meson_gx_mmc.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. /*
  2. * (C) Copyright 2016 Carlo Caione <carlo@caione.org>
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+
  5. */
  6. #include <common.h>
  7. #include <dm.h>
  8. #include <fdtdec.h>
  9. #include <malloc.h>
  10. #include <mmc.h>
  11. #include <asm/io.h>
  12. #include <asm/arch/sd_emmc.h>
  13. #include <linux/log2.h>
  14. static inline void *get_regbase(const struct mmc *mmc)
  15. {
  16. struct meson_mmc_platdata *pdata = mmc->priv;
  17. return pdata->regbase;
  18. }
  19. static inline uint32_t meson_read(struct mmc *mmc, int offset)
  20. {
  21. return readl(get_regbase(mmc) + offset);
  22. }
  23. static inline void meson_write(struct mmc *mmc, uint32_t val, int offset)
  24. {
  25. writel(val, get_regbase(mmc) + offset);
  26. }
  27. static void meson_mmc_config_clock(struct mmc *mmc)
  28. {
  29. uint32_t meson_mmc_clk = 0;
  30. unsigned int clk, clk_src, clk_div;
  31. /* 1GHz / CLK_MAX_DIV = 15,9 MHz */
  32. if (mmc->clock > 16000000) {
  33. clk = SD_EMMC_CLKSRC_DIV2;
  34. clk_src = CLK_SRC_DIV2;
  35. } else {
  36. clk = SD_EMMC_CLKSRC_24M;
  37. clk_src = CLK_SRC_24M;
  38. }
  39. clk_div = DIV_ROUND_UP(clk, mmc->clock);
  40. /* 180 phase core clock */
  41. meson_mmc_clk |= CLK_CO_PHASE_180;
  42. /* 180 phase tx clock */
  43. meson_mmc_clk |= CLK_TX_PHASE_000;
  44. /* clock settings */
  45. meson_mmc_clk |= clk_src;
  46. meson_mmc_clk |= clk_div;
  47. meson_write(mmc, meson_mmc_clk, MESON_SD_EMMC_CLOCK);
  48. }
  49. static int meson_dm_mmc_set_ios(struct udevice *dev)
  50. {
  51. struct mmc *mmc = mmc_get_mmc_dev(dev);
  52. uint32_t meson_mmc_cfg;
  53. meson_mmc_config_clock(mmc);
  54. meson_mmc_cfg = meson_read(mmc, MESON_SD_EMMC_CFG);
  55. meson_mmc_cfg &= ~CFG_BUS_WIDTH_MASK;
  56. if (mmc->bus_width == 1)
  57. meson_mmc_cfg |= CFG_BUS_WIDTH_1;
  58. else if (mmc->bus_width == 4)
  59. meson_mmc_cfg |= CFG_BUS_WIDTH_4;
  60. else if (mmc->bus_width == 8)
  61. meson_mmc_cfg |= CFG_BUS_WIDTH_8;
  62. else
  63. return -EINVAL;
  64. /* 512 bytes block length */
  65. meson_mmc_cfg &= ~CFG_BL_LEN_MASK;
  66. meson_mmc_cfg |= CFG_BL_LEN_512;
  67. /* Response timeout 256 clk */
  68. meson_mmc_cfg &= ~CFG_RESP_TIMEOUT_MASK;
  69. meson_mmc_cfg |= CFG_RESP_TIMEOUT_256;
  70. /* Command-command gap 16 clk */
  71. meson_mmc_cfg &= ~CFG_RC_CC_MASK;
  72. meson_mmc_cfg |= CFG_RC_CC_16;
  73. meson_write(mmc, meson_mmc_cfg, MESON_SD_EMMC_CFG);
  74. return 0;
  75. }
  76. static void meson_mmc_setup_cmd(struct mmc *mmc, struct mmc_data *data,
  77. struct mmc_cmd *cmd)
  78. {
  79. uint32_t meson_mmc_cmd = 0, cfg;
  80. meson_mmc_cmd |= cmd->cmdidx << CMD_CFG_CMD_INDEX_SHIFT;
  81. if (cmd->resp_type & MMC_RSP_PRESENT) {
  82. if (cmd->resp_type & MMC_RSP_136)
