clock.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174
  1. /*
  2. * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+
  5. */
  6. #include <common.h>
  7. #include <div64.h>
  8. #include <asm/io.h>
  9. #include <asm/errno.h>
  10. #include <asm/arch/imx-regs.h>
  11. #include <asm/arch/crm_regs.h>
  12. #include <asm/arch/clock.h>
  13. #include <asm/arch/sys_proto.h>
  14. enum pll_clocks {
  15. PLL_SYS, /* System PLL */
  16. PLL_BUS, /* System Bus PLL*/
  17. PLL_USBOTG, /* OTG USB PLL */
  18. PLL_ENET, /* ENET PLL */
  19. };
  20. struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  21. #ifdef CONFIG_MXC_OCOTP
  22. void enable_ocotp_clk(unsigned char enable)
  23. {
  24. u32 reg;
  25. reg = __raw_readl(&imx_ccm->CCGR2);
  26. if (enable)
  27. reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
  28. else
  29. reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
  30. __raw_writel(reg, &imx_ccm->CCGR2);
  31. }
  32. #endif
  33. #ifdef CONFIG_NAND_MXS
  34. void setup_gpmi_io_clk(u32 cfg)
  35. {
  36. /* Disable clocks per ERR007177 from MX6 errata */
  37. clrbits_le32(&imx_ccm->CCGR4,
  38. MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
  39. MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
  40. MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
  41. MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
  42. MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
  43. #if defined(CONFIG_MX6SX)
  44. clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
  45. clrsetbits_le32(&imx_ccm->cs2cdr,
  46. MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
  47. MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
  48. MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK,
  49. cfg);
  50. setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
  51. #else
  52. clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
  53. clrsetbits_le32(&imx_ccm->cs2cdr,
  54. MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
  55. MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
  56. MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
  57. cfg);
  58. setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
  59. #endif
  60. setbits_le32(&imx_ccm->CCGR4,
  61. MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
  62. MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
  63. MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
  64. MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
  65. MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
  66. }
  67. #endif
  68. void enable_usboh3_clk(unsigned char enable)
  69. {
  70. u32 reg;
  71. reg = __raw_readl(&imx_ccm->CCGR6);
  72. if (enable)
  73. reg |= MXC_CCM_CCGR6_USBOH3_MASK;
  74. else
  75. reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
  76. __raw_writel(reg, &imx_ccm->CCGR6);
  77. }
  78. #if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX)
  79. void enable_enet_clk(unsigned char enable)
  80. {
  81. u32 mask, *addr;
  82. if (is_cpu_type(MXC_CPU_MX6UL)) {
  83. mask = MXC_CCM_CCGR3_ENET_MASK;
  84. addr = &imx_ccm->CCGR3;
  85. } else {
  86. mask = MXC_CCM_CCGR1_ENET_MASK;
  87. addr = &imx_ccm->CCGR1;
  88. }
  89. if (enable)
  90. setbits_le32(addr, mask);
  91. else
  92. clrbits_le32(addr, mask);
  93. }
  94. #endif
  95. #ifdef CONFIG_MXC_UART
  96. void enable_uart_clk(unsigned char enable)
  97. {
  98. u32 mask;
  99. if (is_cpu_type(MXC_CPU_MX6UL))
  100. mask = MXC_CCM_CCGR5_UART_MASK;
  101. else
  102. mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
  103. if (enable)
  104. setbits_le32(&imx_ccm->CCGR5, mask);
  105. else
  106. clrbits_le32(&imx_ccm->CCGR5, mask);
  107. }
  108. #endif
  109. #ifdef CONFIG_MMC
  110. int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
  111. {
  112. u32 mask;
  113. if (bus_num > 3)
  114. return -EINVAL;
  115. mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
  116. if (enable)
  117. setbits_le32(&imx_ccm->CCGR6, mask);
  118. else
  119. clrbits_le32(&imx_ccm->CCGR6, mask);
  120. return 0;
  121. }
  122. #endif
  123. #ifdef CONFIG_SYS_I2C_MXC
  124. /* i2c_num can be from 0 - 3 */
  125. int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
  126. {
  127. u32 reg;
  128. u32 mask;
  129. u32 *addr;
  130. if (i2c_num > 3)
  131. return -EINVAL;
  132. if (i2c_num < 3) {
