clk_rk3399.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163
  1. /*
  2. * (C) Copyright 2015 Google, Inc
  3. * (C) 2017 Theobroma Systems Design und Consulting GmbH
  4. *
  5. * SPDX-License-Identifier: GPL-2.0
  6. */
  7. #include <common.h>
  8. #include <clk-uclass.h>
  9. #include <dm.h>
  10. #include <dt-structs.h>
  11. #include <errno.h>
  12. #include <mapmem.h>
  13. #include <syscon.h>
  14. #include <asm/io.h>
  15. #include <asm/arch/clock.h>
  16. #include <asm/arch/cru_rk3399.h>
  17. #include <asm/arch/hardware.h>
  18. #include <dm/lists.h>
  19. #include <dt-bindings/clock/rk3399-cru.h>
  20. DECLARE_GLOBAL_DATA_PTR;
  21. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  22. struct rk3399_clk_plat {
  23. struct dtd_rockchip_rk3399_cru dtd;
  24. };
  25. struct rk3399_pmuclk_plat {
  26. struct dtd_rockchip_rk3399_pmucru dtd;
  27. };
  28. #endif
  29. struct pll_div {
  30. u32 refdiv;
  31. u32 fbdiv;
  32. u32 postdiv1;
  33. u32 postdiv2;
  34. u32 frac;
  35. };
  36. #define RATE_TO_DIV(input_rate, output_rate) \
  37. ((input_rate) / (output_rate) - 1);
  38. #define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
  39. #define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
  40. .refdiv = _refdiv,\
  41. .fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
  42. .postdiv1 = _postdiv1, .postdiv2 = _postdiv2};
  43. #if defined(CONFIG_SPL_BUILD)
  44. static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
  45. static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2, 2);
  46. #else
  47. static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 2, 2, 1);
  48. #endif
  49. static const struct pll_div apll_l_1600_cfg = PLL_DIVISORS(1600*MHz, 3, 1, 1);
  50. static const struct pll_div apll_l_600_cfg = PLL_DIVISORS(600*MHz, 1, 2, 1);
  51. static const struct pll_div *apll_l_cfgs[] = {
  52. [APLL_L_1600_MHZ] = &apll_l_1600_cfg,
  53. [APLL_L_600_MHZ] = &apll_l_600_cfg,
  54. };
  55. enum {
  56. /* PLL_CON0 */
  57. PLL_FBDIV_MASK = 0xfff,
  58. PLL_FBDIV_SHIFT = 0,
  59. /* PLL_CON1 */
  60. PLL_POSTDIV2_SHIFT = 12,
  61. PLL_POSTDIV2_MASK = 0x7 << PLL_POSTDIV2_SHIFT,
  62. PLL_POSTDIV1_SHIFT = 8,
  63. PLL_POSTDIV1_MASK = 0x7 << PLL_POSTDIV1_SHIFT,
  64. PLL_REFDIV_MASK = 0x3f,
  65. PLL_REFDIV_SHIFT = 0,
  66. /* PLL_CON2 */
  67. PLL_LOCK_STATUS_SHIFT = 31,
  68. PLL_LOCK_STATUS_MASK = 1 << PLL_LOCK_STATUS_SHIFT,
  69. PLL_FRACDIV_MASK = 0xffffff,
  70. PLL_FRACDIV_SHIFT = 0,
  71. /* PLL_CON3 */
  72. PLL_MODE_SHIFT = 8,
  73. PLL_MODE_MASK = 3 << PLL_MODE_SHIFT,
  74. PLL_MODE_SLOW = 0,
  75. PLL_MODE_NORM,
  76. PLL_MODE_DEEP,
  77. PLL_DSMPD_SHIFT = 3,
  78. PLL_DSMPD_MASK = 1 << PLL_DSMPD_SHIFT,
  79. PLL_INTEGER_MODE = 1,
  80. /* PMUCRU_CLKSEL_CON0 */
  81. PMU_PCLK_DIV_CON_MASK = 0x1f,
  82. PMU_PCLK_DIV_CON_SHIFT = 0,
  83. /* PMUCRU_CLKSEL_CON1 */
  84. SPI3_PLL_SEL_SHIFT = 7,
  85. SPI3_PLL_SEL_MASK = 1 << SPI3_PLL_SEL_SHIFT,
  86. SPI3_PLL_SEL_24M = 0,
  87. SPI3_PLL_SEL_PPLL = 1,
  88. SPI3_DIV_CON_SHIFT = 0x0,
  89. SPI3_DIV_CON_MASK = 0x7f,
  90. /* PMUCRU_CLKSEL_CON2 */
  91. I2C_DIV_CON_MASK = 0x7f,
  92. CLK_I2C8_DIV_CON_SHIFT = 8,
  93. CLK_I2C0_DIV_CON_SHIFT = 0,
  94. /* PMUCRU_CLKSEL_CON3 */
  95. CLK_I2C4_DIV_CON_SHIFT = 0,
  96. /* CLKSEL_CON0 */
  97. ACLKM_CORE_L_DIV_CON_SHIFT = 8,
  98. ACLKM_CORE_L_DIV_CON_MASK = 0x1f << ACLKM_CORE_L_DIV_CON_SHIFT,
  99. CLK_CORE_L_PLL_SEL_SHIFT = 6,
  100. CLK_CORE_L_PLL_SEL_MASK = 3 << CLK_CORE_L_PLL_SEL_SHIFT,
  101. CLK_CORE_L_PLL_SEL_ALPLL = 0x0,
  102. CLK_CORE_L_PLL_SEL_ABPLL = 0x1,
  103. CLK_CORE_L_PLL_SEL_DPLL = 0x10,
  104. CLK_CORE_L_PLL_SEL_GPLL = 0x11,
  105. CLK_CORE_L_DIV_MASK = 0x1f,
  106. CLK_CORE_L_DIV_SHIFT = 0,
  107. /* CLKSEL_CON1 */
  108. PCLK_DBG_L_DIV_SHIFT = 0x8,
  109. PCLK_DBG_L_DIV_MASK = 0x1f << PCLK_DBG_L_DIV_SHIFT,
  110. ATCLK_CORE_L_DIV_SHIFT = 0,
  111. ATCLK_CORE_L_DIV_MASK = 0x1f << ATCLK_CORE_L_DIV_SHIFT,
  112. /* CLKSEL_CON14 */
  113. PCLK_PERIHP_DIV_CON_SHIFT = 12,
  114. PCLK_PERIHP_DIV_CON_MASK = 0x7 << PCLK_PERIHP_DIV_CON_SHIFT,
  115. HCLK_PERIHP_DIV_CON_SHIFT = 8,
  116. HCLK_PERIHP_DIV_CON_MASK = 3 << HCLK_PERIHP_DIV_CON_SHIFT,
  117. ACLK_PERIHP_PLL_SEL_SHIFT = 7,
  118. ACLK_PERIHP_PLL_SEL_MASK = 1 << ACLK_PERIHP_PLL_SEL_SHIFT,
  119. ACLK_PERIHP_PLL_SEL_CPLL = 0,
  120. ACLK_PERIHP_PLL_SEL_GPLL = 1,
  121. ACLK_PERIHP_DIV_CON_SHIFT = 0,
  122. ACLK_PERIHP_DIV_CON_MASK = 0x1f,
  123. /* CLKSEL_CON21 */
  124. ACLK_EMMC_PLL_SEL_SHIFT = 7,
  125. ACLK_EMMC_PLL_SEL_MASK = 0x1 << ACLK_EMMC_PLL_SEL_SHIFT,
