cpu.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. /*
  2. * (C) Copyright 2008-2011
  3. * Graeme Russ, <graeme.russ@gmail.com>
  4. *
  5. * (C) Copyright 2002
  6. * Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
  7. *
  8. * (C) Copyright 2002
  9. * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
  10. * Marius Groeger <mgroeger@sysgo.de>
  11. *
  12. * (C) Copyright 2002
  13. * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
  14. * Alex Zuepke <azu@sysgo.de>
  15. *
  16. * Part of this file is adapted from coreboot
  17. * src/arch/x86/lib/cpu.c
  18. *
  19. * SPDX-License-Identifier: GPL-2.0+
  20. */
  21. #include <common.h>
  22. #include <command.h>
  23. #include <dm.h>
  24. #include <errno.h>
  25. #include <malloc.h>
  26. #include <asm/control_regs.h>
  27. #include <asm/cpu.h>
  28. #include <asm/lapic.h>
  29. #include <asm/mp.h>
  30. #include <asm/msr.h>
  31. #include <asm/mtrr.h>
  32. #include <asm/post.h>
  33. #include <asm/processor.h>
  34. #include <asm/processor-flags.h>
  35. #include <asm/interrupt.h>
  36. #include <asm/tables.h>
  37. #include <linux/compiler.h>
  38. DECLARE_GLOBAL_DATA_PTR;
  39. /*
  40. * Constructor for a conventional segment GDT (or LDT) entry
  41. * This is a macro so it can be used in initialisers
  42. */
  43. #define GDT_ENTRY(flags, base, limit) \
  44. ((((base) & 0xff000000ULL) << (56-24)) | \
  45. (((flags) & 0x0000f0ffULL) << 40) | \
  46. (((limit) & 0x000f0000ULL) << (48-16)) | \
  47. (((base) & 0x00ffffffULL) << 16) | \
  48. (((limit) & 0x0000ffffULL)))
  49. struct gdt_ptr {
  50. u16 len;
  51. u32 ptr;
  52. } __packed;
  53. struct cpu_device_id {
  54. unsigned vendor;
  55. unsigned device;
  56. };
  57. struct cpuinfo_x86 {
  58. uint8_t x86; /* CPU family */
  59. uint8_t x86_vendor; /* CPU vendor */
  60. uint8_t x86_model;
  61. uint8_t x86_mask;
  62. };
  63. /*
  64. * List of cpu vendor strings along with their normalized
  65. * id values.
  66. */
  67. static struct {
  68. int vendor;
  69. const char *name;
  70. } x86_vendors[] = {
  71. { X86_VENDOR_INTEL, "GenuineIntel", },
  72. { X86_VENDOR_CYRIX, "CyrixInstead", },
  73. { X86_VENDOR_AMD, "AuthenticAMD", },
  74. { X86_VENDOR_UMC, "UMC UMC UMC ", },
  75. { X86_VENDOR_NEXGEN, "NexGenDriven", },
  76. { X86_VENDOR_CENTAUR, "CentaurHauls", },
  77. { X86_VENDOR_RISE, "RiseRiseRise", },
  78. { X86_VENDOR_TRANSMETA, "GenuineTMx86", },
  79. { X86_VENDOR_TRANSMETA, "TransmetaCPU", },
  80. { X86_VENDOR_NSC, "Geode by NSC", },
  81. { X86_VENDOR_SIS, "SiS SiS SiS ", },
  82. };
  83. static const char *const x86_vendor_name[] = {
  84. [X86_VENDOR_INTEL] = "Intel",
  85. [X86_VENDOR_CYRIX] = "Cyrix",
  86. [X86_VENDOR_AMD] = "AMD",
  87. [X86_VENDOR_UMC] = "UMC",
  88. [X86_VENDOR_NEXGEN] = "NexGen",
  89. [X86_VENDOR_CENTAUR] = "Centaur",
  90. [X86_VENDOR_RISE] = "Rise",
  91. [X86_VENDOR_TRANSMETA] = "Transmeta",
  92. [X86_VENDOR_NSC] = "NSC",
  93. [X86_VENDOR_SIS] = "SiS",
  94. };
  95. static void load_ds(u32 segment)
  96. {
  97. asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  98. }
  99. static void load_es(u32 segment)
  100. {
  101. asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  102. }
  103. static void load_fs(u32 segment)
  104. {
  105. asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  106. }
  107. static void load_gs(u32 segment)
  108. {
  109. asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  110. }
  111. static void load_ss(u32 segment)
  112. {
  113. asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
  114. }
  115. static void load_gdt(const u64 *boot_gdt, u16 num_entries)
  116. {
  117. struct gdt_ptr gdt;
  118. gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