  133. mask = MXC_CCM_CCGR_CG_MASK
  134. << (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET
  135. + (i2c_num << 1));
  136. reg = __raw_readl(&imx_ccm->CCGR2);
  137. if (enable)
  138. reg |= mask;
  139. else
  140. reg &= ~mask;
  141. __raw_writel(reg, &imx_ccm->CCGR2);
  142. } else {
  143. if (is_cpu_type(MXC_CPU_MX6SX) || is_cpu_type(MXC_CPU_MX6UL)) {
  144. mask = MXC_CCM_CCGR6_I2C4_MASK;
  145. addr = &imx_ccm->CCGR6;
  146. } else {
  147. mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK;
  148. addr = &imx_ccm->CCGR1;
  149. }
  150. reg = __raw_readl(addr);
  151. if (enable)
  152. reg |= mask;
  153. else
  154. reg &= ~mask;
  155. __raw_writel(reg, addr);
  156. }
  157. return 0;
  158. }
  159. #endif
  160. /* spi_num can be from 0 - SPI_MAX_NUM */
  161. int enable_spi_clk(unsigned char enable, unsigned spi_num)
  162. {
  163. u32 reg;
  164. u32 mask;
  165. if (spi_num > SPI_MAX_NUM)
  166. return -EINVAL;
  167. mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
  168. reg = __raw_readl(&imx_ccm->CCGR1);
  169. if (enable)
  170. reg |= mask;
  171. else
  172. reg &= ~mask;
  173. __raw_writel(reg, &imx_ccm->CCGR1);
  174. return 0;
  175. }
  176. static u32 decode_pll(enum pll_clocks pll, u32 infreq)
  177. {
  178. u32 div;
  179. switch (pll) {
  180. case PLL_SYS:
  181. div = __raw_readl(&imx_ccm->analog_pll_sys);
  182. div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
  183. return (infreq * div) >> 1;
  184. case PLL_BUS:
  185. div = __raw_readl(&imx_ccm->analog_pll_528);
  186. div &= BM_ANADIG_PLL_528_DIV_SELECT;
  187. return infreq * (20 + (div << 1));
  188. case PLL_USBOTG:
  189. div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
  190. div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
  191. return infreq * (20 + (div << 1));
  192. case PLL_ENET:
  193. div = __raw_readl(&imx_ccm->analog_pll_enet);
  194. div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
  195. return 25000000 * (div + (div >> 1) + 1);
  196. default:
  197. return 0;
  198. }
  199. /* NOTREACHED */
  200. }
  201. static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
  202. {
  203. u32 div;
  204. u64 freq;
  205. switch (pll) {
  206. case PLL_BUS:
  207. if (!is_cpu_type(MXC_CPU_MX6UL)) {
  208. if (pfd_num == 3) {
  209. /* No PFD3 on PPL2 */
  210. return 0;
  211. }
  212. }
  213. div = __raw_readl(&imx_ccm->analog_pfd_528);
  214. freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
  215. break;
  216. case PLL_USBOTG:
  217. div = __raw_readl(&imx_ccm->analog_pfd_480);
  218. freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
  219. break;
  220. default:
  221. /* No PFD on other PLL */
  222. return 0;
  223. }
  224. return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
  225. ANATOP_PFD_FRAC_SHIFT(pfd_num));
  226. }
  227. static u32 get_mcu_main_clk(void)
  228. {
  229. u32 reg, freq;
  230. reg = __raw_readl(&imx_ccm->cacrr);
  231. reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
  232. reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
  233. freq = decode_pll(PLL_SYS, MXC_HCLK);
  234. return freq / (reg + 1);
  235. }
  236. u32 get_periph_clk(void)
  237. {
  238. u32 reg, div = 0, freq = 0;
  239. reg = __raw_readl(&imx_ccm->cbcdr);
  240. if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
  241. div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >>
  242. MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET;
  243. reg = __raw_readl(&imx_ccm->cbcmr);
  244. reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
  245. reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
  246. switch (reg) {
  247. case 0:
  248. freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  249. break;
  250. case 1:
  251. case 2:
  252. freq = MXC_HCLK;
  253. break;
  254. default:
  255. break;
  256. }
  257. } else {
  258. reg = __raw_readl(&imx_ccm->cbcmr);
  259. reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
  260. reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
  261. switch (reg) {
  262. case 0:
  263. freq = decode_pll(PLL_BUS, MXC_HCLK);
  264. break;
  265. case 1:
  266. freq = mxc_get_pll_pfd(PLL_BUS, 2);
  267. break;
  268. case 2:
  269. freq = mxc_get_pll_pfd(PLL_BUS, 0);
  270. break;
  271. case 3:
  272. /* static / 2 divider */
  273. freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