  126. ACLK_EMMC_PLL_SEL_GPLL = 0x1,
  127. ACLK_EMMC_DIV_CON_SHIFT = 0,
  128. ACLK_EMMC_DIV_CON_MASK = 0x1f,
  129. /* CLKSEL_CON22 */
  130. CLK_EMMC_PLL_SHIFT = 8,
  131. CLK_EMMC_PLL_MASK = 0x7 << CLK_EMMC_PLL_SHIFT,
  132. CLK_EMMC_PLL_SEL_GPLL = 0x1,
  133. CLK_EMMC_PLL_SEL_24M = 0x5,
  134. CLK_EMMC_DIV_CON_SHIFT = 0,
  135. CLK_EMMC_DIV_CON_MASK = 0x7f << CLK_EMMC_DIV_CON_SHIFT,
  136. /* CLKSEL_CON23 */
  137. PCLK_PERILP0_DIV_CON_SHIFT = 12,
  138. PCLK_PERILP0_DIV_CON_MASK = 0x7 << PCLK_PERILP0_DIV_CON_SHIFT,
  139. HCLK_PERILP0_DIV_CON_SHIFT = 8,
  140. HCLK_PERILP0_DIV_CON_MASK = 3 << HCLK_PERILP0_DIV_CON_SHIFT,
  141. ACLK_PERILP0_PLL_SEL_SHIFT = 7,
  142. ACLK_PERILP0_PLL_SEL_MASK = 1 << ACLK_PERILP0_PLL_SEL_SHIFT,
  143. ACLK_PERILP0_PLL_SEL_CPLL = 0,
  144. ACLK_PERILP0_PLL_SEL_GPLL = 1,
  145. ACLK_PERILP0_DIV_CON_SHIFT = 0,
  146. ACLK_PERILP0_DIV_CON_MASK = 0x1f,
  147. /* CLKSEL_CON25 */
  148. PCLK_PERILP1_DIV_CON_SHIFT = 8,
  149. PCLK_PERILP1_DIV_CON_MASK = 0x7 << PCLK_PERILP1_DIV_CON_SHIFT,
  150. HCLK_PERILP1_PLL_SEL_SHIFT = 7,
  151. HCLK_PERILP1_PLL_SEL_MASK = 1 << HCLK_PERILP1_PLL_SEL_SHIFT,
  152. HCLK_PERILP1_PLL_SEL_CPLL = 0,
  153. HCLK_PERILP1_PLL_SEL_GPLL = 1,
  154. HCLK_PERILP1_DIV_CON_SHIFT = 0,
  155. HCLK_PERILP1_DIV_CON_MASK = 0x1f,
  156. /* CLKSEL_CON26 */
  157. CLK_SARADC_DIV_CON_SHIFT = 8,
  158. CLK_SARADC_DIV_CON_MASK = 0xff << CLK_SARADC_DIV_CON_SHIFT,
  159. /* CLKSEL_CON27 */
  160. CLK_TSADC_SEL_X24M = 0x0,
  161. CLK_TSADC_SEL_SHIFT = 15,
  162. CLK_TSADC_SEL_MASK = 1 << CLK_TSADC_SEL_SHIFT,
  163. CLK_TSADC_DIV_CON_SHIFT = 0,
  164. CLK_TSADC_DIV_CON_MASK = 0x3ff,
  165. /* CLKSEL_CON47 & CLKSEL_CON48 */
  166. ACLK_VOP_PLL_SEL_SHIFT = 6,
  167. ACLK_VOP_PLL_SEL_MASK = 0x3 << ACLK_VOP_PLL_SEL_SHIFT,
  168. ACLK_VOP_PLL_SEL_CPLL = 0x1,
  169. ACLK_VOP_DIV_CON_SHIFT = 0,
  170. ACLK_VOP_DIV_CON_MASK = 0x1f << ACLK_VOP_DIV_CON_SHIFT,
  171. /* CLKSEL_CON49 & CLKSEL_CON50 */
  172. DCLK_VOP_DCLK_SEL_SHIFT = 11,
  173. DCLK_VOP_DCLK_SEL_MASK = 1 << DCLK_VOP_DCLK_SEL_SHIFT,
  174. DCLK_VOP_DCLK_SEL_DIVOUT = 0,
  175. DCLK_VOP_PLL_SEL_SHIFT = 8,
  176. DCLK_VOP_PLL_SEL_MASK = 3 << DCLK_VOP_PLL_SEL_SHIFT,
  177. DCLK_VOP_PLL_SEL_VPLL = 0,
  178. DCLK_VOP_DIV_CON_MASK = 0xff,
  179. DCLK_VOP_DIV_CON_SHIFT = 0,
  180. /* CLKSEL_CON58 */
  181. CLK_SPI_PLL_SEL_WIDTH = 1,
  182. CLK_SPI_PLL_SEL_MASK = ((1 < CLK_SPI_PLL_SEL_WIDTH) - 1),
  183. CLK_SPI_PLL_SEL_CPLL = 0,
  184. CLK_SPI_PLL_SEL_GPLL = 1,
  185. CLK_SPI_PLL_DIV_CON_WIDTH = 7,
  186. CLK_SPI_PLL_DIV_CON_MASK = ((1 << CLK_SPI_PLL_DIV_CON_WIDTH) - 1),
  187. CLK_SPI5_PLL_DIV_CON_SHIFT = 8,
  188. CLK_SPI5_PLL_SEL_SHIFT = 15,
  189. /* CLKSEL_CON59 */
  190. CLK_SPI1_PLL_SEL_SHIFT = 15,
  191. CLK_SPI1_PLL_DIV_CON_SHIFT = 8,
  192. CLK_SPI0_PLL_SEL_SHIFT = 7,
  193. CLK_SPI0_PLL_DIV_CON_SHIFT = 0,
  194. /* CLKSEL_CON60 */
  195. CLK_SPI4_PLL_SEL_SHIFT = 15,
  196. CLK_SPI4_PLL_DIV_CON_SHIFT = 8,
  197. CLK_SPI2_PLL_SEL_SHIFT = 7,
  198. CLK_SPI2_PLL_DIV_CON_SHIFT = 0,
  199. /* CLKSEL_CON61 */
  200. CLK_I2C_PLL_SEL_MASK = 1,
  201. CLK_I2C_PLL_SEL_CPLL = 0,
  202. CLK_I2C_PLL_SEL_GPLL = 1,
  203. CLK_I2C5_PLL_SEL_SHIFT = 15,
  204. CLK_I2C5_DIV_CON_SHIFT = 8,
  205. CLK_I2C1_PLL_SEL_SHIFT = 7,
  206. CLK_I2C1_DIV_CON_SHIFT = 0,
  207. /* CLKSEL_CON62 */
  208. CLK_I2C6_PLL_SEL_SHIFT = 15,
  209. CLK_I2C6_DIV_CON_SHIFT = 8,
  210. CLK_I2C2_PLL_SEL_SHIFT = 7,
  211. CLK_I2C2_DIV_CON_SHIFT = 0,
  212. /* CLKSEL_CON63 */
  213. CLK_I2C7_PLL_SEL_SHIFT = 15,
  214. CLK_I2C7_DIV_CON_SHIFT = 8,
  215. CLK_I2C3_PLL_SEL_SHIFT = 7,
  216. CLK_I2C3_DIV_CON_SHIFT = 0,
  217. /* CRU_SOFTRST_CON4 */
  218. RESETN_DDR0_REQ_SHIFT = 8,
  219. RESETN_DDR0_REQ_MASK = 1 << RESETN_DDR0_REQ_SHIFT,
  220. RESETN_DDRPHY0_REQ_SHIFT = 9,
  221. RESETN_DDRPHY0_REQ_MASK = 1 << RESETN_DDRPHY0_REQ_SHIFT,
  222. RESETN_DDR1_REQ_SHIFT = 12,
  223. RESETN_DDR1_REQ_MASK = 1 << RESETN_DDR1_REQ_SHIFT,
  224. RESETN_DDRPHY1_REQ_SHIFT = 13,
  225. RESETN_DDRPHY1_REQ_MASK = 1 << RESETN_DDRPHY1_REQ_SHIFT,
  226. };
  227. #define VCO_MAX_KHZ (3200 * (MHz / KHz))
  228. #define VCO_MIN_KHZ (800 * (MHz / KHz))
  229. #define OUTPUT_MAX_KHZ (3200 * (MHz / KHz))
  230. #define OUTPUT_MIN_KHZ (16 * (MHz / KHz))
  231. /*
  232. * the div restructions of pll in integer mode, these are defined in
  233. * * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
  234. */
  235. #define PLL_DIV_MIN 16
  236. #define PLL_DIV_MAX 3200
  237. /*
  238. * How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
