clk_rk3036.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414
  1. /*
  2. * (C) Copyright 2015 Google, Inc
  3. *
  4. * SPDX-License-Identifier: GPL-2.0
  5. */
  6. #include <common.h>
  7. #include <clk.h>
  8. #include <dm.h>
  9. #include <errno.h>
  10. #include <syscon.h>
  11. #include <asm/io.h>
  12. #include <asm/arch/clock.h>
  13. #include <asm/arch/cru_rk3036.h>
  14. #include <asm/arch/hardware.h>
  15. #include <asm/arch/periph.h>
  16. #include <dm/lists.h>
  17. DECLARE_GLOBAL_DATA_PTR;
  18. struct rk3036_clk_plat {
  19. enum rk_clk_id clk_id;
  20. };
  21. struct rk3036_clk_priv {
  22. struct rk3036_cru *cru;
  23. ulong rate;
  24. };
  25. enum {
  26. VCO_MAX_HZ = 2400U * 1000000,
  27. VCO_MIN_HZ = 600 * 1000000,
  28. OUTPUT_MAX_HZ = 2400U * 1000000,
  29. OUTPUT_MIN_HZ = 24 * 1000000,
  30. };
  31. #define RATE_TO_DIV(input_rate, output_rate) \
  32. ((input_rate) / (output_rate) - 1);
  33. #define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
  34. #define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
  35. .refdiv = _refdiv,\
  36. .fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
  37. .postdiv1 = _postdiv1, .postdiv2 = _postdiv2};\
  38. _Static_assert(((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ) *\
  39. OSC_HZ / (_refdiv * _postdiv1 * _postdiv2) == hz,\
  40. #hz "Hz cannot be hit with PLL "\
  41. "divisors on line " __stringify(__LINE__));
  42. /* use interge mode*/
  43. static const struct pll_div apll_init_cfg = PLL_DIVISORS(APLL_HZ, 1, 3, 1);
  44. static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
  45. static inline unsigned int log2(unsigned int value)
  46. {
  47. return fls(value) - 1;
  48. }
  49. static int rkclk_set_pll(struct rk3036_cru *cru, enum rk_clk_id clk_id,
  50. const struct pll_div *div)
  51. {
  52. int pll_id = rk_pll_id(clk_id);
  53. struct rk3036_pll *pll = &cru->pll[pll_id];
  54. /* All PLLs have same VCO and output frequency range restrictions. */
  55. uint vco_hz = OSC_HZ / 1000 * div->fbdiv / div->refdiv * 1000;
  56. uint output_hz = vco_hz / div->postdiv1 / div->postdiv2;
  57. debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, postdiv2=%d,\
  58. vco=%u Hz, output=%u Hz\n",
  59. pll, div->fbdiv, div->refdiv, div->postdiv1,
  60. div->postdiv2, vco_hz, output_hz);
  61. assert(vco_hz >= VCO_MIN_HZ && vco_hz <= VCO_MAX_HZ &&
  62. output_hz >= OUTPUT_MIN_HZ && output_hz <= OUTPUT_MAX_HZ);
  63. /* use interger mode */
  64. rk_clrreg(&pll->con1, 1 << PLL_DSMPD_SHIFT);
  65. rk_clrsetreg(&pll->con0,
  66. PLL_POSTDIV1_MASK << PLL_POSTDIV1_SHIFT | PLL_FBDIV_MASK,
  67. (div->postdiv1 << PLL_POSTDIV1_SHIFT) | div->fbdiv);
  68. rk_clrsetreg(&pll->con1, PLL_POSTDIV2_MASK << PLL_POSTDIV2_SHIFT |
  69. PLL_REFDIV_MASK << PLL_REFDIV_SHIFT,
  70. (div->postdiv2 << PLL_POSTDIV2_SHIFT |
  71. div->refdiv << PLL_REFDIV_SHIFT));
  72. /* waiting for pll lock */
  73. while (readl(&pll->con1) & (1 << PLL_LOCK_STATUS_SHIFT))
  74. udelay(1);
  75. return 0;
  76. }
  77. static void rkclk_init(struct rk3036_cru *cru)
  78. {
  79. u32 aclk_div;
  80. u32 hclk_div;
  81. u32 pclk_div;
  82. /* pll enter slow-mode */
  83. rk_clrsetreg(&cru->cru_mode_con,
  84. GPLL_MODE_MASK << GPLL_MODE_SHIFT |
  85. APLL_MODE_MASK << APLL_MODE_SHIFT,
  86. GPLL_MODE_SLOW << GPLL_MODE_SHIFT |
  87. APLL_MODE_SLOW << APLL_MODE_SHIFT);
  88. /* init pll */
  89. rkclk_set_pll(cru, CLK_ARM, &apll_init_cfg);
  90. rkclk_set_pll(cru, CLK_GENERAL, &gpll_init_cfg);
  91. /*
  92. * select apll as core clock pll source and
  93. * set up dependent divisors for PCLK/HCLK and ACLK clocks.
