mvneta.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
  4. *
  5. * U-Boot version:
  6. * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
  7. *
  8. * Based on the Linux version which is:
  9. * Copyright (C) 2012 Marvell
  10. *
  11. * Rami Rosen <rosenr@marvell.com>
  12. * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
  13. */
  14. #include <common.h>
  15. #include <dm.h>
  16. #include <net.h>
  17. #include <netdev.h>
  18. #include <config.h>
  19. #include <malloc.h>
  20. #include <asm/io.h>
  21. #include <linux/errno.h>
  22. #include <phy.h>
  23. #include <miiphy.h>
  24. #include <watchdog.h>
  25. #include <asm/arch/cpu.h>
  26. #include <asm/arch/soc.h>
  27. #include <linux/compat.h>
  28. #include <linux/mbus.h>
  29. DECLARE_GLOBAL_DATA_PTR;
  30. #if !defined(CONFIG_PHYLIB)
  31. # error Marvell mvneta requires PHYLIB
  32. #endif
  33. /* Some linux -> U-Boot compatibility stuff */
  34. #define netdev_err(dev, fmt, args...) \
  35. printf(fmt, ##args)
  36. #define netdev_warn(dev, fmt, args...) \
  37. printf(fmt, ##args)
  38. #define netdev_info(dev, fmt, args...) \
  39. printf(fmt, ##args)
  40. #define CONFIG_NR_CPUS 1
  41. #define ETH_HLEN 14 /* Total octets in header */
  42. /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
  43. #define WRAP (2 + ETH_HLEN + 4 + 32)
  44. #define MTU 1500
  45. #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
  46. #define MVNETA_SMI_TIMEOUT 10000
  47. /* Registers */
  48. #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
  49. #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
  50. #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
  51. #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
  52. #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
  53. #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
  54. #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
  55. #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
  56. #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
  57. #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
  58. #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
  59. #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
  60. #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
  61. #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
  62. #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
  63. #define MVNETA_PORT_RX_RESET 0x1cc0
  64. #define MVNETA_PORT_RX_DMA_RESET BIT(0)
  65. #define MVNETA_PHY_ADDR 0x2000
  66. #define MVNETA_PHY_ADDR_MASK 0x1f
  67. #define MVNETA_SMI 0x2004
  68. #define MVNETA_PHY_REG_MASK 0x1f
  69. /* SMI register fields */
  70. #define MVNETA_SMI_DATA_OFFS 0 /* Data */
  71. #define MVNETA_SMI_DATA_MASK (0xffff << MVNETA_SMI_DATA_OFFS)
  72. #define MVNETA_SMI_DEV_ADDR_OFFS 16 /* PHY device address */
  73. #define MVNETA_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/
  74. #define MVNETA_SMI_OPCODE_OFFS 26 /* Write/Read opcode */
  75. #define MVNETA_SMI_OPCODE_READ (1 << MVNETA_SMI_OPCODE_OFFS)
  76. #define MVNETA_SMI_READ_VALID (1 << 27) /* Read Valid */
  77. #define MVNETA_SMI_BUSY (1 << 28) /* Busy */
  78. #define MVNETA_MBUS_RETRY 0x2010
  79. #define MVNETA_UNIT_INTR_CAUSE 0x2080
  80. #define MVNETA_UNIT_CONTROL 0x20B0
  81. #define MVNETA_PHY_POLLING_ENABLE BIT(1)
  82. #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
  83. #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
  84. #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
  85. #define MVNETA_WIN_SIZE_MASK (0xffff0000)
