fsl_qspi.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667
  1. /*
  2. * Copyright 2013-2014 Freescale Semiconductor, Inc.
  3. *
  4. * Freescale Quad Serial Peripheral Interface (QSPI) driver
  5. *
  6. * SPDX-License-Identifier: GPL-2.0+
  7. */
  8. #include <common.h>
  9. #include <malloc.h>
  10. #include <spi.h>
  11. #include <asm/io.h>
  12. #include <linux/sizes.h>
  13. #include "fsl_qspi.h"
  14. #define RX_BUFFER_SIZE 0x80
  15. #ifdef CONFIG_MX6SX
  16. #define TX_BUFFER_SIZE 0x200
  17. #else
  18. #define TX_BUFFER_SIZE 0x40
  19. #endif
  20. #define OFFSET_BITS_MASK 0x00ffffff
  21. #define FLASH_STATUS_WEL 0x02
  22. /* SEQID */
  23. #define SEQID_WREN 1
  24. #define SEQID_FAST_READ 2
  25. #define SEQID_RDSR 3
  26. #define SEQID_SE 4
  27. #define SEQID_CHIP_ERASE 5
  28. #define SEQID_PP 6
  29. #define SEQID_RDID 7
  30. #define SEQID_BE_4K 8
  31. #ifdef CONFIG_SPI_FLASH_BAR
  32. #define SEQID_BRRD 9
  33. #define SEQID_BRWR 10
  34. #define SEQID_RDEAR 11
  35. #define SEQID_WREAR 12
  36. #endif
  37. /* QSPI CMD */
  38. #define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
  39. #define QSPI_CMD_RDSR 0x05 /* Read status register */
  40. #define QSPI_CMD_WREN 0x06 /* Write enable */
  41. #define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
  42. #define QSPI_CMD_BE_4K 0x20 /* 4K erase */
  43. #define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
  44. #define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
  45. #define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */
  46. /* Used for Micron, winbond and Macronix flashes */
  47. #define QSPI_CMD_WREAR 0xc5 /* EAR register write */
  48. #define QSPI_CMD_RDEAR 0xc8 /* EAR reigster read */
  49. /* Used for Spansion flashes only. */
  50. #define QSPI_CMD_BRRD 0x16 /* Bank register read */
  51. #define QSPI_CMD_BRWR 0x17 /* Bank register write */
  52. /* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
  53. #define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
  54. #define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
  55. #define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
  56. #ifdef CONFIG_SYS_FSL_QSPI_LE
  57. #define qspi_read32 in_le32
  58. #define qspi_write32 out_le32
  59. #elif defined(CONFIG_SYS_FSL_QSPI_BE)
  60. #define qspi_read32 in_be32
  61. #define qspi_write32 out_be32
  62. #endif
  63. static unsigned long spi_bases[] = {
  64. QSPI0_BASE_ADDR,
  65. #ifdef CONFIG_MX6SX
  66. QSPI1_BASE_ADDR,
  67. #endif
  68. };
  69. static unsigned long amba_bases[] = {
  70. QSPI0_AMBA_BASE,
  71. #ifdef CONFIG_MX6SX
  72. QSPI1_AMBA_BASE,
  73. #endif
  74. };
  75. struct fsl_qspi {
  76. struct spi_slave slave;
  77. unsigned long reg_base;
  78. unsigned long amba_base;
  79. u32 sf_addr;
  80. u8 cur_seqid;
  81. };
  82. /* QSPI support swapping the flash read/write data
  83. * in hardware for LS102xA, but not for VF610 */
  84. static inline u32 qspi_endian_xchg(u32 data)
  85. {
  86. #ifdef CONFIG_VF610
  87. return swab32(data);
  88. #else
  89. return data;
  90. #endif
  91. }
  92. static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
  93. {
  94. return container_of(slave, struct fsl_qspi, slave);
  95. }
  96. static void qspi_set_lut(struct fsl_qspi *qspi)
  97. {
  98. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  99. u32 lut_base;
  100. /* Unlock the LUT */
  101. qspi_write32(&regs->lutkey, LUT_KEY_VALUE);
  102. qspi_write32(&regs->lckcr, QSPI_LCKCR_UNLOCK);
  103. /* Write Enable */
  104. lut_base = SEQID_WREN * 4;
  105. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
  106. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  107. qspi_write32(&regs->lut[lut_base + 1], 0);
  108. qspi_write32(&regs->lut[lut_base + 2], 0);
  109. qspi_write32(&regs->lut[lut_base + 3], 0);
  110. /* Fast Read */
  111. lut_base = SEQID_FAST_READ * 4;
  112. #ifdef CONFIG_SPI_FLASH_BAR
  113. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) |
  114. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  115. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  116. #else
  117. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  118. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) |
  119. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  120. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  121. else
  122. qspi_write32(&regs->lut[lut_base],
  123. OPRND0(QSPI_CMD_FAST_READ_4B) |
  124. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
  125. OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
  126. INSTR1(LUT_ADDR));
  127. #endif
  128. qspi_write32(&regs->lut[lut_base + 1], OPRND0(8) | PAD0(LUT_PAD1) |
  129. INSTR0(LUT_DUMMY) | OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
  130. INSTR1(LUT_READ));
  131. qspi_write32(&regs->lut[lut_base + 2], 0);
  132. qspi_write32(&regs->lut[lut_base + 3], 0);
  133. /* Read Status */
  134. lut_base = SEQID_RDSR * 4;
  135. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
  136. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  137. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  138. qspi_write32(&regs->lut[lut_base + 1], 0);
