clock.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687
  1. /*
  2. * Copyright (c) 2011 The Chromium OS Authors.
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+
  5. */
  6. /* Tegra20 Clock control functions */
  7. #include <common.h>
  8. #include <errno.h>
  9. #include <asm/io.h>
  10. #include <asm/arch/clock.h>
  11. #include <asm/arch/tegra.h>
  12. #include <asm/arch-tegra/clk_rst.h>
  13. #include <asm/arch-tegra/timer.h>
  14. #include <div64.h>
  15. #include <fdtdec.h>
  16. /*
  17. * Clock types that we can use as a source. The Tegra20 has muxes for the
  18. * peripheral clocks, and in most cases there are four options for the clock
  19. * source. This gives us a clock 'type' and exploits what commonality exists
  20. * in the device.
  21. *
  22. * Letters are obvious, except for T which means CLK_M, and S which means the
  23. * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
  24. * datasheet) and PLL_M are different things. The former is the basic
  25. * clock supplied to the SOC from an external oscillator. The latter is the
  26. * memory clock PLL.
  27. *
  28. * See definitions in clock_id in the header file.
  29. */
  30. enum clock_type_id {
  31. CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
  32. CLOCK_TYPE_MCPA, /* and so on */
  33. CLOCK_TYPE_MCPT,
  34. CLOCK_TYPE_PCM,
  35. CLOCK_TYPE_PCMT,
  36. CLOCK_TYPE_PCMT16, /* CLOCK_TYPE_PCMT with 16-bit divider */
  37. CLOCK_TYPE_PCXTS,
  38. CLOCK_TYPE_PDCT,
  39. CLOCK_TYPE_COUNT,
  40. CLOCK_TYPE_NONE = -1, /* invalid clock type */
  41. };
  42. enum {
  43. CLOCK_MAX_MUX = 4 /* number of source options for each clock */
  44. };
  45. /*
  46. * Clock source mux for each clock type. This just converts our enum into
  47. * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
  48. * is special as it has 5 sources. Since it also has a different number of
  49. * bits in its register for the source, we just handle it with a special
  50. * case in the code.
  51. */
  52. #define CLK(x) CLOCK_ID_ ## x
  53. static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
  54. { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC) },
  55. { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO) },
  56. { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC) },
  57. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE) },
  58. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
  59. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
  60. { CLK(PERIPH), CLK(CGENERAL), CLK(XCPU), CLK(OSC) },
  61. { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC) },
  62. };
  63. /*
  64. * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
  65. * not in the header file since it is for purely internal use - we want
  66. * callers to use the PERIPH_ID for all access to peripheral clocks to avoid
  67. * confusion bewteen PERIPH_ID_... and PERIPHC_...
  68. *
  69. * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
  70. * confusing.
  71. *
  72. * Note to SOC vendors: perhaps define a unified numbering for peripherals and
  73. * use it for reset, clock enable, clock source/divider and even pinmuxing
  74. * if you can.
  75. */
  76. enum periphc_internal_id {
  77. /* 0x00 */
  78. PERIPHC_I2S1,
  79. PERIPHC_I2S2,
  80. PERIPHC_SPDIF_OUT,
  81. PERIPHC_SPDIF_IN,
  82. PERIPHC_PWM,
  83. PERIPHC_SPI1,
  84. PERIPHC_SPI2,
  85. PERIPHC_SPI3,
  86. /* 0x08 */
  87. PERIPHC_XIO,
  88. PERIPHC_I2C1,
  89. PERIPHC_DVC_I2C,
  90. PERIPHC_TWC,
  91. PERIPHC_0c,
  92. PERIPHC_10, /* PERIPHC_SPI1, what is this really? */
  93. PERIPHC_DISP1,
  94. PERIPHC_DISP2,
  95. /* 0x10 */
  96. PERIPHC_CVE,
  97. PERIPHC_IDE0,
  98. PERIPHC_VI,
  99. PERIPHC_1c,
  100. PERIPHC_SDMMC1,
  101. PERIPHC_SDMMC2,
  102. PERIPHC_G3D,
  103. PERIPHC_G2D,
  104. /* 0x18 */
  105. PERIPHC_NDFLASH,
  106. PERIPHC_SDMMC4,
  107. PERIPHC_VFIR,
  108. PERIPHC_EPP,
  109. PERIPHC_MPE,
  110. PERIPHC_MIPI,
  111. PERIPHC_UART1,
  112. PERIPHC_UART2,
