ddr3.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. /*
  2. * Keystone2: DDR3 initialization
  3. *
  4. * (C) Copyright 2012-2014
  5. * Texas Instruments Incorporated, <www.ti.com>
  6. *
  7. * SPDX-License-Identifier: GPL-2.0+
  8. */
  9. #include <asm/io.h>
  10. #include <common.h>
  11. #include <asm/arch/msmc.h>
  12. #include <asm/arch/ddr3.h>
  13. #include <asm/arch/psc_defs.h>
  14. #include <asm/ti-common/ti-edma3.h>
  15. #define DDR3_EDMA_BLK_SIZE_SHIFT 10
  16. #define DDR3_EDMA_BLK_SIZE (1 << DDR3_EDMA_BLK_SIZE_SHIFT)
  17. #define DDR3_EDMA_BCNT 0x8000
  18. #define DDR3_EDMA_CCNT 1
  19. #define DDR3_EDMA_XF_SIZE (DDR3_EDMA_BLK_SIZE * DDR3_EDMA_BCNT)
  20. #define DDR3_EDMA_SLOT_NUM 1
  21. void ddr3_init_ddrphy(u32 base, struct ddr3_phy_config *phy_cfg)
  22. {
  23. unsigned int tmp;
  24. while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET)
  25. & 0x00000001) != 0x00000001)
  26. ;
  27. __raw_writel(phy_cfg->pllcr, base + KS2_DDRPHY_PLLCR_OFFSET);
  28. tmp = __raw_readl(base + KS2_DDRPHY_PGCR1_OFFSET);
  29. tmp &= ~(phy_cfg->pgcr1_mask);
  30. tmp |= phy_cfg->pgcr1_val;
  31. __raw_writel(tmp, base + KS2_DDRPHY_PGCR1_OFFSET);
  32. __raw_writel(phy_cfg->ptr0, base + KS2_DDRPHY_PTR0_OFFSET);
  33. __raw_writel(phy_cfg->ptr1, base + KS2_DDRPHY_PTR1_OFFSET);
  34. __raw_writel(phy_cfg->ptr3, base + KS2_DDRPHY_PTR3_OFFSET);
  35. __raw_writel(phy_cfg->ptr4, base + KS2_DDRPHY_PTR4_OFFSET);
  36. tmp = __raw_readl(base + KS2_DDRPHY_DCR_OFFSET);
  37. tmp &= ~(phy_cfg->dcr_mask);
  38. tmp |= phy_cfg->dcr_val;
  39. __raw_writel(tmp, base + KS2_DDRPHY_DCR_OFFSET);
  40. __raw_writel(phy_cfg->dtpr0, base + KS2_DDRPHY_DTPR0_OFFSET);
  41. __raw_writel(phy_cfg->dtpr1, base + KS2_DDRPHY_DTPR1_OFFSET);
  42. __raw_writel(phy_cfg->dtpr2, base + KS2_DDRPHY_DTPR2_OFFSET);
  43. __raw_writel(phy_cfg->mr0, base + KS2_DDRPHY_MR0_OFFSET);
  44. __raw_writel(phy_cfg->mr1, base + KS2_DDRPHY_MR1_OFFSET);
  45. __raw_writel(phy_cfg->mr2, base + KS2_DDRPHY_MR2_OFFSET);
  46. __raw_writel(phy_cfg->dtcr, base + KS2_DDRPHY_DTCR_OFFSET);
  47. __raw_writel(phy_cfg->pgcr2, base + KS2_DDRPHY_PGCR2_OFFSET);
  48. __raw_writel(phy_cfg->zq0cr1, base + KS2_DDRPHY_ZQ0CR1_OFFSET);
  49. __raw_writel(phy_cfg->zq1cr1, base + KS2_DDRPHY_ZQ1CR1_OFFSET);
  50. __raw_writel(phy_cfg->zq2cr1, base + KS2_DDRPHY_ZQ2CR1_OFFSET);
  51. __raw_writel(phy_cfg->pir_v1, base + KS2_DDRPHY_PIR_OFFSET);
  52. while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET) & 0x1) != 0x1)
  53. ;
  54. __raw_writel(phy_cfg->pir_v2, base + KS2_DDRPHY_PIR_OFFSET);
  55. while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET) & 0x1) != 0x1)
  56. ;
  57. }
  58. void ddr3_init_ddremif(u32 base, struct ddr3_emif_config *emif_cfg)
  59. {