  239. * Formulas also embedded within the Fractional PLL Verilog model:
  240. * If DSMPD = 1 (DSM is disabled, "integer mode")
  241. * FOUTVCO = FREF / REFDIV * FBDIV
  242. * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
  243. * Where:
  244. * FOUTVCO = Fractional PLL non-divided output frequency
  245. * FOUTPOSTDIV = Fractional PLL divided output frequency
  246. * (output of second post divider)
  247. * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
  248. * REFDIV = Fractional PLL input reference clock divider
  249. * FBDIV = Integer value programmed into feedback divide
  250. *
  251. */
  252. static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div)
  253. {
  254. /* All 8 PLLs have same VCO and output frequency range restrictions. */
  255. u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
  256. u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
  257. debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, "
  258. "postdiv2=%d, vco=%u khz, output=%u khz\n",
  259. pll_con, div->fbdiv, div->refdiv, div->postdiv1,
  260. div->postdiv2, vco_khz, output_khz);
  261. assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
  262. output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
  263. div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
  264. /*
  265. * When power on or changing PLL setting,
  266. * we must force PLL into slow mode to ensure output stable clock.
  267. */
  268. rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
  269. PLL_MODE_SLOW << PLL_MODE_SHIFT);
  270. /* use integer mode */
  271. rk_clrsetreg(&pll_con[3], PLL_DSMPD_MASK,
  272. PLL_INTEGER_MODE << PLL_DSMPD_SHIFT);
  273. rk_clrsetreg(&pll_con[0], PLL_FBDIV_MASK,
  274. div->fbdiv << PLL_FBDIV_SHIFT);
  275. rk_clrsetreg(&pll_con[1],
  276. PLL_POSTDIV2_MASK | PLL_POSTDIV1_MASK |
  277. PLL_REFDIV_MASK | PLL_REFDIV_SHIFT,
  278. (div->postdiv2 << PLL_POSTDIV2_SHIFT) |
  279. (div->postdiv1 << PLL_POSTDIV1_SHIFT) |
  280. (div->refdiv << PLL_REFDIV_SHIFT));
  281. /* waiting for pll lock */
  282. while (!(readl(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT)))
  283. udelay(1);
  284. /* pll enter normal mode */
  285. rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
  286. PLL_MODE_NORM << PLL_MODE_SHIFT);
  287. }
  288. static int pll_para_config(u32 freq_hz, struct pll_div *div)
  289. {
  290. u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0;
  291. u32 postdiv1, postdiv2 = 1;
  292. u32 fref_khz;
  293. u32 diff_khz, best_diff_khz;
  294. const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16;
  295. const u32 max_postdiv1 = 7, max_postdiv2 = 7;
  296. u32 vco_khz;
  297. u32 freq_khz = freq_hz / KHz;
  298. if (!freq_hz) {
  299. printf("%s: the frequency can't be 0 Hz\n", __func__);
  300. return -1;
  301. }
  302. postdiv1 = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz);
  303. if (postdiv1 > max_postdiv1) {
  304. postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1);
  305. postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2);
  306. }
  307. vco_khz = freq_khz * postdiv1 * postdiv2;
  308. if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ ||
  309. postdiv2 > max_postdiv2) {
  310. printf("%s: Cannot find out a supported VCO"
  311. " for Frequency (%uHz).\n", __func__, freq_hz);
  312. return -1;
  313. }
  314. div->postdiv1 = postdiv1;
  315. div->postdiv2 = postdiv2;
  316. best_diff_khz = vco_khz;
  317. for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) {
  318. fref_khz = ref_khz / refdiv;
  319. fbdiv = vco_khz / fref_khz;
  320. if ((fbdiv >= max_fbdiv) || (fbdiv <= min_fbdiv))
  321. continue;
  322. diff_khz = vco_khz - fbdiv * fref_khz;
  323. if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) {
  324. fbdiv++;
  325. diff_khz = fref_khz - diff_khz;
  326. }
  327. if (diff_khz >= best_diff_khz)
  328. continue;
  329. best_diff_khz = diff_khz;
  330. div->refdiv = refdiv;
  331. div->fbdiv = fbdiv;
  332. }
  333. if (best_diff_khz > 4 * (MHz/KHz)) {
  334. printf("%s: Failed to match output frequency %u, "
  335. "difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz,
  336. best_diff_khz * KHz);
  337. return -1;
  338. }
  339. return 0;
  340. }
  341. #ifdef CONFIG_SPL_BUILD
  342. static void rkclk_init(struct rk3399_cru *cru)
  343. {
  344. u32 aclk_div;
  345. u32 hclk_div;
  346. u32 pclk_div;
  347. /*
  348. * some cru registers changed by bootrom, we'd better reset them to
  349. * reset/default values described in TRM to avoid confusion in kernel.