  86. #define MVNETA_BASE_ADDR_ENABLE 0x2290
  87. #define MVNETA_BASE_ADDR_ENABLE_BIT 0x1
  88. #define MVNETA_PORT_ACCESS_PROTECT 0x2294
  89. #define MVNETA_PORT_ACCESS_PROTECT_WIN0_RW 0x3
  90. #define MVNETA_PORT_CONFIG 0x2400
  91. #define MVNETA_UNI_PROMISC_MODE BIT(0)
  92. #define MVNETA_DEF_RXQ(q) ((q) << 1)
  93. #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
  94. #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
  95. #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
  96. #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
  97. #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
  98. #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
  99. #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
  100. MVNETA_DEF_RXQ_ARP(q) | \
  101. MVNETA_DEF_RXQ_TCP(q) | \
  102. MVNETA_DEF_RXQ_UDP(q) | \
  103. MVNETA_DEF_RXQ_BPDU(q) | \
  104. MVNETA_TX_UNSET_ERR_SUM | \
  105. MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  106. #define MVNETA_PORT_CONFIG_EXTEND 0x2404
  107. #define MVNETA_MAC_ADDR_LOW 0x2414
  108. #define MVNETA_MAC_ADDR_HIGH 0x2418
  109. #define MVNETA_SDMA_CONFIG 0x241c
  110. #define MVNETA_SDMA_BRST_SIZE_16 4
  111. #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
  112. #define MVNETA_RX_NO_DATA_SWAP BIT(4)
  113. #define MVNETA_TX_NO_DATA_SWAP BIT(5)
  114. #define MVNETA_DESC_SWAP BIT(6)
  115. #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
  116. #define MVNETA_PORT_STATUS 0x2444
  117. #define MVNETA_TX_IN_PRGRS BIT(1)
  118. #define MVNETA_TX_FIFO_EMPTY BIT(8)
  119. #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
  120. #define MVNETA_SERDES_CFG 0x24A0
  121. #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
  122. #define MVNETA_QSGMII_SERDES_PROTO 0x0667
  123. #define MVNETA_TYPE_PRIO 0x24bc
  124. #define MVNETA_FORCE_UNI BIT(21)
  125. #define MVNETA_TXQ_CMD_1 0x24e4
  126. #define MVNETA_TXQ_CMD 0x2448
  127. #define MVNETA_TXQ_DISABLE_SHIFT 8
  128. #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
  129. #define MVNETA_ACC_MODE 0x2500
  130. #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
  131. #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
  132. #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
  133. #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
  134. /* Exception Interrupt Port/Queue Cause register */
  135. #define MVNETA_INTR_NEW_CAUSE 0x25a0
  136. #define MVNETA_INTR_NEW_MASK 0x25a4
  137. /* bits 0..7 = TXQ SENT, one bit per queue.
  138. * bits 8..15 = RXQ OCCUP, one bit per queue.
  139. * bits 16..23 = RXQ FREE, one bit per queue.
  140. * bit 29 = OLD_REG_SUM, see old reg ?
  141. * bit 30 = TX_ERR_SUM, one bit for 4 ports
  142. * bit 31 = MISC_SUM, one bit for 4 ports
  143. */
  144. #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
  145. #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
  146. #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
  147. #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
  148. #define MVNETA_INTR_OLD_CAUSE 0x25a8
  149. #define MVNETA_INTR_OLD_MASK 0x25ac
  150. /* Data Path Port/Queue Cause Register */
  151. #define MVNETA_INTR_MISC_CAUSE 0x25b0
  152. #define MVNETA_INTR_MISC_MASK 0x25b4
  153. #define MVNETA_INTR_ENABLE 0x25b8
  154. #define MVNETA_RXQ_CMD 0x2680
  155. #define MVNETA_RXQ_DISABLE_SHIFT 8
  156. #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
  157. #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
  158. #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