  113. /* 0x20 */
  114. PERIPHC_HOST1X,
  115. PERIPHC_21,
  116. PERIPHC_TVO,
  117. PERIPHC_HDMI,
  118. PERIPHC_24,
  119. PERIPHC_TVDAC,
  120. PERIPHC_I2C2,
  121. PERIPHC_EMC,
  122. /* 0x28 */
  123. PERIPHC_UART3,
  124. PERIPHC_29,
  125. PERIPHC_VI_SENSOR,
  126. PERIPHC_2b,
  127. PERIPHC_2c,
  128. PERIPHC_SPI4,
  129. PERIPHC_I2C3,
  130. PERIPHC_SDMMC3,
  131. /* 0x30 */
  132. PERIPHC_UART4,
  133. PERIPHC_UART5,
  134. PERIPHC_VDE,
  135. PERIPHC_OWR,
  136. PERIPHC_NOR,
  137. PERIPHC_CSITE,
  138. PERIPHC_COUNT,
  139. PERIPHC_NONE = -1,
  140. };
  141. /*
  142. * Clock type for each peripheral clock source. We put the name in each
  143. * record just so it is easy to match things up
  144. */
  145. #define TYPE(name, type) type
  146. static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
  147. /* 0x00 */
  148. TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
  149. TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
  150. TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
  151. TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
  152. TYPE(PERIPHC_PWM, CLOCK_TYPE_PCXTS),
  153. TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
  154. TYPE(PERIPHC_SPI22, CLOCK_TYPE_PCMT),
  155. TYPE(PERIPHC_SPI3, CLOCK_TYPE_PCMT),
  156. /* 0x08 */
  157. TYPE(PERIPHC_XIO, CLOCK_TYPE_PCMT),
  158. TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16),
  159. TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16),
  160. TYPE(PERIPHC_TWC, CLOCK_TYPE_PCMT),
  161. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  162. TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
  163. TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDCT),
  164. TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDCT),
  165. /* 0x10 */
  166. TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
  167. TYPE(PERIPHC_IDE0, CLOCK_TYPE_PCMT),
  168. TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
  169. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  170. TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
  171. TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
  172. TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
  173. TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
  174. /* 0x18 */
  175. TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
  176. TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
  177. TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
  178. TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
  179. TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
  180. TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT),
  181. TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
  182. TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
  183. /* 0x20 */
  184. TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
  185. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  186. TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
  187. TYPE(PERIPHC_HDMI, CLOCK_TYPE_PDCT),
  188. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  189. TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
  190. TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16),
  191. TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
  192. /* 0x28 */
  193. TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
  194. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  195. TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
  196. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  197. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  198. TYPE(PERIPHC_SPI4, CLOCK_TYPE_PCMT),
  199. TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16),
  200. TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
  201. /* 0x30 */
  202. TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
  203. TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
  204. TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