  119. gdt.ptr = (u32)boot_gdt;
  120. asm volatile("lgdtl %0\n" : : "m" (gdt));
  121. }
  122. void arch_setup_gd(gd_t *new_gd)
  123. {
  124. u64 *gdt_addr;
  125. gdt_addr = new_gd->arch.gdt;
  126. /*
  127. * CS: code, read/execute, 4 GB, base 0
  128. *
  129. * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
  130. */
  131. gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
  132. gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
  133. /* DS: data, read/write, 4 GB, base 0 */
  134. gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
  135. /* FS: data, read/write, 4 GB, base (Global Data Pointer) */
  136. new_gd->arch.gd_addr = new_gd;
  137. gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
  138. (ulong)&new_gd->arch.gd_addr, 0xfffff);
  139. /* 16-bit CS: code, read/execute, 64 kB, base 0 */
  140. gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
  141. /* 16-bit DS: data, read/write, 64 kB, base 0 */
  142. gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
  143. gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
  144. gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
  145. load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
  146. load_ds(X86_GDT_ENTRY_32BIT_DS);
  147. load_es(X86_GDT_ENTRY_32BIT_DS);
  148. load_gs(X86_GDT_ENTRY_32BIT_DS);
  149. load_ss(X86_GDT_ENTRY_32BIT_DS);
  150. load_fs(X86_GDT_ENTRY_32BIT_FS);
  151. }
  152. #ifdef CONFIG_HAVE_FSP
  153. /*
  154. * Setup FSP execution environment GDT
  155. *
  156. * Per Intel FSP external architecture specification, before calling any FSP
  157. * APIs, we need make sure the system is in flat 32-bit mode and both the code
  158. * and data selectors should have full 4GB access range. Here we reuse the one
  159. * we used in arch/x86/cpu/start16.S, and reload the segement registers.
  160. */
  161. void setup_fsp_gdt(void)
  162. {
  163. load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
  164. load_ds(X86_GDT_ENTRY_32BIT_DS);
  165. load_ss(X86_GDT_ENTRY_32BIT_DS);
  166. load_es(X86_GDT_ENTRY_32BIT_DS);
  167. load_fs(X86_GDT_ENTRY_32BIT_DS);
  168. load_gs(X86_GDT_ENTRY_32BIT_DS);
  169. }
  170. #endif
  171. int __weak x86_cleanup_before_linux(void)
  172. {
  173. #ifdef CONFIG_BOOTSTAGE_STASH
  174. bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
  175. CONFIG_BOOTSTAGE_STASH_SIZE);
  176. #endif
  177. return 0;
  178. }
  179. /*
  180. * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
  181. * by the fact that they preserve the flags across the division of 5/2.
  182. * PII and PPro exhibit this behavior too, but they have cpuid available.
  183. */
  184. /*
  185. * Perform the Cyrix 5/2 test. A Cyrix won't change
  186. * the flags, while other 486 chips will.
  187. */
  188. static inline int test_cyrix_52div(void)
  189. {
  190. unsigned int test;
  191. __asm__ __volatile__(
  192. "sahf\n\t" /* clear flags (%eax = 0x0005) */
  193. "div %b2\n\t" /* divide 5 by 2 */
  194. "lahf" /* store flags into %ah */
  195. : "=a" (test)
  196. : "0" (5), "q" (2)
  197. : "cc");
  198. /* AH is 0x02 on Cyrix after the divide.. */
  199. return (unsigned char) (test >> 8) == 0x02;
  200. }
  201. /*
  202. * Detect a NexGen CPU running without BIOS hypercode new enough
  203. * to have CPUID. (Thanks to Herbert Oppmann)
  204. */
  205. static int deep_magic_nexgen_probe(void)
  206. {
  207. int ret;
  208. __asm__ __volatile__ (
  209. " movw $0x5555, %%ax\n"
  210. " xorw %%dx,%%dx\n"
  211. " movw $2, %%cx\n"
  212. " divw %%cx\n"
  213. " movl $0, %%eax\n"
  214. " jnz 1f\n"
  215. " movl $1, %%eax\n"
  216. "1:\n"
  217. : "=a" (ret) : : "cx", "dx");
  218. return ret;
  219. }
  220. static bool has_cpuid(void)
  221. {
  222. return flag_is_changeable_p(X86_EFLAGS_ID);