  274. break;
  275. default:
  276. break;
  277. }
  278. }
  279. return freq / (div + 1);
  280. }
  281. static u32 get_ipg_clk(void)
  282. {
  283. u32 reg, ipg_podf;
  284. reg = __raw_readl(&imx_ccm->cbcdr);
  285. reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
  286. ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
  287. return get_ahb_clk() / (ipg_podf + 1);
  288. }
  289. static u32 get_ipg_per_clk(void)
  290. {
  291. u32 reg, perclk_podf;
  292. reg = __raw_readl(&imx_ccm->cscmr1);
  293. if (is_cpu_type(MXC_CPU_MX6SL) || is_cpu_type(MXC_CPU_MX6SX) ||
  294. is_mx6dqp() || is_cpu_type(MXC_CPU_MX6UL)) {
  295. if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK)
  296. return MXC_HCLK; /* OSC 24Mhz */
  297. }
  298. perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
  299. return get_ipg_clk() / (perclk_podf + 1);
  300. }
  301. static u32 get_uart_clk(void)
  302. {
  303. u32 reg, uart_podf;
  304. u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
  305. reg = __raw_readl(&imx_ccm->cscdr1);
  306. if (is_cpu_type(MXC_CPU_MX6SL) || is_cpu_type(MXC_CPU_MX6SX) ||
  307. is_mx6dqp() || is_cpu_type(MXC_CPU_MX6UL)) {
  308. if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
  309. freq = MXC_HCLK;
  310. }
  311. reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
  312. uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
  313. return freq / (uart_podf + 1);
  314. }
  315. static u32 get_cspi_clk(void)
  316. {
  317. u32 reg, cspi_podf;
  318. reg = __raw_readl(&imx_ccm->cscdr2);
  319. cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >>
  320. MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
  321. if (is_mx6dqp() || is_cpu_type(MXC_CPU_MX6SL) ||
  322. is_cpu_type(MXC_CPU_MX6SX) || is_cpu_type(MXC_CPU_MX6UL)) {
  323. if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK)
  324. return MXC_HCLK / (cspi_podf + 1);
  325. }
  326. return decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
  327. }
  328. static u32 get_axi_clk(void)
  329. {
  330. u32 root_freq, axi_podf;
  331. u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
  332. axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
  333. axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
  334. if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
  335. if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
  336. root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
  337. else
  338. root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
  339. } else
  340. root_freq = get_periph_clk();
  341. return root_freq / (axi_podf + 1);
  342. }
  343. static u32 get_emi_slow_clk(void)
  344. {
  345. u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
  346. cscmr1 = __raw_readl(&imx_ccm->cscmr1);
  347. emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
  348. emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
  349. emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
  350. emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
  351. switch (emi_clk_sel) {
  352. case 0:
  353. root_freq = get_axi_clk();
  354. break;
  355. case 1:
  356. root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  357. break;
  358. case 2:
  359. root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
  360. break;
  361. case 3:
  362. root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
  363. break;
  364. }
  365. return root_freq / (emi_slow_podf + 1);
  366. }
  367. static u32 get_mmdc_ch0_clk(void)
  368. {
  369. u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
  370. u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
  371. u32 freq, podf, per2_clk2_podf;
  372. if (is_cpu_type(MXC_CPU_MX6SX) || is_cpu_type(MXC_CPU_MX6UL) ||
  373. is_cpu_type(MXC_CPU_MX6SL)) {
  374. podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >>
  375. MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
  376. if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) {
  377. per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >>
  378. MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET;
  379. if (is_cpu_type(MXC_CPU_MX6SL)) {
  380. if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
  381. freq = MXC_HCLK;
  382. else
  383. freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  384. } else {
  385. if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
