clock.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616
  1. /*
  2. * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  3. *
  4. * SPDX-License-Identifier: GPL-2.0+
  5. */
  6. #include <common.h>
  7. #include <div64.h>
  8. #include <asm/io.h>
  9. #include <asm/errno.h>
  10. #include <asm/arch/imx-regs.h>
  11. #include <asm/arch/crm_regs.h>
  12. #include <asm/arch/clock.h>
  13. #include <asm/arch/sys_proto.h>
  14. enum pll_clocks {
  15. PLL_SYS, /* System PLL */
  16. PLL_BUS, /* System Bus PLL*/
  17. PLL_USBOTG, /* OTG USB PLL */
  18. PLL_ENET, /* ENET PLL */
  19. };
  20. struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  21. #ifdef CONFIG_MXC_OCOTP
  22. void enable_ocotp_clk(unsigned char enable)
  23. {
  24. u32 reg;
  25. reg = __raw_readl(&imx_ccm->CCGR2);
  26. if (enable)
  27. reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
  28. else
  29. reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
  30. __raw_writel(reg, &imx_ccm->CCGR2);
  31. }
  32. #endif
  33. void enable_usboh3_clk(unsigned char enable)
  34. {
  35. u32 reg;
  36. reg = __raw_readl(&imx_ccm->CCGR6);
  37. if (enable)
  38. reg |= MXC_CCM_CCGR6_USBOH3_MASK;
  39. else
  40. reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
  41. __raw_writel(reg, &imx_ccm->CCGR6);
  42. }
  43. #ifdef CONFIG_SYS_I2C_MXC
  44. /* i2c_num can be from 0 - 2 */
  45. int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
  46. {
  47. u32 reg;
  48. u32 mask;
  49. if (i2c_num > 2)
  50. return -EINVAL;
  51. mask = MXC_CCM_CCGR_CG_MASK
  52. << (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET + (i2c_num << 1));
  53. reg = __raw_readl(&imx_ccm->CCGR2);
  54. if (enable)
  55. reg |= mask;
  56. else
  57. reg &= ~mask;
  58. __raw_writel(reg, &imx_ccm->CCGR2);
  59. return 0;
  60. }
  61. #endif
  62. /* spi_num can be from 0 - SPI_MAX_NUM */
  63. int enable_spi_clk(unsigned char enable, unsigned spi_num)
  64. {
  65. u32 reg;
  66. u32 mask;
  67. if (spi_num > SPI_MAX_NUM)
  68. return -EINVAL;
  69. mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
  70. reg = __raw_readl(&imx_ccm->CCGR1);
  71. if (enable)
  72. reg |= mask;
  73. else
  74. reg &= ~mask;
  75. __raw_writel(reg, &imx_ccm->CCGR1);
  76. return 0;
  77. }
  78. static u32 decode_pll(enum pll_clocks pll, u32 infreq)
  79. {
  80. u32 div;
  81. switch (pll) {
  82. case PLL_SYS:
  83. div = __raw_readl(&imx_ccm->analog_pll_sys);
  84. div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
  85. return (infreq * div) >> 1;
  86. case PLL_BUS:
  87. div = __raw_readl(&imx_ccm->analog_pll_528);
  88. div &= BM_ANADIG_PLL_528_DIV_SELECT;
  89. return infreq * (20 + (div << 1));
  90. case PLL_USBOTG:
  91. div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
  92. div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
  93. return infreq * (20 + (div << 1));
  94. case PLL_ENET:
  95. div = __raw_readl(&imx_ccm->analog_pll_enet);
  96. div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
  97. return 25000000 * (div + (div >> 1) + 1);
  98. default:
  99. return 0;
  100. }
  101. /* NOTREACHED */
  102. }
  103. static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
  104. {
  105. u32 div;
  106. u64 freq;
  107. switch (pll) {
  108. case PLL_BUS:
  109. if (pfd_num == 3) {
  110. /* No PFD3 on PPL2 */
  111. return 0;
  112. }
  113. div = __raw_readl(&imx_ccm->analog_pfd_528);
  114. freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
  115. break;
  116. case PLL_USBOTG:
  117. div = __raw_readl(&imx_ccm->analog_pfd_480);
  118. freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
  119. break;
  120. default:
  121. /* No PFD on other PLL */
  122. return 0;
  123. }
  124. return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
  125. ANATOP_PFD_FRAC_SHIFT(pfd_num));
  126. }
  127. static u32 get_mcu_main_clk(void)
  128. {
  129. u32 reg, freq;
  130. reg = __raw_readl(&imx_ccm->cacrr);
  131. reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
  132. reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
  133. freq = decode_pll(PLL_SYS, MXC_HCLK);
  134. return freq / (reg + 1);
  135. }
  136. u32 get_periph_clk(void)
  137. {
  138. u32 reg, freq = 0;
  139. reg = __raw_readl(&imx_ccm->cbcdr);
  140. if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
  141. reg = __raw_readl(&imx_ccm->cbcmr);
  142. reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
  143. reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
  144. switch (reg) {
  145. case 0:
  146. freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  147. break;
  148. case 1:
  149. case 2:
  150. freq = MXC_HCLK;