  139. qspi_write32(&regs->lut[lut_base + 2], 0);
  140. qspi_write32(&regs->lut[lut_base + 3], 0);
  141. /* Erase a sector */
  142. lut_base = SEQID_SE * 4;
  143. #ifdef CONFIG_SPI_FLASH_BAR
  144. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
  145. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  146. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  147. #else
  148. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  149. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_SE) |
  150. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  151. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  152. else
  153. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_SE_4B) |
  154. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  155. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  156. #endif
  157. qspi_write32(&regs->lut[lut_base + 1], 0);
  158. qspi_write32(&regs->lut[lut_base + 2], 0);
  159. qspi_write32(&regs->lut[lut_base + 3], 0);
  160. /* Erase the whole chip */
  161. lut_base = SEQID_CHIP_ERASE * 4;
  162. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_CHIP_ERASE) |
  163. PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
  164. qspi_write32(&regs->lut[lut_base + 1], 0);
  165. qspi_write32(&regs->lut[lut_base + 2], 0);
  166. qspi_write32(&regs->lut[lut_base + 3], 0);
  167. /* Page Program */
  168. lut_base = SEQID_PP * 4;
  169. #ifdef CONFIG_SPI_FLASH_BAR
  170. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
  171. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  172. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  173. #else
  174. if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
  175. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_PP) |
  176. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  177. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  178. else
  179. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_PP_4B) |
  180. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
  181. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  182. #endif
  183. #ifdef CONFIG_MX6SX
  184. /*
  185. * To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
  186. * So, Use IDATSZ in IPCR to determine the size and here set 0.
  187. */
  188. qspi_write32(&regs->lut[lut_base + 1], OPRND0(0) |
  189. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  190. #else
  191. qspi_write32(&regs->lut[lut_base + 1], OPRND0(TX_BUFFER_SIZE) |
  192. PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
  193. #endif
  194. qspi_write32(&regs->lut[lut_base + 2], 0);
  195. qspi_write32(&regs->lut[lut_base + 3], 0);
  196. /* READ ID */
  197. lut_base = SEQID_RDID * 4;
  198. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
  199. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
  200. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  201. qspi_write32(&regs->lut[lut_base + 1], 0);
  202. qspi_write32(&regs->lut[lut_base + 2], 0);
  203. qspi_write32(&regs->lut[lut_base + 3], 0);
  204. /* SUB SECTOR 4K ERASE */
  205. lut_base = SEQID_BE_4K * 4;
  206. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_BE_4K) |
  207. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
  208. PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
  209. #ifdef CONFIG_SPI_FLASH_BAR
  210. /*
  211. * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
  212. * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
  213. * initialization.
  214. */
  215. lut_base = SEQID_BRRD * 4;
  216. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_BRRD) |
  217. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  218. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  219. lut_base = SEQID_BRWR * 4;
  220. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_BRWR) |
  221. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  222. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  223. lut_base = SEQID_RDEAR * 4;
  224. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_RDEAR) |
  225. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  226. PAD1(LUT_PAD1) | INSTR1(LUT_READ));
  227. lut_base = SEQID_WREAR * 4;
  228. qspi_write32(&regs->lut[lut_base], OPRND0(QSPI_CMD_WREAR) |
  229. PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
  230. PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
  231. #endif
  232. /* Lock the LUT */
  233. qspi_write32(&regs->lutkey, LUT_KEY_VALUE);
  234. qspi_write32(&regs->lckcr, QSPI_LCKCR_LOCK);
  235. }
  236. void spi_init()
  237. {
  238. /* do nothing */
  239. }
  240. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  241. unsigned int max_hz, unsigned int mode)
  242. {
  243. struct fsl_qspi *qspi;
  244. struct fsl_qspi_regs *regs;
  245. u32 reg_val, smpr_val;
  246. u32 total_size, seq_id;
  247. if (bus >= ARRAY_SIZE(spi_bases))
  248. return NULL;
  249. if (cs >= FSL_QSPI_FLASH_NUM)
  250. return NULL;
  251. qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
  252. if (!qspi)
  253. return NULL;
  254. qspi->reg_base = spi_bases[bus];
  255. /*
  256. * According cs, use different amba_base to choose the
  257. * corresponding flash devices.
