cf_qspi.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /*
  2. * Freescale Coldfire Queued SPI driver
  3. *
  4. * NOTE:
  5. * This driver is written to transfer 8 bit at-a-time and uses the dedicated
  6. * SPI slave select pins as bit-banged GPIO to work with spi_flash subsystem.
  7. *
  8. * Copyright (C) 2011 Ruggedcom, Inc.
  9. * Richard Retanubun (richardretanubun@freescale.com)
  10. *
  11. * SPDX-License-Identifier: GPL-2.0+
  12. */
  13. #include <common.h>
  14. #include <malloc.h>
  15. #include <spi.h>
  16. #include <asm/immap.h>
  17. #include <asm/io.h>
  18. DECLARE_GLOBAL_DATA_PTR;
  19. #define clamp(x, low, high) (min(max(low, x), high))
  20. #define to_cf_qspi_slave(s) container_of(s, struct cf_qspi_slave, slave)
  21. struct cf_qspi_slave {
  22. struct spi_slave slave; /* Specific bus:cs ID for each device */
  23. qspi_t *regs; /* Pointer to SPI controller registers */
  24. u16 qmr; /* QMR: Queued Mode Register */
  25. u16 qwr; /* QWR: Queued Wrap Register */
  26. u16 qcr; /* QCR: Queued Command Ram */
  27. };
  28. /* Register write wrapper functions */
  29. static void write_qmr(volatile qspi_t *qspi, u16 val) { qspi->mr = val; }
  30. static void write_qdlyr(volatile qspi_t *qspi, u16 val) { qspi->dlyr = val; }
  31. static void write_qwr(volatile qspi_t *qspi, u16 val) { qspi->wr = val; }
  32. static void write_qir(volatile qspi_t *qspi, u16 val) { qspi->ir = val; }
  33. static void write_qar(volatile qspi_t *qspi, u16 val) { qspi->ar = val; }
  34. static void write_qdr(volatile qspi_t *qspi, u16 val) { qspi->dr = val; }
  35. /* Register read wrapper functions */
  36. static u16 read_qdlyr(volatile qspi_t *qspi) { return qspi->dlyr; }
  37. static u16 read_qwr(volatile qspi_t *qspi) { return qspi->wr; }
  38. static u16 read_qir(volatile qspi_t *qspi) { return qspi->ir; }
  39. static u16 read_qdr(volatile qspi_t *qspi) { return qspi->dr; }
  40. /* These call points may be different for each ColdFire CPU */
  41. extern void cfspi_port_conf(void);
  42. static void cfspi_cs_activate(uint bus, uint cs, uint cs_active_high);
  43. static void cfspi_cs_deactivate(uint bus, uint cs, uint cs_active_high);
  44. int spi_claim_bus(struct spi_slave *slave)
  45. {
  46. return 0;
  47. }
  48. void spi_release_bus(struct spi_slave *slave)
  49. {
  50. }
  51. __attribute__((weak))
  52. void spi_init(void)
  53. {
  54. cfspi_port_conf();
  55. }
  56. __attribute__((weak))
  57. void spi_cs_activate(struct spi_slave *slave)
  58. {
  59. struct cf_qspi_slave *dev = to_cf_qspi_slave(slave);
  60. cfspi_cs_activate(slave->bus, slave->cs, !(dev->qwr & QSPI_QWR_CSIV));
  61. }
  62. __attribute__((weak))
  63. void spi_cs_deactivate(struct spi_slave *slave)
  64. {
  65. struct cf_qspi_slave *dev = to_cf_qspi_slave(slave);
  66. cfspi_cs_deactivate(slave->bus, slave->cs, !(dev->qwr & QSPI_QWR_CSIV));
  67. }
  68. __attribute__((weak))
  69. int spi_cs_is_valid(unsigned int bus, unsigned int cs)
  70. {
  71. /* Only 1 bus and 4 chipselect per controller */
  72. if (bus == 0 && (cs >= 0 && cs < 4))
  73. return 1;
  74. else
  75. return 0;
  76. }
  77. void spi_free_slave(struct spi_slave *slave)
  78. {
  79. struct cf_qspi_slave *dev = to_cf_qspi_slave(slave);
  80. free(dev);
  81. }
  82. /* Translate information given by spi_setup_slave to members of cf_qspi_slave */
  83. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  84. unsigned int max_hz, unsigned int mode)
  85. {
  86. struct cf_qspi_slave *dev = NULL;
  87. if (!spi_cs_is_valid(bus, cs))
  88. return NULL;
  89. dev = spi_alloc_slave(struct cf_qspi_slave, bus, cs);
  90. if (!dev)
  91. return NULL;
  92. /* Initialize to known value */
  93. dev->regs = (qspi_t *)MMAP_QSPI;
  94. dev->qmr = 0;
  95. dev->qwr = 0;
  96. dev->qcr = 0;
  97. /* Map max_hz to QMR[BAUD] */
  98. if (max_hz == 0) /* Go as fast as possible */
  99. dev->qmr = 2u;
  100. else /* Get the closest baud rate */
  101. dev->qmr = clamp(((gd->bus_clk >> 2) + max_hz - 1)/max_hz,
  102. 2u, 255u);
  103. /* Map mode to QMR[CPOL] and QMR[CPHA] */
  104. if (mode & SPI_CPOL)
  105. dev->qmr |= QSPI_QMR_CPOL;
  106. if (mode & SPI_CPHA)
  107. dev->qmr |= QSPI_QMR_CPHA;
  108. /* Hardcode bit length to 8 bit per transter */
  109. dev->qmr |= QSPI_QMR_BITS_8;
  110. /* Set QMR[MSTR] to enable QSPI as master */
  111. dev->qmr |= QSPI_QMR_MSTR;
  112. /*
  113. * Set QCR and QWR to default values for spi flash operation.