  205. TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
  206. TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
  207. TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
  208. };
  209. /*
  210. * This array translates a periph_id to a periphc_internal_id
  211. *
  212. * Not present/matched up:
  213. * uint vi_sensor; _VI_SENSOR_0, 0x1A8
  214. * SPDIF - which is both 0x08 and 0x0c
  215. *
  216. */
  217. #define NONE(name) (-1)
  218. #define OFFSET(name, value) PERIPHC_ ## name
  219. static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
  220. /* Low word: 31:0 */
  221. NONE(CPU),
  222. NONE(RESERVED1),
  223. NONE(RESERVED2),
  224. NONE(AC97),
  225. NONE(RTC),
  226. NONE(TMR),
  227. PERIPHC_UART1,
  228. PERIPHC_UART2, /* and vfir 0x68 */
  229. /* 0x08 */
  230. NONE(GPIO),
  231. PERIPHC_SDMMC2,
  232. NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
  233. PERIPHC_I2S1,
  234. PERIPHC_I2C1,
  235. PERIPHC_NDFLASH,
  236. PERIPHC_SDMMC1,
  237. PERIPHC_SDMMC4,
  238. /* 0x10 */
  239. PERIPHC_TWC,
  240. PERIPHC_PWM,
  241. PERIPHC_I2S2,
  242. PERIPHC_EPP,
  243. PERIPHC_VI,
  244. PERIPHC_G2D,
  245. NONE(USBD),
  246. NONE(ISP),
  247. /* 0x18 */
  248. PERIPHC_G3D,
  249. PERIPHC_IDE0,
  250. PERIPHC_DISP2,
  251. PERIPHC_DISP1,
  252. PERIPHC_HOST1X,
  253. NONE(VCP),
  254. NONE(RESERVED30),
  255. NONE(CACHE2),
  256. /* Middle word: 63:32 */
  257. NONE(MEM),
  258. NONE(AHBDMA),
  259. NONE(APBDMA),
  260. NONE(RESERVED35),
  261. NONE(KBC),
  262. NONE(STAT_MON),
  263. NONE(PMC),
  264. NONE(FUSE),
  265. /* 0x28 */
  266. NONE(KFUSE),
  267. NONE(SBC1), /* SBC1, 0x34, is this SPI1? */
  268. PERIPHC_NOR,
  269. PERIPHC_SPI1,
  270. PERIPHC_SPI2,
  271. PERIPHC_XIO,
  272. PERIPHC_SPI3,
  273. PERIPHC_DVC_I2C,
  274. /* 0x30 */
  275. NONE(DSI),
  276. PERIPHC_TVO, /* also CVE 0x40 */
  277. PERIPHC_MIPI,
  278. PERIPHC_HDMI,
  279. PERIPHC_CSITE,
  280. PERIPHC_TVDAC,
  281. PERIPHC_I2C2,
  282. PERIPHC_UART3,
  283. /* 0x38 */
  284. NONE(RESERVED56),
  285. PERIPHC_EMC,
  286. NONE(USB2),
  287. NONE(USB3),
  288. PERIPHC_MPE,
  289. PERIPHC_VDE,
  290. NONE(BSEA),
  291. NONE(BSEV),
  292. /* Upper word 95:64 */
  293. NONE(SPEEDO),
  294. PERIPHC_UART4,
  295. PERIPHC_UART5,
  296. PERIPHC_I2C3,
  297. PERIPHC_SPI4,
  298. PERIPHC_SDMMC3,
  299. NONE(PCIE),
  300. PERIPHC_OWR,
  301. /* 0x48 */
  302. NONE(AFI),
  303. NONE(CORESIGHT),
  304. NONE(PCIEXCLK),
  305. NONE(AVPUCQ),
  306. NONE(RESERVED76),
  307. NONE(RESERVED77),
  308. NONE(RESERVED78),
  309. NONE(RESERVED79),
  310. /* 0x50 */
  311. NONE(RESERVED80),
  312. NONE(RESERVED81),
  313. NONE(RESERVED82),
  314. NONE(RESERVED83),
  315. NONE(IRAMA),
  316. NONE(IRAMB),
  317. NONE(IRAMC),
  318. NONE(IRAMD),
  319. /* 0x58 */
  320. NONE(CRAM2),
  321. };
  322. /*
  323. * Get the oscillator frequency, from the corresponding hardware configuration
  324. * field. T20 has 4 frequencies that it supports.
  325. */
  326. enum clock_osc_freq clock_get_osc_freq(void)
  327. {
  328. struct clk_rst_ctlr *clkrst =
  329. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  330. u32 reg;
  331. reg = readl(&clkrst->crc_osc_ctrl);
  332. return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
  333. }
  334. /* Returns a pointer to the clock source register for a peripheral */
  335. u32 *get_periph_source_reg(enum periph_id periph_id)
  336. {
  337. struct clk_rst_ctlr *clkrst =
  338. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  339. enum periphc_internal_id internal_id;
  340. assert(clock_periph_id_isvalid(periph_id));
  341. internal_id = periph_id_to_internal_id[periph_id];
  342. assert(internal_id != -1);
  343. return &clkrst->crc_clk_src[internal_id];
  344. }
  345. /**
  346. * Given a peripheral ID and the required source clock, this returns which
  347. * value should be programmed into the source mux for that peripheral.
  348. *
  349. * There is special code here to handle the one source type with 5 sources.