  94. * core hz : apll = 1:1
  95. */
  96. aclk_div = APLL_HZ / CORE_ACLK_HZ - 1;
  97. assert((aclk_div + 1) * CORE_ACLK_HZ == APLL_HZ && aclk_div < 0x7);
  98. pclk_div = APLL_HZ / CORE_PERI_HZ - 1;
  99. assert((pclk_div + 1) * CORE_PERI_HZ == APLL_HZ && pclk_div < 0xf);
  100. rk_clrsetreg(&cru->cru_clksel_con[0],
  101. CORE_CLK_PLL_SEL_MASK << CORE_CLK_PLL_SEL_SHIFT |
  102. CORE_DIV_CON_MASK << CORE_DIV_CON_SHIFT,
  103. CORE_CLK_PLL_SEL_APLL << CORE_CLK_PLL_SEL_SHIFT |
  104. 0 << CORE_DIV_CON_SHIFT);
  105. rk_clrsetreg(&cru->cru_clksel_con[1],
  106. CORE_ACLK_DIV_MASK << CORE_ACLK_DIV_SHIFT |
  107. CORE_PERI_DIV_MASK << CORE_PERI_DIV_SHIFT,
  108. aclk_div << CORE_ACLK_DIV_SHIFT |
  109. pclk_div << CORE_PERI_DIV_SHIFT);
  110. /*
  111. * select apll as cpu clock pll source and
  112. * set up dependent divisors for PCLK/HCLK and ACLK clocks.
  113. */
  114. aclk_div = APLL_HZ / CPU_ACLK_HZ - 1;
  115. assert((aclk_div + 1) * CPU_ACLK_HZ == APLL_HZ && aclk_div < 0x1f);
  116. pclk_div = APLL_HZ / CPU_PCLK_HZ - 1;
  117. assert((pclk_div + 1) * CPU_PCLK_HZ == APLL_HZ && pclk_div < 0x7);
  118. hclk_div = APLL_HZ / CPU_HCLK_HZ - 1;
  119. assert((hclk_div + 1) * CPU_HCLK_HZ == APLL_HZ && hclk_div < 0x3);
  120. rk_clrsetreg(&cru->cru_clksel_con[0],
  121. CPU_CLK_PLL_SEL_MASK << CPU_CLK_PLL_SEL_SHIFT |
  122. ACLK_CPU_DIV_MASK << ACLK_CPU_DIV_SHIFT,
  123. CPU_CLK_PLL_SEL_APLL << CPU_CLK_PLL_SEL_SHIFT |
  124. aclk_div << ACLK_CPU_DIV_SHIFT);
  125. rk_clrsetreg(&cru->cru_clksel_con[1],
  126. CPU_PCLK_DIV_MASK << CPU_PCLK_DIV_SHIFT |
  127. CPU_HCLK_DIV_MASK << CPU_HCLK_DIV_SHIFT,
  128. pclk_div << CPU_PCLK_DIV_SHIFT |
  129. hclk_div << CPU_HCLK_DIV_SHIFT);
  130. /*
  131. * select gpll as peri clock pll source and
  132. * set up dependent divisors for PCLK/HCLK and ACLK clocks.