  83. meson_mmc_cmd |= CMD_CFG_RESP_128;
  84. if (cmd->resp_type & MMC_RSP_BUSY)
  85. meson_mmc_cmd |= CMD_CFG_R1B;
  86. if (!(cmd->resp_type & MMC_RSP_CRC))
  87. meson_mmc_cmd |= CMD_CFG_RESP_NOCRC;
  88. } else {
  89. meson_mmc_cmd |= CMD_CFG_NO_RESP;
  90. }
  91. if (data) {
  92. cfg = meson_read(mmc, MESON_SD_EMMC_CFG);
  93. cfg &= ~CFG_BL_LEN_MASK;
  94. cfg |= ilog2(data->blocksize) << CFG_BL_LEN_SHIFT;
  95. meson_write(mmc, cfg, MESON_SD_EMMC_CFG);
  96. if (data->flags == MMC_DATA_WRITE)
  97. meson_mmc_cmd |= CMD_CFG_DATA_WR;
  98. meson_mmc_cmd |= CMD_CFG_DATA_IO | CMD_CFG_BLOCK_MODE |
  99. data->blocks;
  100. }
  101. meson_mmc_cmd |= CMD_CFG_TIMEOUT_4S | CMD_CFG_OWNER |
  102. CMD_CFG_END_OF_CHAIN;
  103. meson_write(mmc, meson_mmc_cmd, MESON_SD_EMMC_CMD_CFG);
  104. }
  105. static void meson_mmc_setup_addr(struct mmc *mmc, struct mmc_data *data)
  106. {
  107. struct meson_mmc_platdata *pdata = mmc->priv;
  108. unsigned int data_size;
  109. uint32_t data_addr = 0;
  110. if (data) {
  111. data_size = data->blocks * data->blocksize;
  112. if (data->flags == MMC_DATA_READ) {
  113. data_addr = (ulong) data->dest;
  114. invalidate_dcache_range(data_addr,
  115. data_addr + data_size);
  116. } else {
  117. pdata->w_buf = calloc(data_size, sizeof(char));
  118. data_addr = (ulong) pdata->w_buf;
  119. memcpy(pdata->w_buf, data->src, data_size);
  120. flush_dcache_range(data_addr, data_addr + data_size);
  121. }
  122. }
  123. meson_write(mmc, data_addr, MESON_SD_EMMC_CMD_DAT);
  124. }
  125. static void meson_mmc_read_response(struct mmc *mmc, struct mmc_cmd *cmd)
  126. {
  127. if (cmd->resp_type & MMC_RSP_136) {
  128. cmd->response[0] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP3);
  129. cmd->response[1] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP2);
  130. cmd->response[2] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP1);
  131. cmd->response[3] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP);
  132. } else {
  133. cmd->response[0] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP);
  134. }
  135. }
  136. static int meson_dm_mmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
  137. struct mmc_data *data)
  138. {
  139. struct mmc *mmc = mmc_get_mmc_dev(dev);
  140. struct meson_mmc_platdata *pdata = mmc->priv;
  141. uint32_t status;
  142. ulong start;
  143. int ret = 0;
  144. /* max block size supported by chip is 512 byte */
  145. if (data && data->blocksize > 512)
  146. return -EINVAL;
  147. meson_mmc_setup_cmd(mmc, data, cmd);
  148. meson_mmc_setup_addr(mmc, data);
  149. meson_write(mmc, cmd->cmdarg, MESON_SD_EMMC_CMD_ARG);
  150. /* use 10s timeout */
  151. start = get_timer(0);
  152. do {
  153. status = meson_read(mmc, MESON_SD_EMMC_STATUS);