  386. freq = decode_pll(PLL_BUS, MXC_HCLK);
  387. else
  388. freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  389. }
  390. } else {
  391. per2_clk2_podf = 0;
  392. switch ((cbcmr &
  393. MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
  394. MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
  395. case 0:
  396. freq = decode_pll(PLL_BUS, MXC_HCLK);
  397. break;
  398. case 1:
  399. freq = mxc_get_pll_pfd(PLL_BUS, 2);
  400. break;
  401. case 2:
  402. freq = mxc_get_pll_pfd(PLL_BUS, 0);
  403. break;
  404. case 3:
  405. /* static / 2 divider */
  406. freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
  407. break;
  408. }
  409. }
  410. return freq / (podf + 1) / (per2_clk2_podf + 1);
  411. } else {
  412. podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
  413. MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
  414. return get_periph_clk() / (podf + 1);
  415. }
  416. }
  417. #if defined(CONFIG_VIDEO_MXS)
  418. static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
  419. u32 post_div)
  420. {
  421. u32 reg = 0;
  422. ulong start;
  423. debug("pll5 div = %d, num = %d, denom = %d\n",
  424. pll_div, pll_num, pll_denom);
  425. /* Power up PLL5 video */
  426. writel(BM_ANADIG_PLL_VIDEO_POWERDOWN |
  427. BM_ANADIG_PLL_VIDEO_BYPASS |
  428. BM_ANADIG_PLL_VIDEO_DIV_SELECT |
  429. BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT,
  430. &imx_ccm->analog_pll_video_clr);
  431. /* Set div, num and denom */
  432. switch (post_div) {
  433. case 1:
  434. writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
  435. BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x2),
  436. &imx_ccm->analog_pll_video_set);
  437. break;
  438. case 2:
  439. writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
  440. BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x1),
  441. &imx_ccm->analog_pll_video_set);
  442. break;
  443. case 4:
  444. writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
  445. BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x0),
  446. &imx_ccm->analog_pll_video_set);
  447. break;
  448. default:
  449. puts("Wrong test_div!\n");
  450. return -EINVAL;
  451. }
  452. writel(BF_ANADIG_PLL_VIDEO_NUM_A(pll_num),
  453. &imx_ccm->analog_pll_video_num);
  454. writel(BF_ANADIG_PLL_VIDEO_DENOM_B(pll_denom),
  455. &imx_ccm->analog_pll_video_denom);
  456. /* Wait PLL5 lock */
  457. start = get_timer(0); /* Get current timestamp */
  458. do {
  459. reg = readl(&imx_ccm->analog_pll_video);
  460. if (reg & BM_ANADIG_PLL_VIDEO_LOCK) {
  461. /* Enable PLL out */
  462. writel(BM_ANADIG_PLL_VIDEO_ENABLE,
  463. &imx_ccm->analog_pll_video_set);
  464. return 0;
  465. }
  466. } while (get_timer(0) < (start + 10)); /* Wait 10ms */
  467. puts("Lock PLL5 timeout\n");
  468. return -ETIME;
  469. }
  470. /*
  471. * 24M--> PLL_VIDEO -> LCDIFx_PRED -> LCDIFx_PODF -> LCD
  472. *
  473. * 'freq' using KHz as unit, see driver/video/mxsfb.c.
  474. */
  475. void mxs_set_lcdclk(u32 base_addr, u32 freq)
  476. {
  477. u32 reg = 0;
  478. u32 hck = MXC_HCLK / 1000;
  479. /* DIV_SELECT ranges from 27 to 54 */
  480. u32 min = hck * 27;
  481. u32 max = hck * 54;
  482. u32 temp, best = 0;
  483. u32 i, j, max_pred = 8, max_postd = 8, pred = 1, postd = 1;
  484. u32 pll_div, pll_num, pll_denom, post_div = 1;
  485. debug("mxs_set_lcdclk, freq = %dKHz\n", freq);
  486. if ((!is_cpu_type(MXC_CPU_MX6SX)) && !is_cpu_type(MXC_CPU_MX6UL)) {
  487. debug("This chip not support lcd!\n");
  488. return;
  489. }
  490. if (base_addr == LCDIF1_BASE_ADDR) {
  491. reg = readl(&imx_ccm->cscdr2);
  492. /* Can't change clocks when clock not from pre-mux */
  493. if ((reg & MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK) != 0)
  494. return;
  495. }
  496. if (is_cpu_type(MXC_CPU_MX6SX)) {
  497. reg = readl(&imx_ccm->cscdr2);
  498. /* Can't change clocks when clock not from pre-mux */
  499. if ((reg & MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK) != 0)
  500. return;
  501. }
  502. temp = freq * max_pred * max_postd;
  503. if (temp > max) {
  504. puts("Please decrease freq, too large!\n");
  505. return;
  506. }
  507. if (temp < min) {
  508. /*
  509. * Register: PLL_VIDEO
  510. * Bit Field: POST_DIV_SELECT
  511. * 00 — Divide by 4.
  512. * 01 — Divide by 2.
  513. * 10 — Divide by 1.