  114. * If more custom QCR and QRW are needed, overload mode variable
  115. */
  116. dev->qcr = (QSPI_QDR_CONT | QSPI_QDR_BITSE);
  117. if (!(mode & SPI_CS_HIGH))
  118. dev->qwr |= QSPI_QWR_CSIV;
  119. return &dev->slave;
  120. }
  121. /* Transfer 8 bit at a time */
  122. int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
  123. void *din, unsigned long flags)
  124. {
  125. struct cf_qspi_slave *dev = to_cf_qspi_slave(slave);
  126. volatile qspi_t *qspi = dev->regs;
  127. u8 *txbuf = (u8 *)dout;
  128. u8 *rxbuf = (u8 *)din;
  129. u32 count = DIV_ROUND_UP(bitlen, 8);
  130. u32 n, i = 0;
  131. /* Sanitize arguments */
  132. if (slave == NULL) {
  133. printf("%s: NULL slave ptr\n", __func__);
  134. return -1;
  135. }
  136. if (flags & SPI_XFER_BEGIN)
  137. spi_cs_activate(slave);
  138. /* There is something to send, lets process it. spi_xfer is also called
  139. * just to toggle chip select, so bitlen of 0 is valid */
  140. if (count > 0) {
  141. /*
  142. * NOTE: Since chip select is driven as a bit-bang-ed GPIO
  143. * using spi_cs_activate() and spi_cs_deactivate(),
  144. * the chip select settings inside the controller
  145. * (i.e. QCR[CONT] and QWR[CSIV]) are moot. The bits are set to
  146. * keep the controller settings consistent with the actual
  147. * operation of the bus.
  148. */
  149. /* Write the slave device's settings for the controller.*/
  150. write_qmr(qspi, dev->qmr);
  151. write_qwr(qspi, dev->qwr);
  152. /* Limit transfer to 16 at a time */
  153. n = min(count, 16u);
  154. do {
  155. /* Setup queue end point */
  156. write_qwr(qspi, ((read_qwr(qspi) & QSPI_QWR_ENDQP_MASK)
  157. | QSPI_QWR_ENDQP((n-1))));
  158. /* Write Command RAM */
  159. write_qar(qspi, QSPI_QAR_CMD);
  160. for (i = 0; i < n; ++i)
  161. write_qdr(qspi, dev->qcr);
  162. /* Write TxBuf, if none given, fill with ZEROes */
  163. write_qar(qspi, QSPI_QAR_TRANS);
  164. if (txbuf) {
  165. for (i = 0; i < n; ++i)
  166. write_qdr(qspi, *txbuf++);
  167. } else {
  168. for (i = 0; i < n; ++i)
  169. write_qdr(qspi, 0);
  170. }
  171. /* Clear QIR[SPIF] by writing a 1 to it */
  172. write_qir(qspi, read_qir(qspi) | QSPI_QIR_SPIF);
  173. /* Set QDLYR[SPE] to start sending */
  174. write_qdlyr(qspi, read_qdlyr(qspi) | QSPI_QDLYR_SPE);
  175. /* Poll QIR[SPIF] for transfer completion */
  176. while ((read_qir(qspi) & QSPI_QIR_SPIF) != 1)
  177. udelay(1);
  178. /* If given read RxBuf, load data to it */
  179. if (rxbuf) {
  180. write_qar(qspi, QSPI_QAR_RECV);
  181. for (i = 0; i < n; ++i)
  182. *rxbuf++ = read_qdr(qspi);
  183. }
  184. /* Decrement count */
  185. count -= n;
  186. } while (count);
  187. }
  188. if (flags & SPI_XFER_END)
  189. spi_cs_deactivate(slave);
  190. return 0;
  191. }
  192. /* Each MCF CPU may have different pin assignments for chip selects. */
  193. #if defined(CONFIG_M5271)
  194. /* Assert chip select, val = [1|0] , dir = out, mode = GPIO */
  195. void cfspi_cs_activate(uint bus, uint cs, uint cs_active_high)
  196. {
  197. debug("%s: bus %d cs %d cs_active_high %d\n",
  198. __func__, bus, cs, cs_active_high);
  199. switch (cs) {
  200. case 0: /* QSPI_CS[0] = PQSPI[3] */
  201. if (cs_active_high)
  202. mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x08);
  203. else
  204. mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xF7);
  205. mbar_writeByte(MCF_GPIO_PDDR_QSPI,
  206. mbar_readByte(MCF_GPIO_PDDR_QSPI) | 0x08);