  350. * Please consider these three lines as a fix of bootrom bug.
  351. */
  352. rk_clrsetreg(&cru->clksel_con[12], 0xffff, 0x4101);
  353. rk_clrsetreg(&cru->clksel_con[19], 0xffff, 0x033f);
  354. rk_clrsetreg(&cru->clksel_con[56], 0x0003, 0x0003);
  355. /* configure gpll cpll */
  356. rkclk_set_pll(&cru->gpll_con[0], &gpll_init_cfg);
  357. rkclk_set_pll(&cru->cpll_con[0], &cpll_init_cfg);
  358. /* configure perihp aclk, hclk, pclk */
  359. aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
  360. assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
  361. hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
  362. assert((hclk_div + 1) * PERIHP_HCLK_HZ ==
  363. PERIHP_ACLK_HZ && (hclk_div < 0x4));
  364. pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
  365. assert((pclk_div + 1) * PERIHP_PCLK_HZ ==
  366. PERIHP_ACLK_HZ && (pclk_div < 0x7));
  367. rk_clrsetreg(&cru->clksel_con[14],
  368. PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK |
  369. ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK,
  370. pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
  371. hclk_div << HCLK_PERIHP_DIV_CON_SHIFT |
  372. ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT |
  373. aclk_div << ACLK_PERIHP_DIV_CON_SHIFT);
  374. /* configure perilp0 aclk, hclk, pclk */
  375. aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1;
  376. assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
  377. hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1;
  378. assert((hclk_div + 1) * PERILP0_HCLK_HZ ==
  379. PERILP0_ACLK_HZ && (hclk_div < 0x4));
  380. pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1;
  381. assert((pclk_div + 1) * PERILP0_PCLK_HZ ==
  382. PERILP0_ACLK_HZ && (pclk_div < 0x7));
  383. rk_clrsetreg(&cru->clksel_con[23],
  384. PCLK_PERILP0_DIV_CON_MASK | HCLK_PERILP0_DIV_CON_MASK |
  385. ACLK_PERILP0_PLL_SEL_MASK | ACLK_PERILP0_DIV_CON_MASK,
  386. pclk_div << PCLK_PERILP0_DIV_CON_SHIFT |
  387. hclk_div << HCLK_PERILP0_DIV_CON_SHIFT |
  388. ACLK_PERILP0_PLL_SEL_GPLL << ACLK_PERILP0_PLL_SEL_SHIFT |
  389. aclk_div << ACLK_PERILP0_DIV_CON_SHIFT);
  390. /* perilp1 hclk select gpll as source */
  391. hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1;
  392. assert((hclk_div + 1) * PERILP1_HCLK_HZ ==
  393. GPLL_HZ && (hclk_div < 0x1f));
  394. pclk_div = PERILP1_HCLK_HZ / PERILP1_HCLK_HZ - 1;
  395. assert((pclk_div + 1) * PERILP1_HCLK_HZ ==
  396. PERILP1_HCLK_HZ && (hclk_div < 0x7));
  397. rk_clrsetreg(&cru->clksel_con[25],
  398. PCLK_PERILP1_DIV_CON_MASK | HCLK_PERILP1_DIV_CON_MASK |
  399. HCLK_PERILP1_PLL_SEL_MASK,
  400. pclk_div << PCLK_PERILP1_DIV_CON_SHIFT |
  401. hclk_div << HCLK_PERILP1_DIV_CON_SHIFT |
  402. HCLK_PERILP1_PLL_SEL_GPLL << HCLK_PERILP1_PLL_SEL_SHIFT);
  403. }
  404. #endif
  405. void rk3399_configure_cpu(struct rk3399_cru *cru,
  406. enum apll_l_frequencies apll_l_freq)
  407. {
  408. u32 aclkm_div;
  409. u32 pclk_dbg_div;
  410. u32 atclk_div;
  411. rkclk_set_pll(&cru->apll_l_con[0], apll_l_cfgs[apll_l_freq]);
  412. aclkm_div = APLL_HZ / ACLKM_CORE_HZ - 1;
  413. assert((aclkm_div + 1) * ACLKM_CORE_HZ == APLL_HZ &&
  414. aclkm_div < 0x1f);
  415. pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ - 1;
  416. assert((pclk_dbg_div + 1) * PCLK_DBG_HZ == APLL_HZ &&
  417. pclk_dbg_div < 0x1f);
  418. atclk_div = APLL_HZ / ATCLK_CORE_HZ - 1;
  419. assert((atclk_div + 1) * ATCLK_CORE_HZ == APLL_HZ &&
  420. atclk_div < 0x1f);
  421. rk_clrsetreg(&cru->clksel_con[0],
  422. ACLKM_CORE_L_DIV_CON_MASK | CLK_CORE_L_PLL_SEL_MASK |
  423. CLK_CORE_L_DIV_MASK,
  424. aclkm_div << ACLKM_CORE_L_DIV_CON_SHIFT |
  425. CLK_CORE_L_PLL_SEL_ALPLL << CLK_CORE_L_PLL_SEL_SHIFT |
  426. 0 << CLK_CORE_L_DIV_SHIFT);
  427. rk_clrsetreg(&cru->clksel_con[1],
