zynqpl.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. /*
  2. * (C) Copyright 2012-2013, Xilinx, Michal Simek
  3. *
  4. * (C) Copyright 2012
  5. * Joe Hershberger <joe.hershberger@ni.com>
  6. *
  7. * SPDX-License-Identifier: GPL-2.0+
  8. */
  9. #include <common.h>
  10. #include <asm/io.h>
  11. #include <zynqpl.h>
  12. #include <linux/sizes.h>
  13. #include <asm/arch/hardware.h>
  14. #include <asm/arch/sys_proto.h>
  15. #define DEVCFG_CTRL_PCFG_PROG_B 0x40000000
  16. #define DEVCFG_ISR_FATAL_ERROR_MASK 0x00740040
  17. #define DEVCFG_ISR_ERROR_FLAGS_MASK 0x00340840
  18. #define DEVCFG_ISR_RX_FIFO_OV 0x00040000
  19. #define DEVCFG_ISR_DMA_DONE 0x00002000
  20. #define DEVCFG_ISR_PCFG_DONE 0x00000004
  21. #define DEVCFG_STATUS_DMA_CMD_Q_F 0x80000000
  22. #define DEVCFG_STATUS_DMA_CMD_Q_E 0x40000000
  23. #define DEVCFG_STATUS_DMA_DONE_CNT_MASK 0x30000000
  24. #define DEVCFG_STATUS_PCFG_INIT 0x00000010
  25. #define DEVCFG_MCTRL_PCAP_LPBK 0x00000010
  26. #define DEVCFG_MCTRL_RFIFO_FLUSH 0x00000002
  27. #define DEVCFG_MCTRL_WFIFO_FLUSH 0x00000001
  28. #ifndef CONFIG_SYS_FPGA_WAIT
  29. #define CONFIG_SYS_FPGA_WAIT CONFIG_SYS_HZ/100 /* 10 ms */
  30. #endif
  31. #ifndef CONFIG_SYS_FPGA_PROG_TIME
  32. #define CONFIG_SYS_FPGA_PROG_TIME (CONFIG_SYS_HZ * 4) /* 4 s */
  33. #endif
  34. int zynq_info(Xilinx_desc *desc)
  35. {
  36. return FPGA_SUCCESS;
  37. }
  38. #define DUMMY_WORD 0xffffffff
  39. /* Xilinx binary format header */
  40. static const u32 bin_format[] = {
  41. DUMMY_WORD, /* Dummy words */
  42. DUMMY_WORD,
  43. DUMMY_WORD,
  44. DUMMY_WORD,
  45. DUMMY_WORD,
  46. DUMMY_WORD,
  47. DUMMY_WORD,
  48. DUMMY_WORD,
  49. 0x000000bb, /* Sync word */
  50. 0x11220044, /* Sync word */
  51. DUMMY_WORD,
  52. DUMMY_WORD,
  53. 0xaa995566, /* Sync word */
  54. };
  55. #define SWAP_NO 1
  56. #define SWAP_DONE 2
  57. /*
  58. * Load the whole word from unaligned buffer
  59. * Keep in your mind that it is byte loading on little-endian system
  60. */
  61. static u32 load_word(const void *buf, u32 swap)
  62. {
  63. u32 word = 0;
  64. u8 *bitc = (u8 *)buf;
  65. int p;
  66. if (swap == SWAP_NO) {
  67. for (p = 0; p < 4; p++) {
  68. word <<= 8;
  69. word |= bitc[p];
  70. }
  71. } else {
  72. for (p = 3; p >= 0; p--) {
  73. word <<= 8;
  74. word |= bitc[p];
  75. }
  76. }
  77. return word;
  78. }
  79. static u32 check_header(const void *buf)
  80. {
  81. u32 i, pattern;
  82. int swap = SWAP_NO;
  83. u32 *test = (u32 *)buf;
  84. debug("%s: Let's check bitstream header\n", __func__);
  85. /* Checking that passing bin is not a bitstream */
  86. for (i = 0; i < ARRAY_SIZE(bin_format); i++) {
  87. pattern = load_word(&test[i], swap);
  88. /*
  89. * Bitstreams in binary format are swapped
  90. * compare to regular bistream.