  159. #define MVNETA_GMAC_CTRL_0 0x2c00
  160. #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
  161. #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
  162. #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
  163. #define MVNETA_GMAC_CTRL_2 0x2c08
  164. #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
  165. #define MVNETA_GMAC2_PORT_RGMII BIT(4)
  166. #define MVNETA_GMAC2_PORT_RESET BIT(6)
  167. #define MVNETA_GMAC_STATUS 0x2c10
  168. #define MVNETA_GMAC_LINK_UP BIT(0)
  169. #define MVNETA_GMAC_SPEED_1000 BIT(1)
  170. #define MVNETA_GMAC_SPEED_100 BIT(2)
  171. #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
  172. #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
  173. #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
  174. #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
  175. #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
  176. #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
  177. #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
  178. #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
  179. #define MVNETA_GMAC_FORCE_LINK_UP (BIT(0) | BIT(1))
  180. #define MVNETA_GMAC_IB_BYPASS_AN_EN BIT(3)
  181. #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
  182. #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
  183. #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
  184. #define MVNETA_GMAC_SET_FC_EN BIT(8)
  185. #define MVNETA_GMAC_ADVERT_FC_EN BIT(9)
  186. #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
  187. #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
  188. #define MVNETA_GMAC_SAMPLE_TX_CFG_EN BIT(15)
  189. #define MVNETA_MIB_COUNTERS_BASE 0x3080
  190. #define MVNETA_MIB_LATE_COLLISION 0x7c
  191. #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
  192. #define MVNETA_DA_FILT_OTH_MCAST 0x3500
  193. #define MVNETA_DA_FILT_UCAST_BASE 0x3600
  194. #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
  195. #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
  196. #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
  197. #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
  198. #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
  199. #define MVNETA_TXQ_DEC_SENT_SHIFT 16
  200. #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
  201. #define MVNETA_TXQ_SENT_DESC_SHIFT 16
  202. #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
  203. #define MVNETA_PORT_TX_RESET 0x3cf0
  204. #define MVNETA_PORT_TX_DMA_RESET BIT(0)
  205. #define MVNETA_TX_MTU 0x3e0c
  206. #define MVNETA_TX_TOKEN_SIZE 0x3e14
  207. #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
  208. #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
  209. #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
  210. /* Descriptor ring Macros */
  211. #define MVNETA_QUEUE_NEXT_DESC(q, index) \
  212. (((index) < (q)->last_desc) ? ((index) + 1) : 0)
  213. /* Various constants */
  214. /* Coalescing */
  215. #define MVNETA_TXDONE_COAL_PKTS 16
  216. #define MVNETA_RX_COAL_PKTS 32
  217. #define MVNETA_RX_COAL_USEC 100
  218. /* The two bytes Marvell header. Either contains a special value used
  219. * by Marvell switches when a specific hardware mode is enabled (not
  220. * supported by this driver) or is filled automatically by zeroes on
  221. * the RX side. Those two bytes being at the front of the Ethernet
  222. * header, they allow to have the IP header aligned on a 4 bytes
  223. * boundary automatically: the hardware skips those two bytes on its
  224. * own.