  133. */
  134. aclk_div = GPLL_HZ / PERI_ACLK_HZ - 1;
  135. assert((aclk_div + 1) * PERI_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
  136. hclk_div = log2(PERI_ACLK_HZ / PERI_HCLK_HZ);
  137. assert((1 << hclk_div) * PERI_HCLK_HZ ==
  138. PERI_ACLK_HZ && (pclk_div < 0x4));
  139. pclk_div = log2(PERI_ACLK_HZ / PERI_PCLK_HZ);
  140. assert((1 << pclk_div) * PERI_PCLK_HZ ==
  141. PERI_ACLK_HZ && pclk_div < 0x8);
  142. rk_clrsetreg(&cru->cru_clksel_con[10],
  143. PERI_PLL_SEL_MASK << PERI_PLL_SEL_SHIFT |
  144. PERI_PCLK_DIV_MASK << PERI_PCLK_DIV_SHIFT |
  145. PERI_HCLK_DIV_MASK << PERI_HCLK_DIV_SHIFT |
  146. PERI_ACLK_DIV_MASK << PERI_ACLK_DIV_SHIFT,
  147. PERI_PLL_GPLL << PERI_PLL_SEL_SHIFT |
  148. pclk_div << PERI_PCLK_DIV_SHIFT |
  149. hclk_div << PERI_HCLK_DIV_SHIFT |
  150. aclk_div << PERI_ACLK_DIV_SHIFT);
  151. /* PLL enter normal-mode */
  152. rk_clrsetreg(&cru->cru_mode_con,
  153. GPLL_MODE_MASK << GPLL_MODE_SHIFT |
  154. APLL_MODE_MASK << APLL_MODE_SHIFT,
  155. GPLL_MODE_NORM << GPLL_MODE_SHIFT |
  156. APLL_MODE_NORM << APLL_MODE_SHIFT);
  157. }
  158. /* Get pll rate by id */
  159. static uint32_t rkclk_pll_get_rate(struct rk3036_cru *cru,
  160. enum rk_clk_id clk_id)
  161. {
  162. uint32_t refdiv, fbdiv, postdiv1, postdiv2;
  163. uint32_t con;
  164. int pll_id = rk_pll_id(clk_id);
  165. struct rk3036_pll *pll = &cru->pll[pll_id];
  166. static u8 clk_shift[CLK_COUNT] = {
  167. 0xff, APLL_MODE_SHIFT, DPLL_MODE_SHIFT, 0xff,
  168. GPLL_MODE_SHIFT, 0xff
  169. };
  170. static u8 clk_mask[CLK_COUNT] = {
  171. 0xff, APLL_MODE_MASK, DPLL_MODE_MASK, 0xff,
  172. GPLL_MODE_MASK, 0xff
  173. };
  174. uint shift;
  175. uint mask;
  176. con = readl(&cru->cru_mode_con);
  177. shift = clk_shift[clk_id];
  178. mask = clk_mask[clk_id];
  179. switch ((con >> shift) & mask) {
  180. case GPLL_MODE_SLOW:
  181. return OSC_HZ;
  182. case GPLL_MODE_NORM:
  183. /* normal mode */
  184. con = readl(&pll->con0);
  185. postdiv1 = (con >> PLL_POSTDIV1_SHIFT) & PLL_POSTDIV1_MASK;
  186. fbdiv = (con >> PLL_FBDIV_SHIFT) & PLL_FBDIV_MASK;
  187. con = readl(&pll->con1);
  188. postdiv2 = (con >> PLL_POSTDIV2_SHIFT) & PLL_POSTDIV2_MASK;
  189. refdiv = (con >> PLL_REFDIV_SHIFT) & PLL_REFDIV_MASK;
  190. return (24 * fbdiv / (refdiv * postdiv1 * postdiv2)) * 1000000;
  191. case GPLL_MODE_DEEP:
  192. default:
  193. return 32768;
  194. }
  195. }
  196. static ulong rockchip_mmc_get_clk(struct rk3036_cru *cru, uint clk_general_rate,
  197. enum periph_id periph)
  198. {
  199. uint src_rate;
  200. uint div, mux;
  201. u32 con;
  202. switch (periph) {
  203. case PERIPH_ID_EMMC:
  204. con = readl(&cru->cru_clksel_con[12]);
  205. mux = (con >> EMMC_PLL_SHIFT) & EMMC_PLL_MASK;
  206. div = (con >> EMMC_DIV_SHIFT) & EMMC_DIV_MASK;
  207. break;
  208. case PERIPH_ID_SDCARD:
  209. con = readl(&cru->cru_clksel_con[12]);
  210. mux = (con >> MMC0_PLL_SHIFT) & MMC0_PLL_MASK;
  211. div = (con >> MMC0_DIV_SHIFT) & MMC0_DIV_MASK;
  212. break;
  213. default:
  214. return -EINVAL;
  215. }
  216. src_rate = mux == EMMC_SEL_24M ? OSC_HZ : clk_general_rate;
  217. return DIV_TO_RATE(src_rate, div);
  218. }
  219. static ulong rockchip_mmc_set_clk(struct rk3036_cru *cru, uint clk_general_rate,
  220. enum periph_id periph, uint freq)
  221. {
  222. int src_clk_div;
  223. int mux;
  224. debug("%s: clk_general_rate=%u\n", __func__, clk_general_rate);
  225. /* mmc clock auto divide 2 in internal */
  226. src_clk_div = (clk_general_rate / 2 + freq - 1) / freq;
  227. if (src_clk_div > 0x7f) {
  228. src_clk_div = (OSC_HZ / 2 + freq - 1) / freq;
  229. mux = EMMC_SEL_24M;
  230. } else {
  231. mux = EMMC_SEL_GPLL;
  232. }