  91. * Do not swap dummy word but if swap is done assume
  92. * that parsing buffer is binary format
  93. */
  94. if ((__swab32(pattern) != DUMMY_WORD) &&
  95. (__swab32(pattern) == bin_format[i])) {
  96. pattern = __swab32(pattern);
  97. swap = SWAP_DONE;
  98. debug("%s: data swapped - let's swap\n", __func__);
  99. }
  100. debug("%s: %d/%x: pattern %x/%x bin_format\n", __func__, i,
  101. (u32)&test[i], pattern, bin_format[i]);
  102. if (pattern != bin_format[i]) {
  103. debug("%s: Bitstream is not recognized\n", __func__);
  104. return 0;
  105. }
  106. }
  107. debug("%s: Found bitstream header at %x %s swapinng\n", __func__,
  108. (u32)buf, swap == SWAP_NO ? "without" : "with");
  109. return swap;
  110. }
  111. static void *check_data(u8 *buf, size_t bsize, u32 *swap)
  112. {
  113. u32 word, p = 0; /* possition */
  114. /* Because buf doesn't need to be aligned let's read it by chars */
  115. for (p = 0; p < bsize; p++) {
  116. word = load_word(&buf[p], SWAP_NO);
  117. debug("%s: word %x %x/%x\n", __func__, word, p, (u32)&buf[p]);
  118. /* Find the first bitstream dummy word */
  119. if (word == DUMMY_WORD) {
  120. debug("%s: Found dummy word at position %x/%x\n",
  121. __func__, p, (u32)&buf[p]);
  122. *swap = check_header(&buf[p]);
  123. if (*swap) {
  124. /* FIXME add full bitstream checking here */
  125. return &buf[p];
  126. }
  127. }
  128. /* Loop can be huge - support CTRL + C */
  129. if (ctrlc())
  130. return 0;
  131. }
  132. return 0;
  133. }
  134. int zynq_load(Xilinx_desc *desc, const void *buf, size_t bsize)
  135. {
  136. unsigned long ts; /* Timestamp */
  137. u32 partialbit = 0;
  138. u32 i, control, isr_status, status, swap, diff;
  139. u32 *buf_start;
  140. /* Detect if we are going working with partial or full bitstream */
  141. if (bsize != desc->size) {
  142. printf("%s: Working with partial bitstream\n", __func__);
  143. partialbit = 1;
  144. }
  145. buf_start = check_data((u8 *)buf, bsize, &swap);
  146. if (!buf_start)
  147. return FPGA_FAIL;
  148. /* Check if data is postpone from start */
  149. diff = (u32)buf_start - (u32)buf;
  150. if (diff) {
  151. printf("%s: Bitstream is not validated yet (diff %x)\n",
  152. __func__, diff);
  153. return FPGA_FAIL;
  154. }
  155. if ((u32)buf < SZ_1M) {
  156. printf("%s: Bitstream has to be placed up to 1MB (%x)\n",
  157. __func__, (u32)buf);
  158. return FPGA_FAIL;
  159. }
  160. if ((u32)buf != ALIGN((u32)buf, ARCH_DMA_MINALIGN)) {
  161. u32 *new_buf = (u32 *)ALIGN((u32)buf, ARCH_DMA_MINALIGN);
  162. /*
  163. * This might be dangerous but permits to flash if
  164. * ARCH_DMA_MINALIGN is greater than header size
  165. */
  166. if (new_buf > buf_start) {
  167. debug("%s: Aligned buffer is after buffer start\n",
  168. __func__);
  169. new_buf -= ARCH_DMA_MINALIGN;
  170. }
  171. printf("%s: Align buffer at %x to %x(swap %d)\n", __func__,
  172. (u32)buf_start, (u32)new_buf, swap);
  173. for (i = 0; i < (bsize/4); i++)
  174. new_buf[i] = load_word(&buf_start[i], swap);
  175. swap = SWAP_DONE;
  176. buf = new_buf;
  177. } else if (swap != SWAP_DONE) {
  178. /* For bitstream which are aligned */
  179. u32 *new_buf = (u32 *)buf;
  180. printf("%s: Bitstream is not swapped(%d) - swap it\n", __func__,
  181. swap);
  182. for (i = 0; i < (bsize/4); i++)
  183. new_buf[i] = load_word(&buf_start[i], swap);
  184. swap = SWAP_DONE;
  185. }
  186. /* Clear loopback bit */
  187. clrbits_le32(&devcfg_base->mctrl, DEVCFG_MCTRL_PCAP_LPBK);
  188. if (!partialbit) {
  189. zynq_slcr_devcfg_disable();
  190. /* Setting PCFG_PROG_B signal to high */
  191. control = readl(&devcfg_base->ctrl);
  192. writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
  193. /* Setting PCFG_PROG_B signal to low */
  194. writel(control & ~DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
  195. /* Polling the PCAP_INIT status for Reset */
  196. ts = get_timer(0);
  197. while (readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT) {