  428. PCLK_DBG_L_DIV_MASK | ATCLK_CORE_L_DIV_MASK,
  429. pclk_dbg_div << PCLK_DBG_L_DIV_SHIFT |
  430. atclk_div << ATCLK_CORE_L_DIV_SHIFT);
  431. }
  432. #define I2C_CLK_REG_MASK(bus) \
  433. (I2C_DIV_CON_MASK << \
  434. CLK_I2C ##bus## _DIV_CON_SHIFT | \
  435. CLK_I2C_PLL_SEL_MASK << \
  436. CLK_I2C ##bus## _PLL_SEL_SHIFT)
  437. #define I2C_CLK_REG_VALUE(bus, clk_div) \
  438. ((clk_div - 1) << \
  439. CLK_I2C ##bus## _DIV_CON_SHIFT | \
  440. CLK_I2C_PLL_SEL_GPLL << \
  441. CLK_I2C ##bus## _PLL_SEL_SHIFT)
  442. #define I2C_CLK_DIV_VALUE(con, bus) \
  443. (con >> CLK_I2C ##bus## _DIV_CON_SHIFT) & \
  444. I2C_DIV_CON_MASK;
  445. #define I2C_PMUCLK_REG_MASK(bus) \
  446. (I2C_DIV_CON_MASK << \
  447. CLK_I2C ##bus## _DIV_CON_SHIFT)
  448. #define I2C_PMUCLK_REG_VALUE(bus, clk_div) \
  449. ((clk_div - 1) << \
  450. CLK_I2C ##bus## _DIV_CON_SHIFT)
  451. static ulong rk3399_i2c_get_clk(struct rk3399_cru *cru, ulong clk_id)
  452. {
  453. u32 div, con;
  454. switch (clk_id) {
  455. case SCLK_I2C1:
  456. con = readl(&cru->clksel_con[61]);
  457. div = I2C_CLK_DIV_VALUE(con, 1);
  458. break;
  459. case SCLK_I2C2:
  460. con = readl(&cru->clksel_con[62]);
  461. div = I2C_CLK_DIV_VALUE(con, 2);
  462. break;
  463. case SCLK_I2C3:
  464. con = readl(&cru->clksel_con[63]);
  465. div = I2C_CLK_DIV_VALUE(con, 3);
  466. break;
  467. case SCLK_I2C5:
  468. con = readl(&cru->clksel_con[61]);
  469. div = I2C_CLK_DIV_VALUE(con, 5);
  470. break;
  471. case SCLK_I2C6:
  472. con = readl(&cru->clksel_con[62]);
  473. div = I2C_CLK_DIV_VALUE(con, 6);
  474. break;
  475. case SCLK_I2C7:
  476. con = readl(&cru->clksel_con[63]);
  477. div = I2C_CLK_DIV_VALUE(con, 7);
  478. break;
  479. default:
  480. printf("do not support this i2c bus\n");
  481. return -EINVAL;
  482. }
  483. return DIV_TO_RATE(GPLL_HZ, div);
  484. }
  485. static ulong rk3399_i2c_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
  486. {
  487. int src_clk_div;
  488. /* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll*/
  489. src_clk_div = GPLL_HZ / hz;
  490. assert(src_clk_div - 1 < 127);
  491. switch (clk_id) {
  492. case SCLK_I2C1:
  493. rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(1),
  494. I2C_CLK_REG_VALUE(1, src_clk_div));
  495. break;
  496. case SCLK_I2C2:
  497. rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(2),
  498. I2C_CLK_REG_VALUE(2, src_clk_div));
  499. break;
  500. case SCLK_I2C3:
  501. rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(3),
  502. I2C_CLK_REG_VALUE(3, src_clk_div));
  503. break;
  504. case SCLK_I2C5:
  505. rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(5),
  506. I2C_CLK_REG_VALUE(5, src_clk_div));
  507. break;
  508. case SCLK_I2C6:
  509. rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(6),
  510. I2C_CLK_REG_VALUE(6, src_clk_div));
  511. break;
  512. case SCLK_I2C7:
  513. rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(7),
  514. I2C_CLK_REG_VALUE(7, src_clk_div));
  515. break;
  516. default:
  517. printf("do not support this i2c bus\n");
  518. return -EINVAL;
  519. }
  520. return rk3399_i2c_get_clk(cru, clk_id);
  521. }
  522. /*
  523. * RK3399 SPI clocks have a common divider-width (7 bits) and a single bit
  524. * to select either CPLL or GPLL as the clock-parent. The location within
  525. * the enclosing CLKSEL_CON (i.e. div_shift and sel_shift) are variable.
  526. */
  527. struct spi_clkreg {
  528. uint8_t reg; /* CLKSEL_CON[reg] register in CRU */
  529. uint8_t div_shift;
  530. uint8_t sel_shift;
  531. };
  532. /*
  533. * The entries are numbered relative to their offset from SCLK_SPI0.
  534. *
  535. * Note that SCLK_SPI3 (which is configured via PMUCRU and requires different
  536. * logic is not supported).