  151. break;
  152. default:
  153. break;
  154. }
  155. } else {
  156. reg = __raw_readl(&imx_ccm->cbcmr);
  157. reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
  158. reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
  159. switch (reg) {
  160. case 0:
  161. freq = decode_pll(PLL_BUS, MXC_HCLK);
  162. break;
  163. case 1:
  164. freq = mxc_get_pll_pfd(PLL_BUS, 2);
  165. break;
  166. case 2:
  167. freq = mxc_get_pll_pfd(PLL_BUS, 0);
  168. break;
  169. case 3:
  170. /* static / 2 divider */
  171. freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
  172. break;
  173. default:
  174. break;
  175. }
  176. }
  177. return freq;
  178. }
  179. static u32 get_ipg_clk(void)
  180. {
  181. u32 reg, ipg_podf;
  182. reg = __raw_readl(&imx_ccm->cbcdr);
  183. reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
  184. ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
  185. return get_ahb_clk() / (ipg_podf + 1);
  186. }
  187. static u32 get_ipg_per_clk(void)
  188. {
  189. u32 reg, perclk_podf;
  190. reg = __raw_readl(&imx_ccm->cscmr1);
  191. perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
  192. return get_ipg_clk() / (perclk_podf + 1);
  193. }
  194. static u32 get_uart_clk(void)
  195. {
  196. u32 reg, uart_podf;
  197. u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
  198. reg = __raw_readl(&imx_ccm->cscdr1);
  199. #if (defined(CONFIG_MX6SL) || defined(CONFIG_MX6SX))
  200. if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
  201. freq = MXC_HCLK;
  202. #endif
  203. reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
  204. uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
  205. return freq / (uart_podf + 1);
  206. }
  207. static u32 get_cspi_clk(void)
  208. {
  209. u32 reg, cspi_podf;
  210. reg = __raw_readl(&imx_ccm->cscdr2);
  211. reg &= MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK;
  212. cspi_podf = reg >> MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
  213. return decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
  214. }
  215. static u32 get_axi_clk(void)
  216. {
  217. u32 root_freq, axi_podf;
  218. u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
  219. axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
  220. axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
  221. if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
  222. if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
  223. root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
  224. else
  225. root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
  226. } else
  227. root_freq = get_periph_clk();
  228. return root_freq / (axi_podf + 1);
  229. }
  230. static u32 get_emi_slow_clk(void)
  231. {
  232. u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
  233. cscmr1 = __raw_readl(&imx_ccm->cscmr1);
  234. emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
  235. emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
  236. emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
  237. emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
  238. switch (emi_clk_sel) {
  239. case 0:
  240. root_freq = get_axi_clk();
  241. break;
  242. case 1:
  243. root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  244. break;
  245. case 2:
  246. root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
  247. break;
  248. case 3:
  249. root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
  250. break;
  251. }
  252. return root_freq / (emi_slow_podf + 1);
  253. }
  254. #if (defined(CONFIG_MX6SL) || defined(CONFIG_MX6SX))
  255. static u32 get_mmdc_ch0_clk(void)
  256. {
  257. u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
  258. u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
  259. u32 freq, podf;
  260. podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) \
  261. >> MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
  262. switch ((cbcmr & MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
  263. MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
  264. case 0:
  265. freq = decode_pll(PLL_BUS, MXC_HCLK);
  266. break;
  267. case 1:
  268. freq = mxc_get_pll_pfd(PLL_BUS, 2);
  269. break;
  270. case 2:
  271. freq = mxc_get_pll_pfd(PLL_BUS, 0);
  272. break;
  273. case 3:
  274. /* static / 2 divider */
  275. freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
  276. }
  277. return freq / (podf + 1);
  278. }
  279. #else
  280. static u32 get_mmdc_ch0_clk(void)
  281. {
  282. u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
  283. u32 mmdc_ch0_podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
  284. MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