  514. * 11 — Reserved
  515. * No need to check post_div(1)
  516. */
  517. for (post_div = 2; post_div <= 4; post_div <<= 1) {
  518. if ((temp * post_div) > min) {
  519. freq *= post_div;
  520. break;
  521. }
  522. }
  523. if (post_div > 4) {
  524. printf("Fail to set rate to %dkhz", freq);
  525. return;
  526. }
  527. }
  528. /* Choose the best pred and postd to match freq for lcd */
  529. for (i = 1; i <= max_pred; i++) {
  530. for (j = 1; j <= max_postd; j++) {
  531. temp = freq * i * j;
  532. if (temp > max || temp < min)
  533. continue;
  534. if (best == 0 || temp < best) {
  535. best = temp;
  536. pred = i;
  537. postd = j;
  538. }
  539. }
  540. }
  541. if (best == 0) {
  542. printf("Fail to set rate to %dKHz", freq);
  543. return;
  544. }
  545. debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
  546. pll_div = best / hck;
  547. pll_denom = 1000000;
  548. pll_num = (best - hck * pll_div) * pll_denom / hck;
  549. /*
  550. * pll_num
  551. * (24MHz * (pll_div + --------- ))
  552. * pll_denom
  553. *freq KHz = --------------------------------
  554. * post_div * pred * postd * 1000
  555. */
  556. if (base_addr == LCDIF1_BASE_ADDR) {
  557. if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
  558. return;
  559. /* Select pre-lcd clock to PLL5 and set pre divider */
  560. clrsetbits_le32(&imx_ccm->cscdr2,
  561. MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_MASK |
  562. MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK,
  563. (0x2 << MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_OFFSET) |
  564. ((pred - 1) <<
  565. MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET));
  566. /* Set the post divider */
  567. clrsetbits_le32(&imx_ccm->cbcmr,
  568. MXC_CCM_CBCMR_LCDIF1_PODF_MASK,
  569. ((postd - 1) <<
  570. MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET));
  571. } else if (is_cpu_type(MXC_CPU_MX6SX)) {
  572. /* Setting LCDIF2 for i.MX6SX */
  573. if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
  574. return;
  575. /* Select pre-lcd clock to PLL5 and set pre divider */
  576. clrsetbits_le32(&imx_ccm->cscdr2,
  577. MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_MASK |
  578. MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK,
  579. (0x2 << MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_OFFSET) |
  580. ((pred - 1) <<
  581. MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET));
  582. /* Set the post divider */
  583. clrsetbits_le32(&imx_ccm->cscmr1,
  584. MXC_CCM_CSCMR1_LCDIF2_PODF_MASK,
  585. ((postd - 1) <<
  586. MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET));
  587. }
  588. }
  589. int enable_lcdif_clock(u32 base_addr)
  590. {
  591. u32 reg = 0;
  592. u32 lcdif_clk_sel_mask, lcdif_ccgr3_mask;
  593. if (is_cpu_type(MXC_CPU_MX6SX)) {
  594. if ((base_addr == LCDIF1_BASE_ADDR) ||
  595. (base_addr == LCDIF2_BASE_ADDR)) {
  596. puts("Wrong LCD interface!\n");
  597. return -EINVAL;
  598. }
  599. /* Set to pre-mux clock at default */
  600. lcdif_clk_sel_mask = (base_addr == LCDIF2_BASE_ADDR) ?
  601. MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK :
  602. MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
  603. lcdif_ccgr3_mask = (base_addr == LCDIF2_BASE_ADDR) ?
