr,
  586. QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  587. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  588. qspi_write32(priv->flags, &regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  589. to_or_from = priv->sf_addr + priv->cur_amba_base;
  590. qspi_write32(priv->flags, &regs->sfar, to_or_from);
  591. qspi_write32(priv->flags, &regs->ipcr,
  592. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  593. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  594. ;
  595. if (priv->cur_seqid == QSPI_CMD_SE) {
  596. qspi_write32(priv->flags, &regs->ipcr,
  597. (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
  598. } else if (priv->cur_seqid == QSPI_CMD_BE_4K) {
  599. qspi_write32(priv->flags, &regs->ipcr,
  600. (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
  601. }
  602. while (qspi_read32(priv->flags, &regs->sr) & QSPI_SR_BUSY_MASK)
  603. ;
  604. qspi_write32(priv->flags, &regs->mcr, mcr_reg);
  605. }
  606. int qspi_xfer(struct fsl_qspi_priv *priv, unsigned int bitlen,
  607. const void *dout, void *din, unsigned long flags)
  608. {
  609. u32 bytes = DIV_ROUND_UP(bitlen, 8);
  610. static u32 wr_sfaddr;
  611. u32 txbuf;
  612. if (dout) {
  613. if (flags & SPI_XFER_BEGIN) {
  614. priv->cur_seqid = *(u8 *)dout;
  615. memcpy(&txbuf, dout, 4);
  616. }
  617. if (flags == SPI_XFER_END) {
  618. priv->sf_addr = wr_sfaddr;
  619. qspi_op_write(priv, (u8 *)dout, bytes);
  620. return 0;
  621. }
  622. if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
  623. priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  624. } else if ((priv->cur_seqid == QSPI_CMD_SE) ||
  625. (priv->cur_seqid == QSPI_CMD_BE_4K)) {
  626. priv->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  627. qspi_op_erase(priv);
  628. } else if (priv->cur_seqid == QSPI_CMD_PP) {
  629. wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
  630. } else if ((priv->cur_seqid == QSPI_CMD_BRWR) ||
  631. (priv->cur_seqid == QSPI_CMD_WREAR)) {
  632. #ifdef CONFIG_SPI_FLASH_BAR
  633. wr_sfaddr = 0;
  634. #endif
  635. }
  636. }
  637. if (din) {
  638. if (priv->cur_seqid == QSPI_CMD_FAST_READ) {
  639. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  640. qspi_ahb_read(priv, din, bytes);
  641. #else
  642. qspi_op_read(priv, din, bytes);
  643. #endif
  644. } else if (priv->cur_seqid == QSPI_CMD_RDID)
  645. qspi_op_rdid(priv, din, bytes);
  646. else if (priv->cur_seqid == QSPI_CMD_RDSR)
  647. qspi_op_rdsr(priv, din, bytes);
  648. #ifdef CONFIG_SPI_FLASH_BAR
  649. else if ((priv->cur_seqid == QSPI_CMD_BRRD) ||
  650. (priv->cur_seqid == QSPI_CMD_RDEAR)) {
  651. priv->sf_addr = 0;
  652. qspi_op_rdbank(priv, din, bytes);
  653. }
  654. #endif
  655. }
  656. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  657. if ((priv->cur_seqid == QSPI_CMD_SE) ||
  658. (priv->cur_seqid == QSPI_CMD_PP) ||
  659. (priv->cur_seqid == QSPI_CMD_BE_4K) ||
  660. (priv->cur_seqid == QSPI_CMD_WREAR) ||