  223. }
  224. static bool has_mtrr(void)
  225. {
  226. return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
  227. }
  228. static int build_vendor_name(char *vendor_name)
  229. {
  230. struct cpuid_result result;
  231. result = cpuid(0x00000000);
  232. unsigned int *name_as_ints = (unsigned int *)vendor_name;
  233. name_as_ints[0] = result.ebx;
  234. name_as_ints[1] = result.edx;
  235. name_as_ints[2] = result.ecx;
  236. return result.eax;
  237. }
  238. static void identify_cpu(struct cpu_device_id *cpu)
  239. {
  240. char vendor_name[16];
  241. int i;
  242. vendor_name[0] = '\0'; /* Unset */
  243. cpu->device = 0; /* fix gcc 4.4.4 warning */
  244. /* Find the id and vendor_name */
  245. if (!has_cpuid()) {
  246. /* Its a 486 if we can modify the AC flag */
  247. if (flag_is_changeable_p(X86_EFLAGS_AC))
  248. cpu->device = 0x00000400; /* 486 */
  249. else
  250. cpu->device = 0x00000300; /* 386 */
  251. if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
  252. memcpy(vendor_name, "CyrixInstead", 13);
  253. /* If we ever care we can enable cpuid here */
  254. }
  255. /* Detect NexGen with old hypercode */
  256. else if (deep_magic_nexgen_probe())
  257. memcpy(vendor_name, "NexGenDriven", 13);
  258. }
  259. if (has_cpuid()) {
  260. int cpuid_level;
  261. cpuid_level = build_vendor_name(vendor_name);
  262. vendor_name[12] = '\0';
  263. /* Intel-defined flags: level 0x00000001 */
  264. if (cpuid_level >= 0x00000001) {
  265. cpu->device = cpuid_eax(0x00000001);
  266. } else {
  267. /* Have CPUID level 0 only unheard of */
  268. cpu->device = 0x00000400;
  269. }
  270. }
  271. cpu->vendor = X86_VENDOR_UNKNOWN;
  272. for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
  273. if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
  274. cpu->vendor = x86_vendors[i].vendor;
  275. break;
  276. }
  277. }
  278. }
  279. static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
  280. {
  281. c->x86 = (tfms >> 8) & 0xf;
  282. c->x86_model = (tfms >> 4) & 0xf;
  283. c->x86_mask = tfms & 0xf;
  284. if (c->x86 == 0xf)
  285. c->x86 += (tfms >> 20) & 0xff;
  286. if (c->x86 >= 0x6)
  287. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  288. }
  289. int x86_cpu_init_f(void)
  290. {
  291. const u32 em_rst = ~X86_CR0_EM;
  292. const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
  293. if (ll_boot_init()) {
  294. /* initialize FPU, reset EM, set MP and NE */
  295. asm ("fninit\n" \
  296. "movl %%cr0, %%eax\n" \
  297. "andl %0, %%eax\n" \
  298. "orl %1, %%eax\n" \
  299. "movl %%eax, %%cr0\n" \
  300. : : "i" (em_rst), "i" (mp_ne_set) : "eax");
  301. }
  302. /* identify CPU via cpuid and store the decoded info into gd->arch */
  303. if (has_cpuid()) {
  304. struct cpu_device_id cpu;
  305. struct cpuinfo_x86 c;
  306. identify_cpu(&cpu);
  307. get_fms(&c, cpu.device);
  308. gd->arch.x86 = c.x86;
  309. gd->arch.x86_vendor = cpu.vendor;
  310. gd->arch.x86_model = c.x86_model;
  311. gd->arch.x86_mask = c.x86_mask;
  312. gd->arch.x86_device = cpu.device;
  313. gd->arch.has_mtrr = has_mtrr();
  314. }
  315. /* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
  316. gd->pci_ram_top = 0x80000000U;
  317. /* Configure fixed range MTRRs for some legacy regions */
  318. if (gd->arch.has_mtrr) {
  319. u64 mtrr_cap;
  320. mtrr_cap = native_read_msr(MTRR_CAP_MSR);
  321. if (mtrr_cap & MTRR_CAP_FIX) {
  322. /* Mark the VGA RAM area as uncacheable */
  323. native_write_msr(MTRR_FIX_16K_A0000_MSR,
  324. MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
  325. MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
  326. /*
  327. * Mark the PCI ROM area as cacheable to improve ROM
  328. * execution performance.