  207. mbar_writeByte(MCF_GPIO_PAR_QSPI,
  208. mbar_readByte(MCF_GPIO_PAR_QSPI) & 0xDF);
  209. break;
  210. case 1: /* QSPI_CS[1] = PQSPI[4] */
  211. if (cs_active_high)
  212. mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x10);
  213. else
  214. mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xEF);
  215. mbar_writeByte(MCF_GPIO_PDDR_QSPI,
  216. mbar_readByte(MCF_GPIO_PDDR_QSPI) | 0x10);
  217. mbar_writeByte(MCF_GPIO_PAR_QSPI,
  218. mbar_readByte(MCF_GPIO_PAR_QSPI) & 0x3F);
  219. break;
  220. case 2: /* QSPI_CS[2] = PTIMER[7] */
  221. if (cs_active_high)
  222. mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x80);
  223. else
  224. mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0x7F);
  225. mbar_writeByte(MCF_GPIO_PDDR_TIMER,
  226. mbar_readByte(MCF_GPIO_PDDR_TIMER) | 0x80);
  227. mbar_writeShort(MCF_GPIO_PAR_TIMER,
  228. mbar_readShort(MCF_GPIO_PAR_TIMER) & 0x3FFF);
  229. break;
  230. case 3: /* QSPI_CS[3] = PTIMER[3] */
  231. if (cs_active_high)
  232. mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x08);
  233. else
  234. mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0xF7);
  235. mbar_writeByte(MCF_GPIO_PDDR_TIMER,
  236. mbar_readByte(MCF_GPIO_PDDR_TIMER) | 0x08);
  237. mbar_writeShort(MCF_GPIO_PAR_TIMER,
  238. mbar_readShort(MCF_GPIO_PAR_TIMER) & 0xFF3F);
  239. break;
  240. }
  241. }
  242. /* Deassert chip select, val = [1|0], dir = in, mode = GPIO
  243. * direction set as IN to undrive the pin, external pullup/pulldown will bring
  244. * bus to deassert state.
  245. */
  246. void cfspi_cs_deactivate(uint bus, uint cs, uint cs_active_high)
  247. {
  248. debug("%s: bus %d cs %d cs_active_high %d\n",
  249. __func__, bus, cs, cs_active_high);
  250. switch (cs) {
  251. case 0: /* QSPI_CS[0] = PQSPI[3] */
  252. if (cs_active_high)
  253. mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xF7);
  254. else
  255. mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x08);
  256. mbar_writeByte(MCF_GPIO_PDDR_QSPI,
  257. mbar_readByte(MCF_GPIO_PDDR_QSPI) & 0xF7);
  258. mbar_writeByte(MCF_GPIO_PAR_QSPI,
  259. mbar_readByte(MCF_GPIO_PAR_QSPI) & 0xDF);
  260. break;
  261. case 1: /* QSPI_CS[1] = PQSPI[4] */
  262. if (cs_active_high)
  263. mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xEF);
  264. else
  265. mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x10);
  266. mbar_writeByte(MCF_GPIO_PDDR_QSPI,
  267. mbar_readByte(MCF_GPIO_PDDR_QSPI) & 0xEF);
  268. mbar_writeByte(MCF_GPIO_PAR_QSPI,
  269. mbar_readByte(MCF_GPIO_PAR_QSPI) & 0x3F);
  270. break;
  271. case 2: /* QSPI_CS[2] = PTIMER[7] */
  272. if (cs_active_high)
  273. mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0x7F);
  274. else
  275. mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x80);
  276. mbar_writeByte(MCF_GPIO_PDDR_TIMER,
  277. mbar_readByte(MCF_GPIO_PDDR_TIMER) & 0x7F);
  278. mbar_writeShort(MCF_GPIO_PAR_TIMER,
  279. mbar_readShort(MCF_GPIO_PAR_TIMER) & 0x3FFF);
  280. break;
  281. case 3: /* QSPI_CS[3] = PTIMER[3] */
  282. if (cs_active_high)
  283. mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0xF7);
  284. else
  285. mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x08);
  286. mbar_writeByte(MCF_GPIO_PDDR_TIMER,
  287. mbar_readByte(MCF_GPIO_PDDR_TIMER) & 0xF7);
  288. mbar_writeShort(MCF_GPIO_PAR_TIMER,
  289. mbar_readShort(MCF_GPIO_PAR_TIMER) & 0xFF3F);
  290. break;
  291. }
  292. }
  293. #endif /* CONFIG_M5271 */