  154. } while(!(status & STATUS_END_OF_CHAIN) && get_timer(start) < 10000);
  155. if (!(status & STATUS_END_OF_CHAIN))
  156. ret = -ETIMEDOUT;
  157. else if (status & STATUS_RESP_TIMEOUT)
  158. ret = -ETIMEDOUT;
  159. else if (status & STATUS_ERR_MASK)
  160. ret = -EIO;
  161. meson_mmc_read_response(mmc, cmd);
  162. if (data && data->flags == MMC_DATA_WRITE)
  163. free(pdata->w_buf);
  164. /* reset status bits */
  165. meson_write(mmc, STATUS_MASK, MESON_SD_EMMC_STATUS);
  166. return ret;
  167. }
  168. static const struct dm_mmc_ops meson_dm_mmc_ops = {
  169. .send_cmd = meson_dm_mmc_send_cmd,
  170. .set_ios = meson_dm_mmc_set_ios,
  171. };
  172. static int meson_mmc_ofdata_to_platdata(struct udevice *dev)
  173. {
  174. struct meson_mmc_platdata *pdata = dev_get_platdata(dev);
  175. fdt_addr_t addr;
  176. addr = devfdt_get_addr(dev);
  177. if (addr == FDT_ADDR_T_NONE)
  178. return -EINVAL;
  179. pdata->regbase = (void *)addr;
  180. return 0;
  181. }
  182. static int meson_mmc_probe(struct udevice *dev)
  183. {
  184. struct meson_mmc_platdata *pdata = dev_get_platdata(dev);
  185. struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
  186. struct mmc *mmc = &pdata->mmc;
  187. struct mmc_config *cfg = &pdata->cfg;
  188. uint32_t val;
  189. cfg->voltages = MMC_VDD_33_34 | MMC_VDD_32_33 |
  190. MMC_VDD_31_32 | MMC_VDD_165_195;
  191. cfg->host_caps = MMC_MODE_8BIT | MMC_MODE_4BIT |
  192. MMC_MODE_HS_52MHz | MMC_MODE_HS;
  193. cfg->f_min = DIV_ROUND_UP(SD_EMMC_CLKSRC_24M, CLK_MAX_DIV);
  194. cfg->f_max = 100000000; /* 100 MHz */
  195. cfg->b_max = 511; /* max 512 - 1 blocks */
  196. cfg->name = dev->name;
  197. mmc->priv = pdata;
  198. upriv->mmc = mmc;
  199. mmc_set_clock(mmc, cfg->f_min);
  200. /* reset all status bits */
  201. meson_write(mmc, STATUS_MASK, MESON_SD_EMMC_STATUS);
  202. /* disable interrupts */
  203. meson_write(mmc, 0, MESON_SD_EMMC_IRQ_EN);
  204. /* enable auto clock mode */
  205. val = meson_read(mmc, MESON_SD_EMMC_CFG);
  206. val &= ~CFG_SDCLK_ALWAYS_ON;
  207. val |= CFG_AUTO_CLK;
  208. meson_write(mmc, val, MESON_SD_EMMC_CFG);
  209. return 0;
  210. }
  211. int meson_mmc_bind(struct udevice *dev)
  212. {
  213. struct meson_mmc_platdata *pdata = dev_get_platdata(dev);
  214. return mmc_bind(dev, &pdata->mmc, &pdata->cfg);
  215. }
  216. static const struct udevice_id meson_mmc_match[] = {
  217. { .compatible = "amlogic,meson-gx-mmc" },
  218. { /* sentinel */ }
  219. };
  220. U_BOOT_DRIVER(meson_mmc) = {
  221. .name = "meson_gx_mmc",
  222. .id = UCLASS_MMC,
  223. .of_match = meson_mmc_match,
  224. .ops = &meson_dm_mmc_ops,
  225. .probe = meson_mmc_probe,
  226. .bind = meson_mmc_bind,
  227. .ofdata_to_platdata = meson_mmc_ofdata_to_platdata,
  228. .platdata_auto_alloc_size = sizeof(struct meson_mmc_platdata),
  229. };