  661. (priv->cur_seqid == QSPI_CMD_BRWR))
  662. qspi_ahb_invalid(priv);
  663. #endif
  664. return 0;
  665. }
  666. void qspi_module_disable(struct fsl_qspi_priv *priv, u8 disable)
  667. {
  668. u32 mcr_val;
  669. mcr_val = qspi_read32(priv->flags, &priv->regs->mcr);
  670. if (disable)
  671. mcr_val |= QSPI_MCR_MDIS_MASK;
  672. else
  673. mcr_val &= ~QSPI_MCR_MDIS_MASK;
  674. qspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
  675. }
  676. void qspi_cfg_smpr(struct fsl_qspi_priv *priv, u32 clear_bits, u32 set_bits)
  677. {
  678. u32 smpr_val;
  679. smpr_val = qspi_read32(priv->flags, &priv->regs->smpr);
  680. smpr_val &= ~clear_bits;
  681. smpr_val |= set_bits;
  682. qspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
  683. }
  684. #ifndef CONFIG_DM_SPI
  685. static unsigned long spi_bases[] = {
  686. QSPI0_BASE_ADDR,
  687. #ifdef CONFIG_MX6SX
  688. QSPI1_BASE_ADDR,
  689. #endif
  690. };
  691. static unsigned long amba_bases[] = {
  692. QSPI0_AMBA_BASE,
  693. #ifdef CONFIG_MX6SX
  694. QSPI1_AMBA_BASE,
  695. #endif
  696. };
  697. static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
  698. {
  699. return container_of(slave, struct fsl_qspi, slave);
  700. }
  701. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  702. unsigned int max_hz, unsigned int mode)
  703. {
  704. struct fsl_qspi *qspi;
  705. struct fsl_qspi_regs *regs;
  706. u32 total_size;
  707. if (bus >= ARRAY_SIZE(spi_bases))
  708. return NULL;
  709. if (cs >= FSL_QSPI_FLASH_NUM)
  710. return NULL;
  711. qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
  712. if (!qspi)
  713. return NULL;
  714. #ifdef CONFIG_SYS_FSL_QSPI_BE
  715. qspi->priv.flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
  716. #endif
  717. regs = (struct fsl_qspi_regs *)spi_bases[bus];
  718. qspi->priv.regs = regs;
  719. /*
  720. * According cs, use different amba_base to choose the
  721. * corresponding flash devices.
  722. *
  723. * If not, only one flash device is used even if passing
  724. * different cs using `sf probe`
  725. */
  726. qspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
  727. qspi->slave.max_write_size = TX_BUFFER_SIZE;
  728. qspi_write32(qspi->priv.flags, &regs->mcr,
  729. QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);
  730. qspi_cfg_smpr(&qspi->priv,
  731. ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
  732. QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
  733. total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
  734. /*
  735. * Any read access to non-implemented addresses will provide
  736. * undefined results.
  737. *
  738. * In case single die flash devices, TOP_ADDR_MEMA2 and
  739. * TOP_ADDR_MEMB2 should be initialized/programmed to
  740. * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
  741. * setting the size of these devices to 0. This would ensure
  742. * that the complete memory map is assigned to only one flash device.