  285. return get_periph_clk() / (mmdc_ch0_podf + 1);
  286. }
  287. #endif
  288. #ifdef CONFIG_FEC_MXC
  289. int enable_fec_anatop_clock(enum enet_freq freq)
  290. {
  291. u32 reg = 0;
  292. s32 timeout = 100000;
  293. struct anatop_regs __iomem *anatop =
  294. (struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
  295. if (freq < ENET_25MHz || freq > ENET_125MHz)
  296. return -EINVAL;
  297. reg = readl(&anatop->pll_enet);
  298. reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
  299. reg |= freq;
  300. if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
  301. (!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
  302. reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
  303. writel(reg, &anatop->pll_enet);
  304. while (timeout--) {
  305. if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
  306. break;
  307. }
  308. if (timeout < 0)
  309. return -ETIMEDOUT;
  310. }
  311. /* Enable FEC clock */
  312. reg |= BM_ANADIG_PLL_ENET_ENABLE;
  313. reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
  314. writel(reg, &anatop->pll_enet);
  315. return 0;
  316. }
  317. #endif
  318. static u32 get_usdhc_clk(u32 port)
  319. {
  320. u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
  321. u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
  322. u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
  323. switch (port) {
  324. case 0:
  325. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
  326. MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
  327. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
  328. break;
  329. case 1:
  330. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
  331. MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
  332. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
  333. break;
  334. case 2:
  335. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
  336. MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
  337. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
  338. break;
  339. case 3:
  340. usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
  341. MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
  342. clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
  343. break;
  344. default:
  345. break;
  346. }
  347. if (clk_sel)
  348. root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
  349. else
  350. root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
  351. return root_freq / (usdhc_podf + 1);
  352. }
  353. u32 imx_get_uartclk(void)
  354. {
  355. return get_uart_clk();
  356. }
  357. u32 imx_get_fecclk(void)
  358. {
  359. return mxc_get_clock(MXC_IPG_CLK);
  360. }
  361. static int enable_enet_pll(uint32_t en)
  362. {
  363. struct mxc_ccm_reg *const imx_ccm
  364. = (struct mxc_ccm_reg *) CCM_BASE_ADDR;
  365. s32 timeout = 100000;
  366. u32 reg = 0;
  367. /* Enable PLLs */
  368. reg = readl(&imx_ccm->analog_pll_enet);
  369. reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
  370. writel(reg, &imx_ccm->analog_pll_enet);
  371. reg |= BM_ANADIG_PLL_SYS_ENABLE;
  372. while (timeout--) {
  373. if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
  374. break;
  375. }
  376. if (timeout <= 0)
  377. return -EIO;
  378. reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
  379. writel(reg, &imx_ccm->analog_pll_enet);
  380. reg |= en;
  381. writel(reg, &imx_ccm->analog_pll_enet);
  382. return 0;
  383. }
  384. #ifndef CONFIG_MX6SX
  385. static void ungate_sata_clock(void)
  386. {
  387. struct mxc_ccm_reg *const imx_ccm =
  388. (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  389. /* Enable SATA clock. */
  390. setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
  391. }
  392. #endif
  393. static void ungate_pcie_clock(void)
  394. {
  395. struct mxc_ccm_reg *const imx_ccm =
  396. (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  397. /* Enable PCIe clock. */
  398. setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
  399. }
  400. #ifndef CONFIG_MX6SX
  401. int enable_sata_clock(void)
  402. {
  403. ungate_sata_clock();
  404. return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
  405. }
  406. #endif
  407. int enable_pcie_clock(void)
  408. {
  409. struct anatop_regs *anatop_regs =
  410. (struct anatop_regs *)ANATOP_BASE_ADDR;
  411. struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  412. /*
  413. * Here be dragons!
  414. *
  415. * The register ANATOP_MISC1 is not documented in the Freescale
  416. * MX6RM. The register that is mapped in the ANATOP space and
  417. * marked as ANATOP_MISC1 is actually documented in the PMU section
  418. * of the datasheet as PMU_MISC1.