  258. *
  259. * If not, only one flash device is used even if passing
  260. * different cs using `sf probe`
  261. */
  262. qspi->amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
  263. qspi->slave.max_write_size = TX_BUFFER_SIZE;
  264. regs = (struct fsl_qspi_regs *)qspi->reg_base;
  265. qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);
  266. smpr_val = qspi_read32(&regs->smpr);
  267. qspi_write32(&regs->smpr, smpr_val & ~(QSPI_SMPR_FSDLY_MASK |
  268. QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK));
  269. qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK);
  270. total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
  271. /*
  272. * Any read access to non-implemented addresses will provide
  273. * undefined results.
  274. *
  275. * In case single die flash devices, TOP_ADDR_MEMA2 and
  276. * TOP_ADDR_MEMB2 should be initialized/programmed to
  277. * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
  278. * setting the size of these devices to 0. This would ensure
  279. * that the complete memory map is assigned to only one flash device.
  280. */
  281. qspi_write32(&regs->sfa1ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
  282. qspi_write32(&regs->sfa2ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
  283. qspi_write32(&regs->sfb1ad, total_size | amba_bases[bus]);
  284. qspi_write32(&regs->sfb2ad, total_size | amba_bases[bus]);
  285. qspi_set_lut(qspi);
  286. smpr_val = qspi_read32(&regs->smpr);
  287. smpr_val &= ~QSPI_SMPR_DDRSMP_MASK;
  288. qspi_write32(&regs->smpr, smpr_val);
  289. qspi_write32(&regs->mcr, QSPI_MCR_RESERVED_MASK);
  290. seq_id = 0;
  291. reg_val = qspi_read32(&regs->bfgencr);
  292. reg_val &= ~QSPI_BFGENCR_SEQID_MASK;
  293. reg_val |= (seq_id << QSPI_BFGENCR_SEQID_SHIFT);
  294. reg_val &= ~QSPI_BFGENCR_PAR_EN_MASK;
  295. qspi_write32(&regs->bfgencr, reg_val);
  296. return &qspi->slave;
  297. }
  298. void spi_free_slave(struct spi_slave *slave)
  299. {
  300. struct fsl_qspi *qspi = to_qspi_spi(slave);
  301. free(qspi);
  302. }
  303. int spi_claim_bus(struct spi_slave *slave)
  304. {
  305. return 0;
  306. }
  307. #ifdef CONFIG_SPI_FLASH_BAR
  308. /* Bank register read/write, EAR register read/write */
  309. static void qspi_op_rdbank(struct fsl_qspi *qspi, u8 *rxbuf, u32 len)
  310. {
  311. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  312. u32 reg, mcr_reg, data, seqid;
  313. mcr_reg = qspi_read32(&regs->mcr);
  314. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  315. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  316. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  317. qspi_write32(&regs->sfar, qspi->amba_base);
  318. if (qspi->cur_seqid == QSPI_CMD_BRRD)
  319. seqid = SEQID_BRRD;
  320. else
  321. seqid = SEQID_RDEAR;
  322. qspi_write32(&regs->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | len);
  323. /* Wait previous command complete */
  324. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  325. ;
  326. while (1) {
  327. reg = qspi_read32(&regs->rbsr);
  328. if (reg & QSPI_RBSR_RDBFL_MASK) {
  329. data = qspi_read32(&regs->rbdr[0]);
  330. data = qspi_endian_xchg(data);
  331. memcpy(rxbuf, &data, len);
  332. qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
  333. QSPI_MCR_CLR_RXF_MASK);
  334. break;
  335. }
  336. }
  337. qspi_write32(&regs->mcr, mcr_reg);
  338. }
  339. #endif
  340. static void qspi_op_rdid(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
  341. {
  342. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  343. u32 mcr_reg, rbsr_reg, data;
  344. int i, size;
  345. mcr_reg = qspi_read32(&regs->mcr);
  346. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  347. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  348. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  349. qspi_write32(&regs->sfar, qspi->amba_base);
  350. qspi_write32(&regs->ipcr, (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
  351. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  352. ;
  353. i = 0;
  354. size = len;
  355. while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
  356. rbsr_reg = qspi_read32(&regs->rbsr);
  357. if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
  358. data = qspi_read32(&regs->rbdr[i]);
  359. data = qspi_endian_xchg(data);
  360. memcpy(rxbuf, &data, 4);
  361. rxbuf++;
  362. size -= 4;
  363. i++;
  364. }
  365. }
  366. qspi_write32(&regs->mcr, mcr_reg);
  367. }
  368. static void qspi_op_read(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
  369. {
  370. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  371. u32 mcr_reg, data;
  372. int i, size;
  373. u32 to_or_from;
  374. mcr_reg = qspi_read32(&regs->mcr);
  375. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  376. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  377. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  378. to_or_from = qspi->sf_addr + qspi->amba_base;
  379. while (len > 0) {
  380. qspi_write32(&regs->sfar, to_or_from);
  381. size = (len > RX_BUFFER_SIZE) ?