  60. __raw_writel(emif_cfg->sdcfg, base + KS2_DDR3_SDCFG_OFFSET);
  61. __raw_writel(emif_cfg->sdtim1, base + KS2_DDR3_SDTIM1_OFFSET);
  62. __raw_writel(emif_cfg->sdtim2, base + KS2_DDR3_SDTIM2_OFFSET);
  63. __raw_writel(emif_cfg->sdtim3, base + KS2_DDR3_SDTIM3_OFFSET);
  64. __raw_writel(emif_cfg->sdtim4, base + KS2_DDR3_SDTIM4_OFFSET);
  65. __raw_writel(emif_cfg->zqcfg, base + KS2_DDR3_ZQCFG_OFFSET);
  66. __raw_writel(emif_cfg->sdrfc, base + KS2_DDR3_SDRFC_OFFSET);
  67. }
  68. int ddr3_ecc_support_rmw(u32 base)
  69. {
  70. u32 value = __raw_readl(base + KS2_DDR3_MIDR_OFFSET);
  71. /* Check the DDR3 controller ID reg if the controllers
  72. supports ECC RMW or not */
  73. if (value == 0x40461C02)
  74. return 1;
  75. return 0;
  76. }
  77. static void ddr3_ecc_config(u32 base, u32 value)
  78. {
  79. u32 data;
  80. __raw_writel(value, base + KS2_DDR3_ECC_CTRL_OFFSET);
  81. udelay(100000); /* delay required to synchronize across clock domains */
  82. if (value & KS2_DDR3_ECC_EN) {
  83. /* Clear the 1-bit error count */
  84. data = __raw_readl(base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET);
  85. __raw_writel(data, base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET);
  86. /* enable the ECC interrupt */
  87. __raw_writel(KS2_DDR3_1B_ECC_ERR_SYS | KS2_DDR3_2B_ECC_ERR_SYS |
  88. KS2_DDR3_WR_ECC_ERR_SYS,
  89. base + KS2_DDR3_ECC_INT_ENABLE_SET_SYS_OFFSET);
  90. /* Clear the ECC error interrupt status */
  91. __raw_writel(KS2_DDR3_1B_ECC_ERR_SYS | KS2_DDR3_2B_ECC_ERR_SYS |
  92. KS2_DDR3_WR_ECC_ERR_SYS,
  93. base + KS2_DDR3_ECC_INT_STATUS_OFFSET);
  94. }
  95. }
  96. static void ddr3_reset_data(u32 base, u32 ddr3_size)
  97. {
  98. u32 mpax[2];
  99. u32 seg_num;
  100. u32 seg, blks, dst, edma_blks;
  101. struct edma3_slot_config slot;
  102. struct edma3_channel_config edma_channel;
  103. u32 edma_src[DDR3_EDMA_BLK_SIZE/4] __aligned(16) = {0, };
  104. /* Setup an edma to copy the 1k block to the entire DDR */
  105. puts("\nClear entire DDR3 memory to enable ECC\n");
  106. /* save the SES MPAX regs */
  107. msmc_get_ses_mpax(8, 0, mpax);
  108. /* setup edma slot 1 configuration */
  109. slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB |
  110. EDMA3_SLOPT_COMP_CODE(0) |
  111. EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC;
  112. slot.bcnt = DDR3_EDMA_BCNT;
  113. slot.acnt = DDR3_EDMA_BLK_SIZE;
  114. slot.ccnt = DDR3_EDMA_CCNT;
  115. slot.src_bidx = 0;
  116. slot.dst_bidx = DDR3_EDMA_BLK_SIZE;
  117. slot.src_cidx = 0;
  118. slot.dst_cidx = 0;
  119. slot.link = EDMA3_PARSET_NULL_LINK;
  120. slot.bcntrld = 0;
  121. edma3_slot_configure(KS2_EDMA0_BASE, DDR3_EDMA_SLOT_NUM, &slot);
  122. /* configure quik edma channel */
  123. edma_channel.slot = DDR3_EDMA_SLOT_NUM;
  124. edma_channel.chnum = 0;