  225. */
  226. #define MVNETA_MH_SIZE 2
  227. #define MVNETA_VLAN_TAG_LEN 4
  228. #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
  229. #define MVNETA_TX_CSUM_MAX_SIZE 9800
  230. #define MVNETA_ACC_MODE_EXT 1
  231. /* Timeout constants */
  232. #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
  233. #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
  234. #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
  235. #define MVNETA_TX_MTU_MAX 0x3ffff
  236. /* Max number of Rx descriptors */
  237. #define MVNETA_MAX_RXD 16
  238. /* Max number of Tx descriptors */
  239. #define MVNETA_MAX_TXD 16
  240. /* descriptor aligned size */
  241. #define MVNETA_DESC_ALIGNED_SIZE 32
  242. struct mvneta_port {
  243. void __iomem *base;
  244. struct mvneta_rx_queue *rxqs;
  245. struct mvneta_tx_queue *txqs;
  246. u8 mcast_count[256];
  247. u16 tx_ring_size;
  248. u16 rx_ring_size;
  249. phy_interface_t phy_interface;
  250. unsigned int link;
  251. unsigned int duplex;
  252. unsigned int speed;
  253. int init;
  254. int phyaddr;
  255. struct phy_device *phydev;
  256. struct mii_dev *bus;
  257. };
  258. /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
  259. * layout of the transmit and reception DMA descriptors, and their
  260. * layout is therefore defined by the hardware design
  261. */
  262. #define MVNETA_TX_L3_OFF_SHIFT 0
  263. #define MVNETA_TX_IP_HLEN_SHIFT 8
  264. #define MVNETA_TX_L4_UDP BIT(16)
  265. #define MVNETA_TX_L3_IP6 BIT(17)
  266. #define MVNETA_TXD_IP_CSUM BIT(18)
  267. #define MVNETA_TXD_Z_PAD BIT(19)
  268. #define MVNETA_TXD_L_DESC BIT(20)
  269. #define MVNETA_TXD_F_DESC BIT(21)
  270. #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
  271. MVNETA_TXD_L_DESC | \
  272. MVNETA_TXD_F_DESC)
  273. #define MVNETA_TX_L4_CSUM_FULL BIT(30)
  274. #define MVNETA_TX_L4_CSUM_NOT BIT(31)
  275. #define MVNETA_RXD_ERR_CRC 0x0
  276. #define MVNETA_RXD_ERR_SUMMARY BIT(16)
  277. #define MVNETA_RXD_ERR_OVERRUN BIT(17)
  278. #define MVNETA_RXD_ERR_LEN BIT(18)
  279. #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
  280. #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
  281. #define MVNETA_RXD_L3_IP4 BIT(25)
  282. #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
  283. #define MVNETA_RXD_L4_CSUM_OK BIT(30)
  284. struct mvneta_tx_desc {
  285. u32 command; /* Options used by HW for packet transmitting.*/
  286. u16 reserverd1; /* csum_l4 (for future use) */
  287. u16 data_size; /* Data size of transmitted packet in bytes */
  288. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  289. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  290. u32 reserved3[4]; /* Reserved - (for future use) */
  291. };
  292. struct mvneta_rx_desc {
  293. u32 status; /* Info about received packet */
  294. u16 reserved1; /* pnc_info - (for future use, PnC) */
  295. u16 data_size; /* Size of received packet in bytes */
  296. u32 buf_phys_addr; /* Physical address of the buffer */
  297. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  298. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  299. u16 reserved3; /* prefetch_cmd, for future use */
  300. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  301. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  302. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  303. };
  304. struct mvneta_tx_queue {
  305. /* Number of this TX queue, in the range 0-7 */
  306. u8 id;
  307. /* Number of TX DMA descriptors in the descriptor ring */
  308. int size;
  309. /* Index of last TX DMA descriptor that was inserted */
  310. int txq_put_index;
  311. /* Index of the TX DMA descriptor to be cleaned up */
  312. int txq_get_index;
  313. /* Virtual address of the TX DMA descriptors array */
  314. struct mvneta_tx_desc *descs;
  315. /* DMA address of the TX DMA descriptors array */
  316. dma_addr_t descs_phys;
  317. /* Index of the last TX DMA descriptor */
  318. int last_desc;
  319. /* Index of the next TX DMA descriptor to process */
  320. int next_desc_to_proc;
  321. };
  322. struct mvneta_rx_queue {
  323. /* rx queue number, in the range 0-7 */
  324. u8 id;
  325. /* num of rx descriptors in the rx descriptor ring */
  326. int size;
  327. /* Virtual address of the RX DMA descriptors array */
  328. struct mvneta_rx_desc *descs;
  329. /* DMA address of the RX DMA descriptors array */
  330. dma_addr_t descs_phys;
  331. /* Index of the last RX DMA descriptor */
  332. int last_desc;
  333. /* Index of the next RX DMA descriptor to process */
  334. int next_desc_to_proc;
  335. };
  336. /* U-Boot doesn't use the queues, so set the number to 1 */
  337. static int rxq_number = 1;
  338. static int txq_number = 1;
  339. static int rxq_def;
  340. struct buffer_location {
  341. struct mvneta_tx_desc *tx_descs;
  342. struct mvneta_rx_desc *rx_descs;
  343. u32 rx_buffers;
  344. };
  345. /*
  346. * All 4 interfaces use the same global buffer, since only one interface
  347. * can be enabled at once
  348. */
  349. static struct buffer_location buffer_loc;
  350. /*
  351. * Page table entries are set to 1MB, or multiples of 1MB
  352. * (not < 1MB). driver uses less bd's so use 1MB bdspace.