  350. *
  351. * @param periph_id peripheral to start
  352. * @param source PLL id of required parent clock
  353. * @param mux_bits Set to number of bits in mux register: 2 or 4
  354. * @param divider_bits Set to number of divider bits (8 or 16)
  355. * @return mux value (0-4, or -1 if not found)
  356. */
  357. int get_periph_clock_source(enum periph_id periph_id,
  358. enum clock_id parent, int *mux_bits, int *divider_bits)
  359. {
  360. enum clock_type_id type;
  361. enum periphc_internal_id internal_id;
  362. int mux;
  363. assert(clock_periph_id_isvalid(periph_id));
  364. internal_id = periph_id_to_internal_id[periph_id];
  365. assert(periphc_internal_id_isvalid(internal_id));
  366. type = clock_periph_type[internal_id];
  367. assert(clock_type_id_isvalid(type));
  368. /*
  369. * Special cases here for the clock with a 4-bit source mux and I2C
  370. * with its 16-bit divisor
  371. */
  372. if (type == CLOCK_TYPE_PCXTS)
  373. *mux_bits = MASK_BITS_31_28;
  374. else
  375. *mux_bits = MASK_BITS_31_30;
  376. if (type == CLOCK_TYPE_PCMT16)
  377. *divider_bits = 16;
  378. else
  379. *divider_bits = 8;
  380. for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
  381. if (clock_source[type][mux] == parent)
  382. return mux;
  383. /*
  384. * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
  385. * which is not in our table. If not, then they are asking for a
  386. * source which this peripheral can't access through its mux.
  387. */
  388. assert(type == CLOCK_TYPE_PCXTS);
  389. assert(parent == CLOCK_ID_SFROM32KHZ);
  390. if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
  391. return 4; /* mux value for this clock */
  392. /* if we get here, either us or the caller has made a mistake */
  393. printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
  394. parent);
  395. return -1;
  396. }
  397. void clock_set_enable(enum periph_id periph_id, int enable)
  398. {
  399. struct clk_rst_ctlr *clkrst =
  400. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  401. u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
  402. u32 reg;
  403. /* Enable/disable the clock to this peripheral */
  404. assert(clock_periph_id_isvalid(periph_id));
  405. reg = readl(clk);
  406. if (enable)
  407. reg |= PERIPH_MASK(periph_id);
  408. else
  409. reg &= ~PERIPH_MASK(periph_id);
  410. writel(reg, clk);
  411. }
  412. void reset_set_enable(enum periph_id periph_id, int enable)
  413. {
  414. struct clk_rst_ctlr *clkrst =
  415. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  416. u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
  417. u32 reg;
  418. /* Enable/disable reset to the peripheral */
  419. assert(clock_periph_id_isvalid(periph_id));
  420. reg = readl(reset);
  421. if (enable)
  422. reg |= PERIPH_MASK(periph_id);
  423. else
  424. reg &= ~PERIPH_MASK(periph_id);
  425. writel(reg, reset);
  426. }
  427. #ifdef CONFIG_OF_CONTROL
  428. /*
  429. * Convert a device tree clock ID to our peripheral ID. They are mostly
  430. * the same but we are very cautious so we check that a valid clock ID is
  431. * provided.
  432. *
  433. * @param clk_id Clock ID according to tegra20 device tree binding
  434. * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
  435. */
  436. enum periph_id clk_id_to_periph_id(int clk_id)
  437. {
  438. if (clk_id > PERIPH_ID_COUNT)
  439. return PERIPH_ID_NONE;
  440. switch (clk_id) {
  441. case PERIPH_ID_RESERVED1:
  442. case PERIPH_ID_RESERVED2:
  443. case PERIPH_ID_RESERVED30:
  444. case PERIPH_ID_RESERVED35:
  445. case PERIPH_ID_RESERVED56:
  446. case PERIPH_ID_PCIEXCLK:
  447. case PERIPH_ID_RESERVED76:
  448. case PERIPH_ID_RESERVED77:
  449. case PERIPH_ID_RESERVED78:
  450. case PERIPH_ID_RESERVED79:
  451. case PERIPH_ID_RESERVED80:
  452. case PERIPH_ID_RESERVED81:
  453. case PERIPH_ID_RESERVED82:
  454. case PERIPH_ID_RESERVED83:
  455. case PERIPH_ID_RESERVED91:
  456. return PERIPH_ID_NONE;
  457. default:
  458. return clk_id;
  459. }
  460. }
  461. #endif /* CONFIG_OF_CONTROL */
  462. void clock_early_init(void)
  463. {
  464. /*
  465. * PLLP output frequency set to 216MHz
  466. * PLLC output frequency set to 600Mhz
  467. *
  468. * TODO: Can we calculate these values instead of hard-coding?