  329. */
  330. native_write_msr(MTRR_FIX_4K_C0000_MSR,
  331. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
  332. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
  333. native_write_msr(MTRR_FIX_4K_C8000_MSR,
  334. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
  335. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
  336. native_write_msr(MTRR_FIX_4K_D0000_MSR,
  337. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
  338. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
  339. native_write_msr(MTRR_FIX_4K_D8000_MSR,
  340. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
  341. MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
  342. /* Enable the fixed range MTRRs */
  343. msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
  344. }
  345. }
  346. #ifdef CONFIG_I8254_TIMER
  347. /* Set up the i8254 timer if required */
  348. i8254_init();
  349. #endif
  350. return 0;
  351. }
  352. void x86_enable_caches(void)
  353. {
  354. unsigned long cr0;
  355. cr0 = read_cr0();
  356. cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
  357. write_cr0(cr0);
  358. wbinvd();
  359. }
  360. void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
  361. void x86_disable_caches(void)
  362. {
  363. unsigned long cr0;
  364. cr0 = read_cr0();
  365. cr0 |= X86_CR0_NW | X86_CR0_CD;
  366. wbinvd();
  367. write_cr0(cr0);
  368. wbinvd();
  369. }
  370. void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
  371. int x86_init_cache(void)
  372. {
  373. enable_caches();
  374. return 0;
  375. }
  376. int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
  377. int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  378. {
  379. printf("resetting ...\n");
  380. /* wait 50 ms */
  381. udelay(50000);
  382. disable_interrupts();
  383. reset_cpu(0);
  384. /*NOTREACHED*/
  385. return 0;
  386. }
  387. void flush_cache(unsigned long dummy1, unsigned long dummy2)
  388. {
  389. asm("wbinvd\n");
  390. }
  391. __weak void reset_cpu(ulong addr)
  392. {
  393. /* Do a hard reset through the chipset's reset control register */
  394. outb(SYS_RST | RST_CPU, PORT_RESET);
  395. for (;;)
  396. cpu_hlt();
  397. }
  398. void x86_full_reset(void)
  399. {
  400. outb(FULL_RST | SYS_RST | RST_CPU, PORT_RESET);
  401. }
  402. int dcache_status(void)
  403. {
  404. return !(read_cr0() & X86_CR0_CD);
  405. }
  406. /* Define these functions to allow ehch-hcd to function */
  407. void flush_dcache_range(unsigned long start, unsigned long stop)
  408. {
  409. }
  410. void invalidate_dcache_range(unsigned long start, unsigned long stop)
  411. {
  412. }
  413. void dcache_enable(void)
  414. {
  415. enable_caches();
  416. }
  417. void dcache_disable(void)
  418. {
  419. disable_caches();
  420. }
  421. void icache_enable(void)
  422. {
  423. }
  424. void icache_disable(void)
  425. {
  426. }
  427. int icache_status(void)
  428. {
  429. return 1;
  430. }
  431. void cpu_enable_paging_pae(ulong cr3)
  432. {
  433. __asm__ __volatile__(
  434. /* Load the page table address */
  435. "movl %0, %%cr3\n"
  436. /* Enable pae */
  437. "movl %%cr4, %%eax\n"
  438. "orl $0x00000020, %%eax\n"
  439. "movl %%eax, %%cr4\n"
  440. /* Enable paging */
  441. "movl %%cr0, %%eax\n"
  442. "orl $0x80000000, %%eax\n"
  443. "movl %%eax, %%cr0\n"
  444. :
  445. : "r" (cr3)
  446. : "eax");
  447. }
  448. void cpu_disable_paging_pae(void)
  449. {
  450. /* Turn off paging */
  451. __asm__ __volatile__ (
  452. /* Disable paging */
  453. "movl %%cr0, %%eax\n"
  454. "andl $0x7fffffff, %%eax\n"
  455. "movl %%eax, %%cr0\n"
  456. /* Disable pae */
  457. "movl %%cr4, %%eax\n"
  458. "andl $0xffffffdf, %%eax\n"
  459. "movl %%eax, %%cr4\n"
  460. :
  461. :
  462. : "eax");
  463. }
  464. static bool can_detect_long_mode(void)
  465. {
  466. return cpuid_eax(0x80000000) > 0x80000000UL;
  467. }
  468. static bool has_long_mode(void)
  469. {
  470. return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
  471. }
  472. int cpu_has_64bit(void)
  473. {
  474. return has_cpuid() && can_detect_long_mode() &&
  475. has_long_mode();
  476. }
  477. const char *cpu_vendor_name(int vendor)
  478. {
  479. const char *name;