  537. */
  538. static const struct spi_clkreg spi_clkregs[] = {
  539. [0] = { .reg = 59,
  540. .div_shift = CLK_SPI0_PLL_DIV_CON_SHIFT,
  541. .sel_shift = CLK_SPI0_PLL_SEL_SHIFT, },
  542. [1] = { .reg = 59,
  543. .div_shift = CLK_SPI1_PLL_DIV_CON_SHIFT,
  544. .sel_shift = CLK_SPI1_PLL_SEL_SHIFT, },
  545. [2] = { .reg = 60,
  546. .div_shift = CLK_SPI2_PLL_DIV_CON_SHIFT,
  547. .sel_shift = CLK_SPI2_PLL_SEL_SHIFT, },
  548. [3] = { .reg = 60,
  549. .div_shift = CLK_SPI4_PLL_DIV_CON_SHIFT,
  550. .sel_shift = CLK_SPI4_PLL_SEL_SHIFT, },
  551. [4] = { .reg = 58,
  552. .div_shift = CLK_SPI5_PLL_DIV_CON_SHIFT,
  553. .sel_shift = CLK_SPI5_PLL_SEL_SHIFT, },
  554. };
  555. static inline u32 extract_bits(u32 val, unsigned width, unsigned shift)
  556. {
  557. return (val >> shift) & ((1 << width) - 1);
  558. }
  559. static ulong rk3399_spi_get_clk(struct rk3399_cru *cru, ulong clk_id)
  560. {
  561. const struct spi_clkreg *spiclk = NULL;
  562. u32 div, val;
  563. switch (clk_id) {
  564. case SCLK_SPI0 ... SCLK_SPI5:
  565. spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
  566. break;
  567. default:
  568. error("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
  569. return -EINVAL;
  570. }
  571. val = readl(&cru->clksel_con[spiclk->reg]);
  572. div = extract_bits(val, CLK_SPI_PLL_DIV_CON_WIDTH, spiclk->div_shift);
  573. return DIV_TO_RATE(GPLL_HZ, div);
  574. }
  575. static ulong rk3399_spi_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
  576. {
  577. const struct spi_clkreg *spiclk = NULL;
  578. int src_clk_div;
  579. src_clk_div = RATE_TO_DIV(GPLL_HZ, hz);
  580. assert(src_clk_div < 127);
  581. switch (clk_id) {
  582. case SCLK_SPI1 ... SCLK_SPI5:
  583. spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
  584. break;
  585. default:
  586. error("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
  587. return -EINVAL;
  588. }
  589. rk_clrsetreg(&cru->clksel_con[spiclk->reg],
  590. ((CLK_SPI_PLL_DIV_CON_MASK << spiclk->div_shift) |
  591. (CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)),
  592. ((src_clk_div << spiclk->div_shift) |
  593. (CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)));
  594. return rk3399_spi_get_clk(cru, clk_id);
  595. }
  596. static ulong rk3399_vop_set_clk(struct rk3399_cru *cru, ulong clk_id, u32 hz)
  597. {
  598. struct pll_div vpll_config = {0};
  599. int aclk_vop = 198*MHz;
  600. void *aclkreg_addr, *dclkreg_addr;
  601. u32 div;
  602. switch (clk_id) {
  603. case DCLK_VOP0:
  604. aclkreg_addr = &cru->clksel_con[47];
  605. dclkreg_addr = &cru->clksel_con[49];
  606. break;
  607. case DCLK_VOP1:
  608. aclkreg_addr = &cru->clksel_con[48];
  609. dclkreg_addr = &cru->clksel_con[50];
  610. break;
  611. default:
  612. return -EINVAL;
  613. }
  614. /* vop aclk source clk: cpll */
  615. div = CPLL_HZ / aclk_vop;
  616. assert(div - 1 < 32);
  617. rk_clrsetreg(aclkreg_addr,
  618. ACLK_VOP_PLL_SEL_MASK | ACLK_VOP_DIV_CON_MASK,
  619. ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT |
  620. (div - 1) << ACLK_VOP_DIV_CON_SHIFT);
  621. /* vop dclk source from vpll, and equals to vpll(means div == 1) */
  622. if (pll_para_config(hz, &vpll_config))
  623. return -1;
  624. rkclk_set_pll(&cru->vpll_con[0], &vpll_config);
  625. rk_clrsetreg(dclkreg_addr,
  626. DCLK_VOP_DCLK_SEL_MASK | DCLK_VOP_PLL_SEL_MASK|
  627. DCLK_VOP_DIV_CON_MASK,
  628. DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT |
  629. DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT |
  630. (1 - 1) << DCLK_VOP_DIV_CON_SHIFT);
  631. return hz;
  632. }
  633. static ulong rk3399_mmc_get_clk(struct rk3399_cru *cru, uint clk_id)
  634. {
  635. u32 div, con;
  636. switch (clk_id) {
  637. case SCLK_SDMMC:
  638. con = readl(&cru->clksel_con[16]);
  639. break;
  640. case SCLK_EMMC:
  641. con = readl(&cru->clksel_con[21]);
  642. break;
  643. default:
  644. return -EINVAL;
  645. }
  646. div = (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT;
  647. if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT
  648. == CLK_EMMC_PLL_SEL_24M)
  649. return DIV_TO_RATE(24*1000*1000, div);
  650. else
  651. return DIV_TO_RATE(GPLL_HZ, div);
  652. }
  653. static ulong rk3399_mmc_set_clk(struct rk3399_cru *cru,
  654. ulong clk_id, ulong set_rate)
  655. {
  656. int src_clk_div;
  657. int aclk_emmc = 198*MHz;
  658. switch (clk_id) {
  659. case SCLK_SDMMC:
  660. /* Select clk_sdmmc source from GPLL by default */
  661. src_clk_div = GPLL_HZ / set_rate;
  662. if (src_clk_div > 127) {
  663. /* use 24MHz source for 400KHz clock */
  664. src_clk_div = 24*1000*1000 / set_rate;
  665. rk_clrsetreg(&cru->clksel_con[16],
  666. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  667. CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT |
  668. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  669. } else {
  670. rk_clrsetreg(&cru->clksel_con[16],
  671. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  672. CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
  673. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  674. }
  675. break;
  676. case SCLK_EMMC:
  677. /* Select aclk_emmc source from GPLL */
  678. src_clk_div = GPLL_HZ / aclk_emmc;