  233. switch (periph) {
  234. case PERIPH_ID_EMMC:
  235. rk_clrsetreg(&cru->cru_clksel_con[12],
  236. EMMC_PLL_MASK << EMMC_PLL_SHIFT |
  237. EMMC_DIV_MASK << EMMC_DIV_SHIFT,
  238. mux << EMMC_PLL_SHIFT |
  239. (src_clk_div - 1) << EMMC_DIV_SHIFT);
  240. break;
  241. case PERIPH_ID_SDCARD:
  242. rk_clrsetreg(&cru->cru_clksel_con[11],
  243. MMC0_PLL_MASK << MMC0_PLL_SHIFT |
  244. MMC0_DIV_MASK << MMC0_DIV_SHIFT,
  245. mux << MMC0_PLL_SHIFT |
  246. (src_clk_div - 1) << MMC0_DIV_SHIFT);
  247. break;
  248. default:
  249. return -EINVAL;
  250. }
  251. return rockchip_mmc_get_clk(cru, clk_general_rate, periph);
  252. }
  253. static ulong rk3036_clk_get_rate(struct udevice *dev)
  254. {
  255. struct rk3036_clk_plat *plat = dev_get_platdata(dev);
  256. struct rk3036_clk_priv *priv = dev_get_priv(dev);
  257. debug("%s\n", dev->name);
  258. return rkclk_pll_get_rate(priv->cru, plat->clk_id);
  259. }
  260. static ulong rk3036_clk_set_rate(struct udevice *dev, ulong rate)
  261. {
  262. debug("%s\n", dev->name);
  263. return 0;
  264. }
  265. static ulong rk3036_set_periph_rate(struct udevice *dev, int periph, ulong rate)
  266. {
  267. struct rk3036_clk_priv *priv = dev_get_priv(dev);
  268. ulong new_rate;
  269. switch (periph) {
  270. case PERIPH_ID_EMMC:
  271. new_rate = rockchip_mmc_set_clk(priv->cru, clk_get_rate(dev),
  272. periph, rate);
  273. break;
  274. default:
  275. return -ENOENT;
  276. }
  277. return new_rate;
  278. }
  279. static struct clk_ops rk3036_clk_ops = {
  280. .get_rate = rk3036_clk_get_rate,
  281. .set_rate = rk3036_clk_set_rate,
  282. .set_periph_rate = rk3036_set_periph_rate,
  283. };
  284. static int rk3036_clk_probe(struct udevice *dev)
  285. {
  286. struct rk3036_clk_plat *plat = dev_get_platdata(dev);
  287. struct rk3036_clk_priv *priv = dev_get_priv(dev);
  288. if (plat->clk_id != CLK_OSC) {
  289. struct rk3036_clk_priv *parent_priv = dev_get_priv(dev->parent);
  290. priv->cru = parent_priv->cru;
  291. return 0;
  292. }
  293. priv->cru = (struct rk3036_cru *)dev_get_addr(dev);
  294. rkclk_init(priv->cru);
  295. return 0;
  296. }
  297. static const char *const clk_name[] = {
  298. "osc",
  299. "apll",
  300. "dpll",
  301. "cpll",
  302. "gpll",
  303. "mpll",
  304. };
  305. static int rk3036_clk_bind(struct udevice *dev)
  306. {
  307. struct rk3036_clk_plat *plat = dev_get_platdata(dev);
  308. int pll, ret;
  309. /* We only need to set up the root clock */
  310. if (dev->of_offset == -1) {
  311. plat->clk_id = CLK_OSC;
  312. return 0;
  313. }
  314. /* Create devices for P main clocks */
  315. for (pll = 1; pll < CLK_COUNT; pll++) {
  316. struct udevice *child;
  317. struct rk3036_clk_plat *cplat;
  318. debug("%s %s\n", __func__, clk_name[pll]);
  319. ret = device_bind_driver(dev, "clk_rk3036", clk_name[pll],
  320. &child);
  321. if (ret)
  322. return ret;
  323. cplat = dev_get_platdata(child);
  324. cplat->clk_id = pll;
  325. }
  326. /* The reset driver does not have a device node, so bind it here */
  327. ret = device_bind_driver(gd->dm_root, "rk3036_reset", "reset", &dev);
  328. if (ret)
  329. debug("Warning: No RK3036 reset driver: ret=%d\n", ret);
  330. return 0;
  331. }
  332. static const struct udevice_id rk3036_clk_ids[] = {
  333. { .compatible = "rockchip,rk3036-cru" },
  334. { }
  335. };
  336. U_BOOT_DRIVER(clk_rk3036) = {
  337. .name = "clk_rk3036",
  338. .id = UCLASS_CLK,
  339. .of_match = rk3036_clk_ids,
  340. .priv_auto_alloc_size = sizeof(struct rk3036_clk_priv),
  341. .platdata_auto_alloc_size = sizeof(struct rk3036_clk_plat),
  342. .ops = &rk3036_clk_ops,
  343. .bind = rk3036_clk_bind,
  344. .probe = rk3036_clk_probe,
  345. };