  353. */
  354. #define BD_SPACE (1 << 20)
  355. /*
  356. * Dummy implementation that can be overwritten by a board
  357. * specific function
  358. */
  359. __weak int board_network_enable(struct mii_dev *bus)
  360. {
  361. return 0;
  362. }
  363. /* Utility/helper methods */
  364. /* Write helper method */
  365. static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
  366. {
  367. writel(data, pp->base + offset);
  368. }
  369. /* Read helper method */
  370. static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
  371. {
  372. return readl(pp->base + offset);
  373. }
  374. /* Clear all MIB counters */
  375. static void mvneta_mib_counters_clear(struct mvneta_port *pp)
  376. {
  377. int i;
  378. /* Perform dummy reads from MIB counters */
  379. for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
  380. mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
  381. }
  382. /* Rx descriptors helper methods */
  383. /* Checks whether the RX descriptor having this status is both the first
  384. * and the last descriptor for the RX packet. Each RX packet is currently
  385. * received through a single RX descriptor, so not having each RX
  386. * descriptor with its first and last bits set is an error
  387. */
  388. static int mvneta_rxq_desc_is_first_last(u32 status)
  389. {
  390. return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
  391. MVNETA_RXD_FIRST_LAST_DESC;
  392. }
  393. /* Add number of descriptors ready to receive new packets */
  394. static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
  395. struct mvneta_rx_queue *rxq,
  396. int ndescs)
  397. {
  398. /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
  399. * be added at once
  400. */
  401. while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
  402. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  403. (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
  404. MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  405. ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
  406. }
  407. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  408. (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  409. }
  410. /* Get number of RX descriptors occupied by received packets */
  411. static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
  412. struct mvneta_rx_queue *rxq)
  413. {
  414. u32 val;
  415. val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
  416. return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
  417. }
  418. /* Update num of rx desc called upon return from rx path or
  419. * from mvneta_rxq_drop_pkts().
  420. */
  421. static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
  422. struct mvneta_rx_queue *rxq,
  423. int rx_done, int rx_filled)
  424. {
  425. u32 val;
  426. if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
  427. val = rx_done |
  428. (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
  429. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  430. return;
  431. }
  432. /* Only 255 descriptors can be added at once */
  433. while ((rx_done > 0) || (rx_filled > 0)) {
  434. if (rx_done <= 0xff) {
  435. val = rx_done;
  436. rx_done = 0;
  437. } else {
  438. val = 0xff;
  439. rx_done -= 0xff;
  440. }
  441. if (rx_filled <= 0xff) {
  442. val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  443. rx_filled = 0;
  444. } else {
  445. val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  446. rx_filled -= 0xff;
  447. }
  448. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  449. }
  450. }
  451. /* Get pointer to next RX descriptor to be processed by SW */
  452. static struct mvneta_rx_desc *
  453. mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
  454. {
  455. int rx_desc = rxq->next_desc_to_proc;
  456. rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
  457. return rxq->descs + rx_desc;
  458. }
  459. /* Tx descriptors helper methods */
  460. /* Update HW with number of TX descriptors to be sent */
  461. static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
  462. struct mvneta_tx_queue *txq,