  604. (MXC_CCM_CCGR3_LCDIF2_PIX_MASK |
  605. MXC_CCM_CCGR3_DISP_AXI_MASK) :
  606. (MXC_CCM_CCGR3_LCDIF1_PIX_MASK |
  607. MXC_CCM_CCGR3_DISP_AXI_MASK);
  608. } else if (is_cpu_type(MXC_CPU_MX6UL)) {
  609. if (base_addr != LCDIF1_BASE_ADDR) {
  610. puts("Wrong LCD interface!\n");
  611. return -EINVAL;
  612. }
  613. /* Set to pre-mux clock at default */
  614. lcdif_clk_sel_mask = MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
  615. lcdif_ccgr3_mask = MXC_CCM_CCGR3_LCDIF1_PIX_MASK;
  616. } else {
  617. return 0;
  618. }
  619. reg = readl(&imx_ccm->cscdr2);
  620. reg &= ~lcdif_clk_sel_mask;
  621. writel(reg, &imx_ccm->cscdr2);
  622. /* Enable the LCDIF pix clock */
  623. reg = readl(&imx_ccm->CCGR3);
  624. reg |= lcdif_ccgr3_mask;
  625. writel(reg, &imx_ccm->CCGR3);
  626. reg = readl(&imx_ccm->CCGR2);
  627. reg |= MXC_CCM_CCGR2_LCD_MASK;
  628. writel(reg, &imx_ccm->CCGR2);
  629. }
  630. #endif
  631. #ifdef CONFIG_FSL_QSPI
  632. /* qspi_num can be from 0 - 1 */
  633. void enable_qspi_clk(int qspi_num)
  634. {
  635. u32 reg = 0;
  636. /* Enable QuadSPI clock */
  637. switch (qspi_num) {
  638. case 0:
  639. /* disable the clock gate */
  640. clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
  641. /* set 50M : (50 = 396 / 2 / 4) */
  642. reg = readl(&imx_ccm->cscmr1);
  643. reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK |
  644. MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK);
  645. reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) |
  646. (2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET));
  647. writel(reg, &imx_ccm->cscmr1);
  648. /* enable the clock gate */
  649. setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
  650. break;
  651. case 1:
  652. /*
  653. * disable the clock gate
  654. * QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate,
  655. * disable both of them.
  656. */
  657. clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
  658. MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
  659. /* set 50M : (50 = 396 / 2 / 4) */
  660. reg = readl(&imx_ccm->cs2cdr);
  661. reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
  662. MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
  663. MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK);
  664. reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) |
  665. MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3));
  666. writel(reg, &imx_ccm->cs2cdr);
  667. /*enable the clock gate*/
  668. setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
  669. MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
  670. break;
  671. default:
  672. break;
  673. }
  674. }
  675. #endif
  676. #ifdef CONFIG_FEC_MXC
  677. int enable_fec_anatop_clock(int fec_id, enum enet_freq freq)
  678. {
  679. u32 reg = 0;
  680. s32 timeout = 100000;
  681. struct anatop_regs __iomem *anatop =
  682. (struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
  683. if (freq < ENET_25MHZ || freq > ENET_125MHZ)
  684. return -EINVAL;
  685. reg = readl(&anatop->pll_enet);
  686. if (fec_id == 0) {
  687. reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
  688. reg |= BF_ANADIG_PLL_ENET_DIV_SELECT(freq);
  689. } else if (fec_id == 1) {
  690. /* Only i.MX6SX/UL support ENET2 */
  691. if (!(is_cpu_type(MXC_CPU_MX6SX) ||
  692. is_cpu_type(MXC_CPU_MX6UL)))
  693. return -EINVAL;
  694. reg &= ~BM_ANADIG_PLL_ENET2_DIV_SELECT;
  695. reg |= BF_ANADIG_PLL_ENET2_DIV_SELECT(freq);
  696. } else {
  697. return -EINVAL;
  698. }
  699. if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
  700. (!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
  701. reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
  702. writel(reg, &anatop->pll_enet);
  703. while (timeout--) {
  704. if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
  705. break;
  706. }
  707. if (timeout < 0)
  708. return -ETIMEDOUT;
  709. }
  710. /* Enable FEC clock */
  711. if (fec_id == 0)
  712. reg |= BM_ANADIG_PLL_ENET_ENABLE;
  713. else
  714. reg |= BM_ANADIG_PLL_ENET2_ENABLE;
  715. reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
  716. writel(reg, &anatop->pll_enet);
  717. #ifdef CONFIG_MX6SX
  718. /*
  719. * Set enet ahb clock to 200MHz
  720. * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
  721. */
  722. reg = readl(&imx_ccm->chsccdr);
  723. reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
  724. | MXC_CCM_CHSCCDR_ENET_PODF_MASK
  725. | MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