  480. name = "<invalid cpu vendor>";
  481. if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
  482. (x86_vendor_name[vendor] != 0))
  483. name = x86_vendor_name[vendor];
  484. return name;
  485. }
  486. char *cpu_get_name(char *name)
  487. {
  488. unsigned int *name_as_ints = (unsigned int *)name;
  489. struct cpuid_result regs;
  490. char *ptr;
  491. int i;
  492. /* This bit adds up to 48 bytes */
  493. for (i = 0; i < 3; i++) {
  494. regs = cpuid(0x80000002 + i);
  495. name_as_ints[i * 4 + 0] = regs.eax;
  496. name_as_ints[i * 4 + 1] = regs.ebx;
  497. name_as_ints[i * 4 + 2] = regs.ecx;
  498. name_as_ints[i * 4 + 3] = regs.edx;
  499. }
  500. name[CPU_MAX_NAME_LEN - 1] = '\0';
  501. /* Skip leading spaces. */
  502. ptr = name;
  503. while (*ptr == ' ')
  504. ptr++;
  505. return ptr;
  506. }
  507. int default_print_cpuinfo(void)
  508. {
  509. printf("CPU: %s, vendor %s, device %xh\n",
  510. cpu_has_64bit() ? "x86_64" : "x86",
  511. cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
  512. return 0;
  513. }
  514. #define PAGETABLE_SIZE (6 * 4096)
  515. /**
  516. * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
  517. *
  518. * @pgtable: Pointer to a 24iKB block of memory
  519. */
  520. static void build_pagetable(uint32_t *pgtable)
  521. {
  522. uint i;
  523. memset(pgtable, '\0', PAGETABLE_SIZE);
  524. /* Level 4 needs a single entry */
  525. pgtable[0] = (uint32_t)&pgtable[1024] + 7;
  526. /* Level 3 has one 64-bit entry for each GiB of memory */
  527. for (i = 0; i < 4; i++) {
  528. pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
  529. 0x1000 * i + 7;
  530. }
  531. /* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
  532. for (i = 0; i < 2048; i++)
  533. pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
  534. }
  535. int cpu_jump_to_64bit(ulong setup_base, ulong target)
  536. {
  537. uint32_t *pgtable;
  538. pgtable = memalign(4096, PAGETABLE_SIZE);
  539. if (!pgtable)
  540. return -ENOMEM;
  541. build_pagetable(pgtable);
  542. cpu_call64((ulong)pgtable, setup_base, target);
  543. free(pgtable);
  544. return -EFAULT;
  545. }
  546. void show_boot_progress(int val)
  547. {
  548. outb(val, POST_PORT);
  549. }
  550. #ifndef CONFIG_SYS_COREBOOT
  551. int last_stage_init(void)
  552. {
  553. write_tables();
  554. return 0;
  555. }
  556. #endif
  557. #ifdef CONFIG_SMP
  558. static int enable_smis(struct udevice *cpu, void *unused)
  559. {
  560. return 0;
  561. }
  562. static struct mp_flight_record mp_steps[] = {
  563. MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
  564. /* Wait for APs to finish initialization before proceeding */
  565. MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
  566. };
  567. static int x86_mp_init(void)
  568. {
  569. struct mp_params mp_params;
  570. mp_params.parallel_microcode_load = 0,
  571. mp_params.flight_plan = &mp_steps[0];
  572. mp_params.num_records = ARRAY_SIZE(mp_steps);
  573. mp_params.microcode_pointer = 0;
  574. if (mp_init(&mp_params)) {
  575. printf("Warning: MP init failure\n");
  576. return -EIO;
  577. }
  578. return 0;
  579. }
  580. #endif
  581. static int x86_init_cpus(void)
  582. {
  583. #ifdef CONFIG_SMP
  584. debug("Init additional CPUs\n");
  585. x86_mp_init();
  586. #else
  587. struct udevice *dev;
  588. /*
  589. * This causes the cpu-x86 driver to be probed.
  590. * We don't check return value here as we want to allow boards
  591. * which have not been converted to use cpu uclass driver to boot.
  592. */
  593. uclass_first_device(UCLASS_CPU, &dev);
  594. #endif
  595. return 0;
  596. }
  597. int cpu_init_r(void)
  598. {
  599. struct udevice *dev;
  600. int ret;
  601. if (!ll_boot_init())
  602. return 0;
  603. ret = x86_init_cpus();
  604. if (ret)
  605. return ret;
  606. /*
  607. * Set up the northbridge, PCH and LPC if available. Note that these
  608. * may have had some limited pre-relocation init if they were probed
  609. * before relocation, but this is post relocation.
  610. */
  611. uclass_first_device(UCLASS_NORTHBRIDGE, &dev);
  612. uclass_first_device(UCLASS_PCH, &dev);
  613. uclass_first_device(UCLASS_LPC, &dev);
  614. return 0;
  615. }