  743. */
  744. qspi_write32(qspi->priv.flags, &regs->sfa1ad,
  745. FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
  746. qspi_write32(qspi->priv.flags, &regs->sfa2ad,
  747. FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
  748. qspi_write32(qspi->priv.flags, &regs->sfb1ad,
  749. total_size | amba_bases[bus]);
  750. qspi_write32(qspi->priv.flags, &regs->sfb2ad,
  751. total_size | amba_bases[bus]);
  752. qspi_set_lut(&qspi->priv);
  753. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  754. qspi_init_ahb_read(&qspi->priv);
  755. #endif
  756. qspi_module_disable(&qspi->priv, 0);
  757. return &qspi->slave;
  758. }
  759. void spi_free_slave(struct spi_slave *slave)
  760. {
  761. struct fsl_qspi *qspi = to_qspi_spi(slave);
  762. free(qspi);
  763. }
  764. int spi_claim_bus(struct spi_slave *slave)
  765. {
  766. return 0;
  767. }
  768. void spi_release_bus(struct spi_slave *slave)
  769. {
  770. /* Nothing to do */
  771. }
  772. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  773. const void *dout, void *din, unsigned long flags)
  774. {
  775. struct fsl_qspi *qspi = to_qspi_spi(slave);
  776. return qspi_xfer(&qspi->priv, bitlen, dout, din, flags);
  777. }
  778. void spi_init(void)
  779. {
  780. /* Nothing to do */
  781. }
  782. #else
  783. static int fsl_qspi_child_pre_probe(struct udevice *dev)
  784. {
  785. struct spi_slave *slave = dev_get_parent_priv(dev);
  786. slave->max_write_size = TX_BUFFER_SIZE;
  787. return 0;
  788. }
  789. static int fsl_qspi_probe(struct udevice *bus)
  790. {
  791. u32 total_size;
  792. struct fsl_qspi_platdata *plat = dev_get_platdata(bus);
  793. struct fsl_qspi_priv *priv = dev_get_priv(bus);
  794. struct dm_spi_bus *dm_spi_bus;
  795. dm_spi_bus = bus->uclass_priv;
  796. dm_spi_bus->max_hz = plat->speed_hz;
  797. priv->regs = (struct fsl_qspi_regs *)(uintptr_t)plat->reg_base;
  798. priv->flags = plat->flags;
  799. priv->speed_hz = plat->speed_hz;
  800. /*
  801. * QSPI SFADR width is 32bits, the max dest addr is 4GB-1.
  802. * AMBA memory zone should be located on the 0~4GB space
  803. * even on a 64bits cpu.
  804. */
  805. priv->amba_base[0] = (u32)plat->amba_base;
  806. priv->amba_total_size = (u32)plat->amba_total_size;
  807. priv->flash_num = plat->flash_num;
  808. priv->num_chipselect = plat->num_chipselect;
  809. qspi_write32(priv->flags, &priv->regs->mcr,
  810. QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);
  811. qspi_cfg_smpr(priv, ~(QSPI_SMPR_FSDLY_MASK | QSPI_SMPR_DDRSMP_MASK |
  812. QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK), 0);
  813. total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
  814. /*
  815. * Any read access to non-implemented addresses will provide
  816. * undefined results.
  817. *
  818. * In case single die flash devices, TOP_ADDR_MEMA2 and
  819. * TOP_ADDR_MEMB2 should be initialized/programmed to
  820. * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
  821. * setting the size of these devices to 0. This would ensure
  822. * that the complete memory map is assigned to only one flash device.
  823. */
  824. qspi_write32(priv->flags, &priv->regs->sfa1ad,
  825. FSL_QSPI_FLASH_SIZE | priv->amba_base[0]);
  826. qspi_write32(priv->flags, &priv->regs->sfa2ad,
  827. FSL_QSPI_FLASH_SIZE | priv->amba_base[0]);
  828. qspi_write32(priv->flags, &priv->regs->sfb1ad,
  829. total_size | priv->amba_base[0]);
  830. qspi_write32(priv->flags, &priv->regs->sfb2ad,
  831. total_size | priv->amba_base[0]);
  832. qspi_set_lut(priv);
  833. #ifdef CONFIG_SYS_FSL_QSPI_AHB
  834. qspi_init_ahb_read(priv);
  835. #endif
  836. qspi_module_disable(priv, 0);
  837. return 0;
  838. }
  839. static int fsl_qspi_ofdata_to_platdata(struct udevice *bus)