  679. assert(src_clk_div - 1 < 31);
  680. rk_clrsetreg(&cru->clksel_con[21],
  681. ACLK_EMMC_PLL_SEL_MASK | ACLK_EMMC_DIV_CON_MASK,
  682. ACLK_EMMC_PLL_SEL_GPLL << ACLK_EMMC_PLL_SEL_SHIFT |
  683. (src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT);
  684. /* Select clk_emmc source from GPLL too */
  685. src_clk_div = GPLL_HZ / set_rate;
  686. assert(src_clk_div - 1 < 127);
  687. rk_clrsetreg(&cru->clksel_con[22],
  688. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  689. CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
  690. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  691. break;
  692. default:
  693. return -EINVAL;
  694. }
  695. return rk3399_mmc_get_clk(cru, clk_id);
  696. }
  697. #define PMUSGRF_DDR_RGN_CON16 0xff330040
  698. static ulong rk3399_ddr_set_clk(struct rk3399_cru *cru,
  699. ulong set_rate)
  700. {
  701. struct pll_div dpll_cfg;
  702. /* IC ECO bug, need to set this register */
  703. writel(0xc000c000, PMUSGRF_DDR_RGN_CON16);
  704. /* clk_ddrc == DPLL = 24MHz / refdiv * fbdiv / postdiv1 / postdiv2 */
  705. switch (set_rate) {
  706. case 200*MHz:
  707. dpll_cfg = (struct pll_div)
  708. {.refdiv = 1, .fbdiv = 50, .postdiv1 = 6, .postdiv2 = 1};
  709. break;
  710. case 300*MHz:
  711. dpll_cfg = (struct pll_div)
  712. {.refdiv = 2, .fbdiv = 100, .postdiv1 = 4, .postdiv2 = 1};
  713. break;
  714. case 666*MHz:
  715. dpll_cfg = (struct pll_div)
  716. {.refdiv = 2, .fbdiv = 111, .postdiv1 = 2, .postdiv2 = 1};
  717. break;
  718. case 800*MHz:
  719. dpll_cfg = (struct pll_div)
  720. {.refdiv = 1, .fbdiv = 100, .postdiv1 = 3, .postdiv2 = 1};
  721. break;
  722. case 933*MHz:
  723. dpll_cfg = (struct pll_div)
  724. {.refdiv = 1, .fbdiv = 116, .postdiv1 = 3, .postdiv2 = 1};
  725. break;
  726. default:
  727. error("Unsupported SDRAM frequency!,%ld\n", set_rate);
  728. }
  729. rkclk_set_pll(&cru->dpll_con[0], &dpll_cfg);
  730. return set_rate;
  731. }
  732. static ulong rk3399_clk_get_rate(struct clk *clk)
  733. {
  734. struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
  735. ulong rate = 0;
  736. switch (clk->id) {
  737. case 0 ... 63:
  738. return 0;
  739. case SCLK_SDMMC:
  740. case SCLK_EMMC:
  741. rate = rk3399_mmc_get_clk(priv->cru, clk->id);
  742. break;
  743. case SCLK_I2C1:
  744. case SCLK_I2C2:
  745. case SCLK_I2C3:
  746. case SCLK_I2C5:
  747. case SCLK_I2C6:
  748. case SCLK_I2C7:
  749. rate = rk3399_i2c_get_clk(priv->cru, clk->id);
  750. break;
  751. case SCLK_SPI0...SCLK_SPI5:
  752. rate = rk3399_spi_get_clk(priv->cru, clk->id);
  753. break;
  754. case SCLK_UART0:
  755. case SCLK_UART2:
  756. return 24000000;
  757. case DCLK_VOP0:
  758. case DCLK_VOP1:
  759. break;
  760. default:
  761. return -ENOENT;
  762. }
  763. return rate;
  764. }
  765. static ulong rk3399_clk_set_rate(struct clk *clk, ulong rate)
  766. {
  767. struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
  768. ulong ret = 0;
  769. switch (clk->id) {
  770. case 0 ... 63:
  771. return 0;
  772. case SCLK_SDMMC:
  773. case SCLK_EMMC:
  774. ret = rk3399_mmc_set_clk(priv->cru, clk->id, rate);
  775. break;
  776. case SCLK_MAC:
  777. /* nothing to do, as this is an external clock */
  778. ret = rate;
  779. break;
  780. case SCLK_I2C1:
  781. case SCLK_I2C2:
  782. case SCLK_I2C3:
  783. case SCLK_I2C5:
  784. case SCLK_I2C6:
  785. case SCLK_I2C7:
  786. ret = rk3399_i2c_set_clk(priv->cru, clk->id, rate);
  787. break;
  788. case SCLK_SPI0...SCLK_SPI5:
  789. ret = rk3399_spi_set_clk(priv->cru, clk->id, rate);
  790. break;
  791. case DCLK_VOP0:
  792. case DCLK_VOP1:
  793. ret = rk3399_vop_set_clk(priv->cru, clk->id, rate);
  794. break;
  795. case SCLK_DDRCLK:
  796. ret = rk3399_ddr_set_clk(priv->cru, rate);
  797. break;
  798. default:
  799. return -ENOENT;
  800. }
  801. return ret;
  802. }
  803. static struct clk_ops rk3399_clk_ops = {
  804. .get_rate = rk3399_clk_get_rate,
  805. .set_rate = rk3399_clk_set_rate,
  806. };
  807. static int rk3399_clk_probe(struct udevice *dev)
  808. {
  809. #ifdef CONFIG_SPL_BUILD
  810. struct rk3399_clk_priv *priv = dev_get_priv(dev);
  811. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  812. struct rk3399_clk_plat *plat = dev_get_platdata(dev);
  813. priv->cru = map_sysmem(plat->dtd.reg[1], plat->dtd.reg[3]);
  814. #endif
  815. rkclk_init(priv->cru);
  816. #endif
  817. return 0;
  818. }
  819. static int rk3399_clk_ofdata_to_platdata(struct udevice *dev)
  820. {
  821. #if !CONFIG_IS_ENABLED(OF_PLATDATA)
  822. struct rk3399_clk_priv *priv = dev_get_priv(dev);
  823. priv->cru = (struct rk3399_cru *)dev_get_addr(dev);
  824. #endif
  825. return 0;
  826. }
  827. static int rk3399_clk_bind(struct udevice *dev)
  828. {
  829. int ret;
  830. /* The reset driver does not have a device node, so bind it here */
  831. ret = device_bind_driver(gd->dm_root, "rk3399_sysreset", "reset", &dev);
  832. if (ret)
  833. printf("Warning: No RK3399 reset driver: ret=%d\n", ret);
  834. return 0;
  835. }
  836. static const struct udevice_id rk3399_clk_ids[] = {
  837. { .compatible = "rockchip,rk3399-cru" },
  838. { }
  839. };
  840. U_BOOT_DRIVER(clk_rk3399) = {
  841. .name = "rockchip_rk3399_cru",