  726. /* PLL2 PFD2 */
  727. reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
  728. /* Div = 2*/
  729. reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
  730. reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
  731. writel(reg, &imx_ccm->chsccdr);
  732. /* Enable enet system clock */
  733. reg = readl(&imx_ccm->CCGR3);
  734. reg |= MXC_CCM_CCGR3_ENET_MASK;
  735. writel(reg, &imx_ccm->CCGR3);
  736. #endif
  737. return 0;
  738. }
  739. #endif
  740. static u32 get_usdhc_clk(u32 port)
  741. {
  742. u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
  743. u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
  744. u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
  745. switch (port) {
  746. case 0:
  747. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
  748. MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
  749. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
  750. break;
  751. case 1:
  752. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
  753. MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
  754. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
  755. break;
  756. case 2:
  757. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
  758. MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
  759. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
  760. break;
  761. case 3:
  762. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
  763. MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
  764. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
  765. break;
  766. default:
  767. break;
  768. }
  769. if (clk_sel)
  770. root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
  771. else
  772. root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
  773. return root_freq / (usdhc_podf + 1);
  774. }
  775. u32 imx_get_uartclk(void)
  776. {
  777. return get_uart_clk();
  778. }
  779. u32 imx_get_fecclk(void)
  780. {
  781. return mxc_get_clock(MXC_IPG_CLK);
  782. }
  783. #if defined(CONFIG_CMD_SATA) || defined(CONFIG_PCIE_IMX)
  784. static int enable_enet_pll(uint32_t en)
  785. {
  786. struct mxc_ccm_reg *const imx_ccm
  787. = (struct mxc_ccm_reg *) CCM_BASE_ADDR;
  788. s32 timeout = 100000;
  789. u32 reg = 0;
  790. /* Enable PLLs */
  791. reg = readl(&imx_ccm->analog_pll_enet);
  792. reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
  793. writel(reg, &imx_ccm->analog_pll_enet);
  794. reg |= BM_ANADIG_PLL_SYS_ENABLE;
  795. while (timeout--) {
  796. if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
  797. break;
  798. }
  799. if (timeout <= 0)
  800. return -EIO;
  801. reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
  802. writel(reg, &imx_ccm->analog_pll_enet);
  803. reg |= en;
  804. writel(reg, &imx_ccm->analog_pll_enet);
  805. return 0;
  806. }
  807. #endif
  808. #ifdef CONFIG_CMD_SATA
  809. static void ungate_sata_clock(void)
  810. {
  811. struct mxc_ccm_reg *const imx_ccm =
  812. (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  813. /* Enable SATA clock. */
  814. setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
  815. }
  816. int enable_sata_clock(void)
  817. {
  818. ungate_sata_clock();
  819. return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
  820. }
  821. void disable_sata_clock(void)
  822. {
  823. struct mxc_ccm_reg *const imx_ccm =
  824. (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  825. clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
  826. }
  827. #endif
  828. #ifdef CONFIG_PCIE_IMX
  829. static void ungate_pcie_clock(void)
  830. {
  831. struct mxc_ccm_reg *const imx_ccm =
  832. (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  833. /* Enable PCIe clock. */
  834. setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
  835. }
  836. int enable_pcie_clock(void)
  837. {
  838. struct anatop_regs *anatop_regs =
  839. (struct anatop_regs *)ANATOP_BASE_ADDR;
  840. struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  841. u32 lvds1_clk_sel;
  842. /*
  843. * Here be dragons!
  844. *
  845. * The register ANATOP_MISC1 is not documented in the Freescale
  846. * MX6RM. The register that is mapped in the ANATOP space and
  847. * marked as ANATOP_MISC1 is actually documented in the PMU section
  848. * of the datasheet as PMU_MISC1.
  849. *
  850. * Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
  851. * mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
  852. * for PCI express link that is clocked from the i.MX6.