  125. edma_channel.complete_code = 0;
  126. /* event trigger after dst update */
  127. edma_channel.trigger_slot_word = EDMA3_TWORD(dst);
  128. qedma3_start(KS2_EDMA0_BASE, &edma_channel);
  129. /* DDR3 size in segments (4KB seg size) */
  130. seg_num = ddr3_size << (30 - KS2_MSMC_SEG_SIZE_SHIFT);
  131. for (seg = 0; seg < seg_num; seg += KS2_MSMC_MAP_SEG_NUM) {
  132. /* map 2GB 36-bit DDR address to 32-bit DDR address in EMIF
  133. access slave interface so that edma driver can access */
  134. msmc_map_ses_segment(8, 0, base >> KS2_MSMC_SEG_SIZE_SHIFT,
  135. KS2_MSMC_DST_SEG_BASE + seg, MPAX_SEG_2G);
  136. if ((seg_num - seg) > KS2_MSMC_MAP_SEG_NUM)
  137. edma_blks = KS2_MSMC_MAP_SEG_NUM <<
  138. (KS2_MSMC_SEG_SIZE_SHIFT
  139. - DDR3_EDMA_BLK_SIZE_SHIFT);
  140. else
  141. edma_blks = (seg_num - seg) << (KS2_MSMC_SEG_SIZE_SHIFT
  142. - DDR3_EDMA_BLK_SIZE_SHIFT);
  143. /* Use edma driver to scrub 2GB DDR memory */
  144. for (dst = base, blks = 0; blks < edma_blks;
  145. blks += DDR3_EDMA_BCNT, dst += DDR3_EDMA_XF_SIZE) {
  146. edma3_set_src_addr(KS2_EDMA0_BASE,
  147. edma_channel.slot, (u32)edma_src);
  148. edma3_set_dest_addr(KS2_EDMA0_BASE,
  149. edma_channel.slot, (u32)dst);
  150. while (edma3_check_for_transfer(KS2_EDMA0_BASE,
  151. &edma_channel))
  152. udelay(10);
  153. }
  154. }
  155. qedma3_stop(KS2_EDMA0_BASE, &edma_channel);
  156. /* restore the SES MPAX regs */
  157. msmc_set_ses_mpax(8, 0, mpax);
  158. }
  159. static void ddr3_ecc_init_range(u32 base)
  160. {
  161. u32 ecc_val = KS2_DDR3_ECC_EN;
  162. u32 rmw = ddr3_ecc_support_rmw(base);
  163. if (rmw)
  164. ecc_val |= KS2_DDR3_ECC_RMW_EN;
  165. __raw_writel(0, base + KS2_DDR3_ECC_ADDR_RANGE1_OFFSET);
  166. ddr3_ecc_config(base, ecc_val);
  167. }
  168. void ddr3_enable_ecc(u32 base, int test)
  169. {
  170. u32 ecc_val = KS2_DDR3_ECC_ENABLE;
  171. u32 rmw = ddr3_ecc_support_rmw(base);
  172. if (test)
  173. ecc_val |= KS2_DDR3_ECC_ADDR_RNG_1_EN;
  174. if (!rmw) {
  175. if (!test)
  176. /* by default, disable ecc when rmw = 0 and no
  177. ecc test */
  178. ecc_val = 0;
  179. } else {
  180. ecc_val |= KS2_DDR3_ECC_RMW_EN;
  181. }
  182. ddr3_ecc_config(base, ecc_val);
  183. }
  184. void ddr3_disable_ecc(u32 base)
  185. {
  186. ddr3_ecc_config(base, 0);
  187. }
  188. #if defined(CONFIG_SOC_K2HK) || defined(CONFIG_SOC_K2L)
  189. static void cic_init(u32 base)
  190. {
  191. /* Disable CIC global interrupts */
  192. __raw_writel(0, base + KS2_CIC_GLOBAL_ENABLE);
  193. /* Set to normal mode, no nesting, no priority hold */
  194. __raw_writel(0, base + KS2_CIC_CTRL);
  195. __raw_writel(0, base + KS2_CIC_HOST_CTRL);
  196. /* Enable CIC global interrupts */
  197. __raw_writel(1, base + KS2_CIC_GLOBAL_ENABLE);
  198. }