  382. RX_BUFFER_SIZE : len;
  383. qspi_write32(&regs->ipcr,
  384. (SEQID_FAST_READ << QSPI_IPCR_SEQID_SHIFT) | size);
  385. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  386. ;
  387. to_or_from += size;
  388. len -= size;
  389. i = 0;
  390. while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
  391. data = qspi_read32(&regs->rbdr[i]);
  392. data = qspi_endian_xchg(data);
  393. memcpy(rxbuf, &data, 4);
  394. rxbuf++;
  395. size -= 4;
  396. i++;
  397. }
  398. qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
  399. QSPI_MCR_CLR_RXF_MASK);
  400. }
  401. qspi_write32(&regs->mcr, mcr_reg);
  402. }
  403. static void qspi_op_write(struct fsl_qspi *qspi, u8 *txbuf, u32 len)
  404. {
  405. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  406. u32 mcr_reg, data, reg, status_reg, seqid;
  407. int i, size, tx_size;
  408. u32 to_or_from = 0;
  409. mcr_reg = qspi_read32(&regs->mcr);
  410. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  411. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  412. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  413. status_reg = 0;
  414. while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
  415. qspi_write32(&regs->ipcr,
  416. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  417. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  418. ;
  419. qspi_write32(&regs->ipcr,
  420. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
  421. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  422. ;
  423. reg = qspi_read32(&regs->rbsr);
  424. if (reg & QSPI_RBSR_RDBFL_MASK) {
  425. status_reg = qspi_read32(&regs->rbdr[0]);
  426. status_reg = qspi_endian_xchg(status_reg);
  427. }
  428. qspi_write32(&regs->mcr,
  429. qspi_read32(&regs->mcr) | QSPI_MCR_CLR_RXF_MASK);
  430. }
  431. /* Default is page programming */
  432. seqid = SEQID_PP;
  433. #ifdef CONFIG_SPI_FLASH_BAR
  434. if (qspi->cur_seqid == QSPI_CMD_BRWR)
  435. seqid = SEQID_BRWR;
  436. else if (qspi->cur_seqid == QSPI_CMD_WREAR)
  437. seqid = SEQID_WREAR;
  438. #endif
  439. to_or_from = qspi->sf_addr + qspi->amba_base;
  440. qspi_write32(&regs->sfar, to_or_from);
  441. tx_size = (len > TX_BUFFER_SIZE) ?