  469. */
  470. switch (clock_get_osc_freq()) {
  471. case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
  472. clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
  473. clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
  474. break;
  475. case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
  476. clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
  477. clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
  478. break;
  479. case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
  480. clock_set_rate(CLOCK_ID_PERIPH, 432, 13, 1, 8);
  481. clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
  482. break;
  483. case CLOCK_OSC_FREQ_19_2:
  484. default:
  485. /*
  486. * These are not supported. It is too early to print a
  487. * message and the UART likely won't work anyway due to the
  488. * oscillator being wrong.
  489. */
  490. break;
  491. }
  492. }
  493. void arch_timer_init(void)
  494. {
  495. }
  496. #define PMC_SATA_PWRGT 0x1ac
  497. #define PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
  498. #define PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
  499. #define PLLE_SS_CNTL 0x68
  500. #define PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
  501. #define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
  502. #define PLLE_SS_CNTL_SSCBYP (1 << 12)
  503. #define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
  504. #define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
  505. #define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
  506. #define PLLE_BASE 0x0e8
  507. #define PLLE_BASE_ENABLE_CML (1 << 31)
  508. #define PLLE_BASE_ENABLE (1 << 30)
  509. #define PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
  510. #define PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
  511. #define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
  512. #define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
  513. #define PLLE_MISC 0x0ec
  514. #define PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
  515. #define PLLE_MISC_PLL_READY (1 << 15)
  516. #define PLLE_MISC_LOCK (1 << 11)
  517. #define PLLE_MISC_LOCK_ENABLE (1 << 9)
  518. #define PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
  519. static int tegra_plle_train(void)
  520. {
  521. unsigned int timeout = 2000;
  522. unsigned long value;
  523. value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  524. value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
  525. writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  526. value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  527. value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
  528. writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  529. value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  530. value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
  531. writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  532. do {
  533. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  534. if (value & PLLE_MISC_PLL_READY)
  535. break;
  536. udelay(100);
  537. } while (--timeout);
  538. if (timeout == 0) {
  539. error("timeout waiting for PLLE to become ready");
  540. return -ETIMEDOUT;
  541. }
  542. return 0;
  543. }
  544. int tegra_plle_enable(void)
  545. {
  546. unsigned int timeout = 1000;
  547. u32 value;
  548. int err;
  549. /* disable PLLE clock */
  550. value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
  551. value &= ~PLLE_BASE_ENABLE_CML;
  552. value &= ~PLLE_BASE_ENABLE;
  553. writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
  554. /* clear lock enable and setup field */
  555. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  556. value &= ~PLLE_MISC_LOCK_ENABLE;
  557. value &= ~PLLE_MISC_SETUP_BASE(0xffff);
  558. value &= ~PLLE_MISC_SETUP_EXT(0x3);
  559. writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
  560. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  561. if ((value & PLLE_MISC_PLL_READY) == 0) {
  562. err = tegra_plle_train();
  563. if (err < 0) {
  564. error("failed to train PLLE: %d", err);
  565. return err;
  566. }
  567. }
  568. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  569. value |= PLLE_MISC_SETUP_BASE(0x7);
  570. value |= PLLE_MISC_LOCK_ENABLE;
  571. value |= PLLE_MISC_SETUP_EXT(0);
  572. writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
  573. value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  574. value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
  575. PLLE_SS_CNTL_BYPASS_SS;
  576. writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  577. value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
  578. value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
  579. writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
  580. do {
  581. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  582. if (value & PLLE_MISC_LOCK)
  583. break;
  584. udelay(2);
  585. } while (--timeout);
  586. if (timeout == 0) {
  587. error("timeout waiting for PLLE to lock");
  588. return -ETIMEDOUT;
  589. }
  590. udelay(50);
  591. value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  592. value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
  593. value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
  594. value &= ~PLLE_SS_CNTL_SSCINC(0xff);
  595. value |= PLLE_SS_CNTL_SSCINC(0x01);
  596. value &= ~PLLE_SS_CNTL_SSCBYP;
  597. value &= ~PLLE_SS_CNTL_INTERP_RESET;
  598. value &= ~PLLE_SS_CNTL_BYPASS_SS;
  599. value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
  600. value |= PLLE_SS_CNTL_SSCMAX(0x24);
  601. writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  602. return 0;
  603. }