  199. static void cic_map_cic_to_gic(u32 base, u32 chan_num, u32 irq_num)
  200. {
  201. /* Map the system interrupt to a CIC channel */
  202. __raw_writeb(chan_num, base + KS2_CIC_CHAN_MAP(0) + irq_num);
  203. /* Enable CIC system interrupt */
  204. __raw_writel(irq_num, base + KS2_CIC_SYS_ENABLE_IDX_SET);
  205. /* Enable CIC Host interrupt */
  206. __raw_writel(chan_num, base + KS2_CIC_HOST_ENABLE_IDX_SET);
  207. }
  208. static void ddr3_map_ecc_cic2_irq(u32 base)
  209. {
  210. cic_init(base);
  211. cic_map_cic_to_gic(base, KS2_CIC2_DDR3_ECC_CHAN_NUM,
  212. KS2_CIC2_DDR3_ECC_IRQ_NUM);
  213. }
  214. #endif
  215. void ddr3_init_ecc(u32 base, u32 ddr3_size)
  216. {
  217. if (!ddr3_ecc_support_rmw(base)) {
  218. ddr3_disable_ecc(base);
  219. return;
  220. }
  221. ddr3_ecc_init_range(base);
  222. ddr3_reset_data(CONFIG_SYS_SDRAM_BASE, ddr3_size);
  223. /* mapping DDR3 ECC system interrupt from CIC2 to GIC */
  224. #if defined(CONFIG_SOC_K2HK) || defined(CONFIG_SOC_K2L)
  225. ddr3_map_ecc_cic2_irq(KS2_CIC2_BASE);
  226. #endif
  227. ddr3_enable_ecc(base, 0);
  228. }
  229. void ddr3_check_ecc_int(u32 base)
  230. {
  231. char *env;
  232. int ecc_test = 0;
  233. u32 value = __raw_readl(base + KS2_DDR3_ECC_INT_STATUS_OFFSET);
  234. env = getenv("ecc_test");
  235. if (env)
  236. ecc_test = simple_strtol(env, NULL, 0);
  237. if (value & KS2_DDR3_WR_ECC_ERR_SYS)
  238. puts("DDR3 ECC write error interrupted\n");
  239. if (value & KS2_DDR3_2B_ECC_ERR_SYS) {
  240. puts("DDR3 ECC 2-bit error interrupted\n");
  241. if (!ecc_test) {
  242. puts("Reseting the device ...\n");
  243. reset_cpu(0);
  244. }
  245. }
  246. value = __raw_readl(base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET);
  247. if (value) {
  248. printf("1-bit ECC err count: 0x%x\n", value);
  249. value = __raw_readl(base +
  250. KS2_DDR3_ONE_BIT_ECC_ERR_ADDR_LOG_OFFSET);
  251. printf("1-bit ECC err address log: 0x%x\n", value);
  252. }
  253. }
  254. void ddr3_reset_ddrphy(void)
  255. {
  256. u32 tmp;
  257. /* Assert DDR3A PHY reset */
  258. tmp = readl(KS2_DDR3APLLCTL1);
  259. tmp |= KS2_DDR3_PLLCTRL_PHY_RESET;
  260. writel(tmp, KS2_DDR3APLLCTL1);
  261. /* wait 10us to catch the reset */
  262. udelay(10);
  263. /* Release DDR3A PHY reset */
  264. tmp = readl(KS2_DDR3APLLCTL1);
  265. tmp &= ~KS2_DDR3_PLLCTRL_PHY_RESET;
  266. __raw_writel(tmp, KS2_DDR3APLLCTL1);
  267. }
  268. #ifdef CONFIG_SOC_K2HK
  269. /**
  270. * ddr3_reset_workaround - reset workaround in case if leveling error
  271. * detected for PG 1.0 and 1.1 k2hk SoCs
  272. */
  273. void ddr3_err_reset_workaround(void)
  274. {
  275. unsigned int tmp;
  276. unsigned int tmp_a;
  277. unsigned int tmp_b;
  278. /*
  279. * Check for PGSR0 error bits of DDR3 PHY.