  442. TX_BUFFER_SIZE : len;
  443. size = tx_size / 4;
  444. for (i = 0; i < size; i++) {
  445. memcpy(&data, txbuf, 4);
  446. data = qspi_endian_xchg(data);
  447. qspi_write32(&regs->tbdr, data);
  448. txbuf += 4;
  449. }
  450. size = tx_size % 4;
  451. if (size) {
  452. data = 0;
  453. memcpy(&data, txbuf, size);
  454. data = qspi_endian_xchg(data);
  455. qspi_write32(&regs->tbdr, data);
  456. }
  457. qspi_write32(&regs->ipcr, (seqid << QSPI_IPCR_SEQID_SHIFT) | tx_size);
  458. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  459. ;
  460. qspi_write32(&regs->mcr, mcr_reg);
  461. }
  462. static void qspi_op_rdsr(struct fsl_qspi *qspi, u32 *rxbuf)
  463. {
  464. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  465. u32 mcr_reg, reg, data;
  466. mcr_reg = qspi_read32(&regs->mcr);
  467. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  468. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  469. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  470. qspi_write32(&regs->sfar, qspi->amba_base);
  471. qspi_write32(&regs->ipcr,
  472. (SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
  473. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  474. ;
  475. while (1) {
  476. reg = qspi_read32(&regs->rbsr);
  477. if (reg & QSPI_RBSR_RDBFL_MASK) {
  478. data = qspi_read32(&regs->rbdr[0]);
  479. data = qspi_endian_xchg(data);
  480. memcpy(rxbuf, &data, 4);
  481. qspi_write32(&regs->mcr, qspi_read32(&regs->mcr) |
  482. QSPI_MCR_CLR_RXF_MASK);
  483. break;
  484. }
  485. }
  486. qspi_write32(&regs->mcr, mcr_reg);
  487. }
  488. static void qspi_op_erase(struct fsl_qspi *qspi)
  489. {
  490. struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
  491. u32 mcr_reg;
  492. u32 to_or_from = 0;
  493. mcr_reg = qspi_read32(&regs->mcr);
  494. qspi_write32(&regs->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
  495. QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
  496. qspi_write32(&regs->rbct, QSPI_RBCT_RXBRD_USEIPS);
  497. to_or_from = qspi->sf_addr + qspi->amba_base;
  498. qspi_write32(&regs->sfar, to_or_from);
  499. qspi_write32(&regs->ipcr,
  500. (SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
  501. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  502. ;
  503. if (qspi->cur_seqid == QSPI_CMD_SE) {
  504. qspi_write32(&regs->ipcr,
  505. (SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
  506. } else if (qspi->cur_seqid == QSPI_CMD_BE_4K) {
  507. qspi_write32(&regs->ipcr,
  508. (SEQID_BE_4K << QSPI_IPCR_SEQID_SHIFT) | 0);
  509. }
  510. while (qspi_read32(&regs->sr) & QSPI_SR_BUSY_MASK)
  511. ;
  512. qspi_write32(&regs->mcr, mcr_reg);
  513. }
  514. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  515. const void *dout, void *din, unsigned long flags)
  516. {
  517. struct fsl_qspi *qspi = to_qspi_spi(slave);
  518. u32 bytes = DIV_ROUND_UP(bitlen, 8);
  519. static u32 wr_sfaddr;
  520. u32 txbuf;
  521. if (dout) {
  522. if (flags & SPI_XFER_BEGIN) {
  523. qspi->cur_seqid = *(u8 *)dout;
  524. memcpy(&txbuf, dout, 4);
  525. }
  526. if (flags == SPI_XFER_END) {
  527. qspi->sf_addr = wr_sfaddr;
  528. qspi_op_write(qspi, (u8 *)dout, bytes);
  529. return 0;
  530. }
  531. if (qspi->cur_seqid == QSPI_CMD_FAST_READ) {
  532. qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  533. } else if ((qspi->cur_seqid == QSPI_CMD_SE) ||
  534. (qspi->cur_seqid == QSPI_CMD_BE_4K)) {
  535. qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
  536. qspi_op_erase(qspi);
  537. } else if (qspi->cur_seqid == QSPI_CMD_PP)
  538. wr_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
  539. #ifdef CONFIG_SPI_FLASH_BAR
  540. else if ((qspi->cur_seqid == QSPI_CMD_BRWR) ||
  541. (qspi->cur_seqid == QSPI_CMD_WREAR)) {
  542. wr_sfaddr = 0;
  543. }
  544. #endif
  545. }
  546. if (din) {
  547. if (qspi->cur_seqid == QSPI_CMD_FAST_READ)
  548. qspi_op_read(qspi, din, bytes);
  549. else if (qspi->cur_seqid == QSPI_CMD_RDID)
  550. qspi_op_rdid(qspi, din, bytes);
  551. else if (qspi->cur_seqid == QSPI_CMD_RDSR)
  552. qspi_op_rdsr(qspi, din);
  553. #ifdef CONFIG_SPI_FLASH_BAR
  554. else if ((qspi->cur_seqid == QSPI_CMD_BRRD) ||
  555. (qspi->cur_seqid == QSPI_CMD_RDEAR)) {
  556. qspi->sf_addr = 0;
  557. qspi_op_rdbank(qspi, din, bytes);
  558. }
  559. #endif
  560. }
  561. return 0;
  562. }
  563. void spi_release_bus(struct spi_slave *slave)
  564. {
  565. /* Nothing to do */
  566. }