  840. {
  841. struct fdt_resource res_regs, res_mem;
  842. struct fsl_qspi_platdata *plat = bus->platdata;
  843. const void *blob = gd->fdt_blob;
  844. int node = bus->of_offset;
  845. int ret, flash_num = 0, subnode;
  846. if (fdtdec_get_bool(blob, node, "big-endian"))
  847. plat->flags |= QSPI_FLAG_REGMAP_ENDIAN_BIG;
  848. ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
  849. "QuadSPI", &res_regs);
  850. if (ret) {
  851. debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
  852. return -ENOMEM;
  853. }
  854. ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
  855. "QuadSPI-memory", &res_mem);
  856. if (ret) {
  857. debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
  858. return -ENOMEM;
  859. }
  860. /* Count flash numbers */
  861. fdt_for_each_subnode(blob, subnode, node)
  862. ++flash_num;
  863. if (flash_num == 0) {
  864. debug("Error: Missing flashes!\n");
  865. return -ENODEV;
  866. }
  867. plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
  868. FSL_QSPI_DEFAULT_SCK_FREQ);
  869. plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
  870. FSL_QSPI_MAX_CHIPSELECT_NUM);
  871. plat->reg_base = res_regs.start;
  872. plat->amba_base = res_mem.start;
  873. plat->amba_total_size = res_mem.end - res_mem.start + 1;
  874. plat->flash_num = flash_num;
  875. debug("%s: regs=<0x%llx> <0x%llx, 0x%llx>, max-frequency=%d, endianess=%s\n",
  876. __func__,
  877. (u64)plat->reg_base,
  878. (u64)plat->amba_base,
  879. (u64)plat->amba_total_size,
  880. plat->speed_hz,
  881. plat->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
  882. );
  883. return 0;
  884. }
  885. static int fsl_qspi_xfer(struct udevice *dev, unsigned int bitlen,
  886. const void *dout, void *din, unsigned long flags)
  887. {
  888. struct fsl_qspi_priv *priv;
  889. struct udevice *bus;
  890. bus = dev->parent;
  891. priv = dev_get_priv(bus);
  892. return qspi_xfer(priv, bitlen, dout, din, flags);
  893. }
  894. static int fsl_qspi_claim_bus(struct udevice *dev)
  895. {
  896. struct fsl_qspi_priv *priv;
  897. struct udevice *bus;
  898. struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
  899. bus = dev->parent;
  900. priv = dev_get_priv(bus);
  901. priv->cur_amba_base =
  902. priv->amba_base[0] + FSL_QSPI_FLASH_SIZE * slave_plat->cs;
  903. qspi_module_disable(priv, 0);
  904. return 0;
  905. }
  906. static int fsl_qspi_release_bus(struct udevice *dev)
  907. {
  908. struct fsl_qspi_priv *priv;
  909. struct udevice *bus;
  910. bus = dev->parent;
  911. priv = dev_get_priv(bus);
  912. qspi_module_disable(priv, 1);
  913. return 0;
  914. }
  915. static int fsl_qspi_set_speed(struct udevice *bus, uint speed)
  916. {
  917. /* Nothing to do */
  918. return 0;
  919. }
  920. static int fsl_qspi_set_mode(struct udevice *bus, uint mode)
  921. {
  922. /* Nothing to do */
  923. return 0;
  924. }
  925. static const struct dm_spi_ops fsl_qspi_ops = {
  926. .claim_bus = fsl_qspi_claim_bus,
  927. .release_bus = fsl_qspi_release_bus,
  928. .xfer = fsl_qspi_xfer,
  929. .set_speed = fsl_qspi_set_speed,
  930. .set_mode = fsl_qspi_set_mode,
  931. };
  932. static const struct udevice_id fsl_qspi_ids[] = {
  933. { .compatible = "fsl,vf610-qspi" },
  934. { .compatible = "fsl,imx6sx-qspi" },
  935. { }
  936. };
  937. U_BOOT_DRIVER(fsl_qspi) = {
  938. .name = "fsl_qspi",
  939. .id = UCLASS_SPI,
  940. .of_match = fsl_qspi_ids,
  941. .ops = &fsl_qspi_ops,
  942. .ofdata_to_platdata = fsl_qspi_ofdata_to_platdata,
  943. .platdata_auto_alloc_size = sizeof(struct fsl_qspi_platdata),
  944. .priv_auto_alloc_size = sizeof(struct fsl_qspi_priv),
  945. .probe = fsl_qspi_probe,
  946. .child_pre_probe = fsl_qspi_child_pre_probe,
  947. };
  948. #endif