  280. * Check for WLERR, QSGERR, WLAERR,
  281. * RDERR, WDERR, REERR, WEERR error to see if they are set or not
  282. */
  283. tmp_a = __raw_readl(KS2_DDR3A_DDRPHYC + KS2_DDRPHY_PGSR0_OFFSET);
  284. tmp_b = __raw_readl(KS2_DDR3B_DDRPHYC + KS2_DDRPHY_PGSR0_OFFSET);
  285. if (((tmp_a & 0x0FE00000) != 0) || ((tmp_b & 0x0FE00000) != 0)) {
  286. printf("DDR Leveling Error Detected!\n");
  287. printf("DDR3A PGSR0 = 0x%x\n", tmp_a);
  288. printf("DDR3B PGSR0 = 0x%x\n", tmp_b);
  289. /*
  290. * Write Keys to KICK registers to enable writes to registers
  291. * in boot config space
  292. */
  293. __raw_writel(KS2_KICK0_MAGIC, KS2_KICK0);
  294. __raw_writel(KS2_KICK1_MAGIC, KS2_KICK1);
  295. /*
  296. * Move DDR3A Module out of reset isolation by setting
  297. * MDCTL23[12] = 0
  298. */
  299. tmp_a = __raw_readl(KS2_PSC_BASE +
  300. PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3A));
  301. tmp_a = PSC_REG_MDCTL_SET_RESET_ISO(tmp_a, 0);
  302. __raw_writel(tmp_a, KS2_PSC_BASE +
  303. PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3A));
  304. /*
  305. * Move DDR3B Module out of reset isolation by setting
  306. * MDCTL24[12] = 0
  307. */
  308. tmp_b = __raw_readl(KS2_PSC_BASE +
  309. PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3B));
  310. tmp_b = PSC_REG_MDCTL_SET_RESET_ISO(tmp_b, 0);
  311. __raw_writel(tmp_b, KS2_PSC_BASE +
  312. PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3B));
  313. /*
  314. * Write 0x5A69 Key to RSTCTRL[15:0] to unlock writes
  315. * to RSTCTRL and RSTCFG
  316. */
  317. tmp = __raw_readl(KS2_RSTCTRL);
  318. tmp &= KS2_RSTCTRL_MASK;
  319. tmp |= KS2_RSTCTRL_KEY;
  320. __raw_writel(tmp, KS2_RSTCTRL);
  321. /*
  322. * Set PLL Controller to drive hard reset on SW trigger by
  323. * setting RSTCFG[13] = 0
  324. */
  325. tmp = __raw_readl(KS2_RSTCTRL_RSCFG);
  326. tmp &= ~KS2_RSTYPE_PLL_SOFT;
  327. __raw_writel(tmp, KS2_RSTCTRL_RSCFG);
  328. reset_cpu(0);
  329. }
  330. }
  331. #endif