  198. if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
  199. printf("%s: Timeout wait for INIT to clear\n",
  200. __func__);
  201. return FPGA_FAIL;
  202. }
  203. }
  204. /* Setting PCFG_PROG_B signal to high */
  205. writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
  206. /* Polling the PCAP_INIT status for Set */
  207. ts = get_timer(0);
  208. while (!(readl(&devcfg_base->status) &
  209. DEVCFG_STATUS_PCFG_INIT)) {
  210. if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
  211. printf("%s: Timeout wait for INIT to set\n",
  212. __func__);
  213. return FPGA_FAIL;
  214. }
  215. }
  216. }
  217. isr_status = readl(&devcfg_base->int_sts);
  218. /* Clear it all, so if Boot ROM comes back, it can proceed */
  219. writel(0xFFFFFFFF, &devcfg_base->int_sts);
  220. if (isr_status & DEVCFG_ISR_FATAL_ERROR_MASK) {
  221. debug("%s: Fatal errors in PCAP 0x%X\n", __func__, isr_status);
  222. /* If RX FIFO overflow, need to flush RX FIFO first */
  223. if (isr_status & DEVCFG_ISR_RX_FIFO_OV) {
  224. writel(DEVCFG_MCTRL_RFIFO_FLUSH, &devcfg_base->mctrl);
  225. writel(0xFFFFFFFF, &devcfg_base->int_sts);
  226. }
  227. return FPGA_FAIL;
  228. }
  229. status = readl(&devcfg_base->status);
  230. debug("%s: Status = 0x%08X\n", __func__, status);
  231. if (status & DEVCFG_STATUS_DMA_CMD_Q_F) {
  232. debug("%s: Error: device busy\n", __func__);
  233. return FPGA_FAIL;
  234. }
  235. debug("%s: Device ready\n", __func__);
  236. if (!(status & DEVCFG_STATUS_DMA_CMD_Q_E)) {
  237. if (!(readl(&devcfg_base->int_sts) & DEVCFG_ISR_DMA_DONE)) {
  238. /* Error state, transfer cannot occur */
  239. debug("%s: ISR indicates error\n", __func__);
  240. return FPGA_FAIL;
  241. } else {
  242. /* Clear out the status */
  243. writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
  244. }
  245. }
  246. if (status & DEVCFG_STATUS_DMA_DONE_CNT_MASK) {
  247. /* Clear the count of completed DMA transfers */
  248. writel(DEVCFG_STATUS_DMA_DONE_CNT_MASK, &devcfg_base->status);
  249. }
  250. debug("%s: Source = 0x%08X\n", __func__, (u32)buf);
  251. debug("%s: Size = %zu\n", __func__, bsize);
  252. /* flush(clean & invalidate) d-cache range buf */
  253. flush_dcache_range((u32)buf, (u32)buf +
  254. roundup(bsize, ARCH_DMA_MINALIGN));
  255. /* Set up the transfer */
  256. writel((u32)buf | 1, &devcfg_base->dma_src_addr);
  257. writel(0xFFFFFFFF, &devcfg_base->dma_dst_addr);
  258. writel(bsize >> 2, &devcfg_base->dma_src_len);
  259. writel(0, &devcfg_base->dma_dst_len);
  260. isr_status = readl(&devcfg_base->int_sts);
  261. /* Polling the PCAP_INIT status for Set */
  262. ts = get_timer(0);
  263. while (!(isr_status & DEVCFG_ISR_DMA_DONE)) {
  264. if (isr_status & DEVCFG_ISR_ERROR_FLAGS_MASK) {
  265. debug("%s: Error: isr = 0x%08X\n", __func__,
  266. isr_status);
  267. debug("%s: Write count = 0x%08X\n", __func__,
  268. readl(&devcfg_base->write_count));
  269. debug("%s: Read count = 0x%08X\n", __func__,
  270. readl(&devcfg_base->read_count));
  271. return FPGA_FAIL;
  272. }
  273. if (get_timer(ts) > CONFIG_SYS_FPGA_PROG_TIME) {
  274. printf("%s: Timeout wait for DMA to complete\n",
  275. __func__);
  276. return FPGA_FAIL;
  277. }
  278. isr_status = readl(&devcfg_base->int_sts);
  279. }
  280. debug("%s: DMA transfer is done\n", __func__);
  281. /* Check FPGA configuration completion */
  282. ts = get_timer(0);
  283. while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) {
  284. if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
  285. printf("%s: Timeout wait for FPGA to config\n",
  286. __func__);
  287. return FPGA_FAIL;
  288. }
  289. isr_status = readl(&devcfg_base->int_sts);
  290. }
  291. debug("%s: FPGA config done\n", __func__);
  292. /* Clear out the DMA status */
  293. writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
  294. if (!partialbit)
  295. zynq_slcr_devcfg_enable();
  296. return FPGA_SUCCESS;
  297. }
  298. int zynq_dump(Xilinx_desc *desc, const void *buf, size_t bsize)
  299. {
  300. return FPGA_FAIL;
  301. }