  419. *
  420. * Switch LVDS clock source to SATA (0xb), disable clock INPUT and
  421. * enable clock OUTPUT. This is important for PCI express link that
  422. * is clocked from the i.MX6.
  423. */
  424. #define ANADIG_ANA_MISC1_LVDSCLK1_IBEN (1 << 12)
  425. #define ANADIG_ANA_MISC1_LVDSCLK1_OBEN (1 << 10)
  426. #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK 0x0000001F
  427. clrsetbits_le32(&anatop_regs->ana_misc1,
  428. ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
  429. ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
  430. ANADIG_ANA_MISC1_LVDSCLK1_OBEN | 0xb);
  431. /* PCIe reference clock sourced from AXI. */
  432. clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
  433. /* Party time! Ungate the clock to the PCIe. */
  434. #ifndef CONFIG_MX6SX
  435. ungate_sata_clock();
  436. #endif
  437. ungate_pcie_clock();
  438. return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
  439. BM_ANADIG_PLL_ENET_ENABLE_PCIE);
  440. }
  441. unsigned int mxc_get_clock(enum mxc_clock clk)
  442. {
  443. switch (clk) {
  444. case MXC_ARM_CLK:
  445. return get_mcu_main_clk();
  446. case MXC_PER_CLK:
  447. return get_periph_clk();
  448. case MXC_AHB_CLK:
  449. return get_ahb_clk();
  450. case MXC_IPG_CLK:
  451. return get_ipg_clk();
  452. case MXC_IPG_PERCLK:
  453. case MXC_I2C_CLK:
  454. return get_ipg_per_clk();
  455. case MXC_UART_CLK:
  456. return get_uart_clk();
  457. case MXC_CSPI_CLK:
  458. return get_cspi_clk();
  459. case MXC_AXI_CLK:
  460. return get_axi_clk();
  461. case MXC_EMI_SLOW_CLK:
  462. return get_emi_slow_clk();
  463. case MXC_DDR_CLK:
  464. return get_mmdc_ch0_clk();
  465. case MXC_ESDHC_CLK:
  466. return get_usdhc_clk(0);
  467. case MXC_ESDHC2_CLK:
  468. return get_usdhc_clk(1);
  469. case MXC_ESDHC3_CLK:
  470. return get_usdhc_clk(2);
  471. case MXC_ESDHC4_CLK:
  472. return get_usdhc_clk(3);
  473. case MXC_SATA_CLK:
  474. return get_ahb_clk();
  475. default:
  476. break;
  477. }
  478. return -1;
  479. }
  480. /*
  481. * Dump some core clockes.
  482. */
  483. int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  484. {
  485. u32 freq;
  486. freq = decode_pll(PLL_SYS, MXC_HCLK);
  487. printf("PLL_SYS %8d MHz\n", freq / 1000000);
  488. freq = decode_pll(PLL_BUS, MXC_HCLK);
  489. printf("PLL_BUS %8d MHz\n", freq / 1000000);
  490. freq = decode_pll(PLL_USBOTG, MXC_HCLK);
  491. printf("PLL_OTG %8d MHz\n", freq / 1000000);
  492. freq = decode_pll(PLL_ENET, MXC_HCLK);
  493. printf("PLL_NET %8d MHz\n", freq / 1000000);
  494. printf("\n");
  495. printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
  496. printf("UART %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
  497. #ifdef CONFIG_MXC_SPI
  498. printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
  499. #endif
  500. printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
  501. printf("AXI %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
  502. printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
  503. printf("USDHC1 %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
  504. printf("USDHC2 %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
  505. printf("USDHC3 %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
  506. printf("USDHC4 %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
  507. printf("EMI SLOW %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
  508. printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
  509. return 0;
  510. }
  511. #ifndef CONFIG_MX6SX
  512. void enable_ipu_clock(void)
  513. {
  514. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
  515. int reg;
  516. reg = readl(&mxc_ccm->CCGR3);
  517. reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK;
  518. writel(reg, &mxc_ccm->CCGR3);
  519. }
  520. #endif
  521. /***************************************************/
  522. U_BOOT_CMD(
  523. clocks, CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
  524. "display clocks",
  525. ""
  526. );