  853. */
  854. #define ANADIG_ANA_MISC1_LVDSCLK1_IBEN (1 << 12)
  855. #define ANADIG_ANA_MISC1_LVDSCLK1_OBEN (1 << 10)
  856. #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK 0x0000001F
  857. #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF 0xa
  858. #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF 0xb
  859. if (is_cpu_type(MXC_CPU_MX6SX))
  860. lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
  861. else
  862. lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
  863. clrsetbits_le32(&anatop_regs->ana_misc1,
  864. ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
  865. ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
  866. ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
  867. /* PCIe reference clock sourced from AXI. */
  868. clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
  869. /* Party time! Ungate the clock to the PCIe. */
  870. #ifdef CONFIG_CMD_SATA
  871. ungate_sata_clock();
  872. #endif
  873. ungate_pcie_clock();
  874. return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
  875. BM_ANADIG_PLL_ENET_ENABLE_PCIE);
  876. }
  877. #endif
  878. #ifdef CONFIG_SECURE_BOOT
  879. void hab_caam_clock_enable(unsigned char enable)
  880. {
  881. u32 reg;
  882. /* CG4 ~ CG6, CAAM clocks */
  883. reg = __raw_readl(&imx_ccm->CCGR0);
  884. if (enable)
  885. reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
  886. MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
  887. MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
  888. else
  889. reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
  890. MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
  891. MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
  892. __raw_writel(reg, &imx_ccm->CCGR0);
  893. /* EMI slow clk */
  894. reg = __raw_readl(&imx_ccm->CCGR6);
  895. if (enable)
  896. reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
  897. else
  898. reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
  899. __raw_writel(reg, &imx_ccm->CCGR6);
  900. }
  901. #endif
  902. static void enable_pll3(void)
  903. {
  904. struct anatop_regs __iomem *anatop =
  905. (struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
  906. /* make sure pll3 is enabled */
  907. if ((readl(&anatop->usb1_pll_480_ctrl) &
  908. BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) {
  909. /* enable pll's power */
  910. writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER,
  911. &anatop->usb1_pll_480_ctrl_set);
  912. writel(0x80, &anatop->ana_misc2_clr);
  913. /* wait for pll lock */
  914. while ((readl(&anatop->usb1_pll_480_ctrl) &
  915. BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0)
  916. ;
  917. /* disable bypass */
  918. writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS,
  919. &anatop->usb1_pll_480_ctrl_clr);
  920. /* enable pll output */
  921. writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE,
  922. &anatop->usb1_pll_480_ctrl_set);
  923. }
  924. }
  925. void enable_thermal_clk(void)
  926. {
  927. enable_pll3();
  928. }
  929. unsigned int mxc_get_clock(enum mxc_clock clk)
  930. {
  931. switch (clk) {
  932. case MXC_ARM_CLK:
  933. return get_mcu_main_clk();
  934. case MXC_PER_CLK:
  935. return get_periph_clk();
  936. case MXC_AHB_CLK:
  937. return get_ahb_clk();
  938. case MXC_IPG_CLK:
  939. return get_ipg_clk();
  940. case MXC_IPG_PERCLK:
  941. case MXC_I2C_CLK:
  942. return get_ipg_per_clk();
  943. case MXC_UART_CLK:
  944. return get_uart_clk();
  945. case MXC_CSPI_CLK:
  946. return get_cspi_clk();
  947. case MXC_AXI_CLK:
  948. return get_axi_clk();
  949. case MXC_EMI_SLOW_CLK:
  950. return get_emi_slow_clk();
  951. case MXC_DDR_CLK:
  952. return get_mmdc_ch0_clk();
  953. case MXC_ESDHC_CLK:
  954. return get_usdhc_clk(0);
  955. case MXC_ESDHC2_CLK:
  956. return get_usdhc_clk(1);
  957. case MXC_ESDHC3_CLK:
  958. return get_usdhc_clk(2);
  959. case MXC_ESDHC4_CLK:
  960. return get_usdhc_clk(3);
  961. case MXC_SATA_CLK:
  962. return get_ahb_clk();
  963. default:
  964. printf("Unsupported MXC CLK: %d\n", clk);
  965. break;
  966. }
  967. return 0;
  968. }
  969. /*
  970. * Dump some core clockes.
  971. */
  972. int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  973. {
  974. u32 freq;
  975. freq = decode_pll(PLL_SYS, MXC_HCLK);
  976. printf("PLL_SYS %8d MHz\n", freq / 1000000);
  977. freq = decode_pll(PLL_BUS, MXC_HCLK);
  978. printf("PLL_BUS %8d MHz\n", freq / 1000000);
  979. freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  980. printf("PLL_OTG %8d MHz\n", freq / 1000000);
  981. freq = decode_pll(PLL_ENET, MXC_HCLK);
  982. printf("PLL_NET %8d MHz\n", freq / 1000000);
  983. printf("\n");
  984. printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
  985. printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
  986. #ifdef CONFIG_MXC_SPI
  987. printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
  988. #endif
  989. printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
  990. printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
  991. printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
  992. printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
  993. printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
  994. printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
  995. printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
  996. printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
  997. printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
  998. return 0;
  999. }
  1000. #ifndef CONFIG_MX6SX
  1001. void enable_ipu_clock(void)
  1002. {
  1003. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  1004. int reg;
  1005. reg = readl(&mxc_ccm->CCGR3);
  1006. reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK;
  1007. writel(reg, &mxc_ccm->CCGR3);
  1008. if (is_mx6dqp()) {
  1009. setbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
  1010. setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
  1011. }
  1012. }
  1013. #endif
  1014. /***************************************************/
  1015. U_BOOT_CMD(
  1016. clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
  1017. "display clocks",
  1018. ""
  1019. );