  842. .id = UCLASS_CLK,
  843. .of_match = rk3399_clk_ids,
  844. .priv_auto_alloc_size = sizeof(struct rk3399_clk_priv),
  845. .ofdata_to_platdata = rk3399_clk_ofdata_to_platdata,
  846. .ops = &rk3399_clk_ops,
  847. .bind = rk3399_clk_bind,
  848. .probe = rk3399_clk_probe,
  849. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  850. .platdata_auto_alloc_size = sizeof(struct rk3399_clk_plat),
  851. #endif
  852. };
  853. static ulong rk3399_i2c_get_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id)
  854. {
  855. u32 div, con;
  856. switch (clk_id) {
  857. case SCLK_I2C0_PMU:
  858. con = readl(&pmucru->pmucru_clksel[2]);
  859. div = I2C_CLK_DIV_VALUE(con, 0);
  860. break;
  861. case SCLK_I2C4_PMU:
  862. con = readl(&pmucru->pmucru_clksel[3]);
  863. div = I2C_CLK_DIV_VALUE(con, 4);
  864. break;
  865. case SCLK_I2C8_PMU:
  866. con = readl(&pmucru->pmucru_clksel[2]);
  867. div = I2C_CLK_DIV_VALUE(con, 8);
  868. break;
  869. default:
  870. printf("do not support this i2c bus\n");
  871. return -EINVAL;
  872. }
  873. return DIV_TO_RATE(PPLL_HZ, div);
  874. }
  875. static ulong rk3399_i2c_set_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id,
  876. uint hz)
  877. {
  878. int src_clk_div;
  879. src_clk_div = PPLL_HZ / hz;
  880. assert(src_clk_div - 1 < 127);
  881. switch (clk_id) {
  882. case SCLK_I2C0_PMU:
  883. rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(0),
  884. I2C_PMUCLK_REG_VALUE(0, src_clk_div));
  885. break;
  886. case SCLK_I2C4_PMU:
  887. rk_clrsetreg(&pmucru->pmucru_clksel[3], I2C_PMUCLK_REG_MASK(4),
  888. I2C_PMUCLK_REG_VALUE(4, src_clk_div));
  889. break;
  890. case SCLK_I2C8_PMU:
  891. rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(8),
  892. I2C_PMUCLK_REG_VALUE(8, src_clk_div));
  893. break;
  894. default:
  895. printf("do not support this i2c bus\n");
  896. return -EINVAL;
  897. }
  898. return DIV_TO_RATE(PPLL_HZ, src_clk_div);
  899. }
  900. static ulong rk3399_pwm_get_clk(struct rk3399_pmucru *pmucru)
  901. {
  902. u32 div, con;
  903. /* PWM closk rate is same as pclk_pmu */
  904. con = readl(&pmucru->pmucru_clksel[0]);
  905. div = con & PMU_PCLK_DIV_CON_MASK;
  906. return DIV_TO_RATE(PPLL_HZ, div);
  907. }
  908. static ulong rk3399_pmuclk_get_rate(struct clk *clk)
  909. {
  910. struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
  911. ulong rate = 0;
  912. switch (clk->id) {
  913. case PCLK_RKPWM_PMU:
  914. rate = rk3399_pwm_get_clk(priv->pmucru);
  915. break;
  916. case SCLK_I2C0_PMU:
  917. case SCLK_I2C4_PMU:
  918. case SCLK_I2C8_PMU:
  919. rate = rk3399_i2c_get_pmuclk(priv->pmucru, clk->id);
  920. break;
  921. default:
  922. return -ENOENT;
  923. }
  924. return rate;
  925. }
  926. static ulong rk3399_pmuclk_set_rate(struct clk *clk, ulong rate)
  927. {
  928. struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
  929. ulong ret = 0;
  930. switch (clk->id) {
  931. case SCLK_I2C0_PMU:
  932. case SCLK_I2C4_PMU:
  933. case SCLK_I2C8_PMU:
  934. ret = rk3399_i2c_set_pmuclk(priv->pmucru, clk->id, rate);
  935. break;
  936. default:
  937. return -ENOENT;
  938. }
  939. return ret;
  940. }
  941. static struct clk_ops rk3399_pmuclk_ops = {
  942. .get_rate = rk3399_pmuclk_get_rate,
  943. .set_rate = rk3399_pmuclk_set_rate,
  944. };
  945. #ifndef CONFIG_SPL_BUILD
  946. static void pmuclk_init(struct rk3399_pmucru *pmucru)
  947. {
  948. u32 pclk_div;
  949. /* configure pmu pll(ppll) */
  950. rkclk_set_pll(&pmucru->ppll_con[0], &ppll_init_cfg);
  951. /* configure pmu pclk */
  952. pclk_div = PPLL_HZ / PMU_PCLK_HZ - 1;
  953. rk_clrsetreg(&pmucru->pmucru_clksel[0],
  954. PMU_PCLK_DIV_CON_MASK,
  955. pclk_div << PMU_PCLK_DIV_CON_SHIFT);
  956. }
  957. #endif
  958. static int rk3399_pmuclk_probe(struct udevice *dev)
  959. {
  960. #if CONFIG_IS_ENABLED(OF_PLATDATA) || !defined(CONFIG_SPL_BUILD)
  961. struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
  962. #endif
  963. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  964. struct rk3399_pmuclk_plat *plat = dev_get_platdata(dev);
  965. priv->pmucru = map_sysmem(plat->dtd.reg[1], plat->dtd.reg[3]);
  966. #endif
  967. #ifndef CONFIG_SPL_BUILD
  968. pmuclk_init(priv->pmucru);
  969. #endif
  970. return 0;
  971. }
  972. static int rk3399_pmuclk_ofdata_to_platdata(struct udevice *dev)
  973. {
  974. #if !CONFIG_IS_ENABLED(OF_PLATDATA)
  975. struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
  976. priv->pmucru = (struct rk3399_pmucru *)dev_get_addr(dev);
  977. #endif
  978. return 0;
  979. }
  980. static const struct udevice_id rk3399_pmuclk_ids[] = {
  981. { .compatible = "rockchip,rk3399-pmucru" },
  982. { }
  983. };
  984. U_BOOT_DRIVER(rockchip_rk3399_pmuclk) = {
  985. .name = "rockchip_rk3399_pmucru",
  986. .id = UCLASS_CLK,
  987. .of_match = rk3399_pmuclk_ids,
  988. .priv_auto_alloc_size = sizeof(struct rk3399_pmuclk_priv),
  989. .ofdata_to_platdata = rk3399_pmuclk_ofdata_to_platdata,
  990. .ops = &rk3399_pmuclk_ops,
  991. .probe = rk3399_pmuclk_probe,
  992. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  993. .platdata_auto_alloc_size = sizeof(struct rk3399_pmuclk_plat),
  994. #endif
  995. };