  463. int pend_desc)
  464. {
  465. u32 val;
  466. /* Only 255 descriptors can be added at once ; Assume caller
  467. * process TX descriptors in quanta less than 256
  468. */
  469. val = pend_desc;
  470. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  471. }
  472. /* Get pointer to next TX descriptor to be processed (send) by HW */
  473. static struct mvneta_tx_desc *
  474. mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
  475. {
  476. int tx_desc = txq->next_desc_to_proc;
  477. txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
  478. return txq->descs + tx_desc;
  479. }
  480. /* Set rxq buf size */
  481. static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
  482. struct mvneta_rx_queue *rxq,
  483. int buf_size)
  484. {
  485. u32 val;
  486. val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
  487. val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
  488. val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
  489. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
  490. }
  491. static int mvneta_port_is_fixed_link(struct mvneta_port *pp)
  492. {
  493. /* phy_addr is set to invalid value for fixed link */
  494. return pp->phyaddr > PHY_MAX_ADDR;
  495. }
  496. /* Start the Ethernet port RX and TX activity */
  497. static void mvneta_port_up(struct mvneta_port *pp)
  498. {
  499. int queue;
  500. u32 q_map;
  501. /* Enable all initialized TXs. */
  502. mvneta_mib_counters_clear(pp);
  503. q_map = 0;
  504. for (queue = 0; queue < txq_number; queue++) {
  505. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  506. if (txq->descs != NULL)
  507. q_map |= (1 << queue);
  508. }
  509. mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
  510. /* Enable all initialized RXQs. */
  511. q_map = 0;
  512. for (queue = 0; queue < rxq_number; queue++) {
  513. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  514. if (rxq->descs != NULL)
  515. q_map |= (1 << queue);
  516. }
  517. mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
  518. }
  519. /* Stop the Ethernet port activity */
  520. static void mvneta_port_down(struct mvneta_port *pp)
  521. {
  522. u32 val;
  523. int count;
  524. /* Stop Rx port activity. Check port Rx activity. */
  525. val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
  526. /* Issue stop command for active channels only */
  527. if (val != 0)
  528. mvreg_write(pp, MVNETA_RXQ_CMD,
  529. val << MVNETA_RXQ_DISABLE_SHIFT);
  530. /* Wait for all Rx activity to terminate. */
  531. count = 0;
  532. do {
  533. if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
  534. netdev_warn(pp->dev,
  535. "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
  536. val);
  537. break;
  538. }
  539. mdelay(1);
  540. val = mvreg_read(pp, MVNETA_RXQ_CMD);
  541. } while (val & 0xff);
  542. /* Stop Tx port activity. Check port Tx activity. Issue stop
  543. * command for active channels only
  544. */
  545. val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
  546. if (val != 0)
  547. mvreg_write(pp, MVNETA_TXQ_CMD,
  548. (val << MVNETA_TXQ_DISABLE_SHIFT));
  549. /* Wait for all Tx activity to terminate. */
  550. count = 0;
  551. do {
  552. if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
  553. netdev_warn(pp->dev,
  554. "TIMEOUT for TX stopped status=0x%08x\n",
  555. val);
  556. break;
  557. }
  558. mdelay(1);
  559. /* Check TX Command reg that all Txqs are stopped */
  560. val = mvreg_read(pp, MVNETA_TXQ_CMD);
  561. } while (val & 0xff);
  562. /* Double check to verify that TX FIFO is empty */
  563. count = 0;
  564. do {
  565. if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
  566. netdev_warn(pp->dev,
  567. "TX FIFO empty timeout status=0x08%x\n",
  568. val);
  569. break;
  570. }
  571. mdelay(1);
  572. val = mvreg_read(pp, MVNETA_PORT_STATUS);
  573. } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
  574. (val & MVNETA_TX_IN_PRGRS));
  575. udelay(200);
  576. }
  577. /* Enable the port by setting the port enable bit of the MAC control register */
  578. static void mvneta_port_enable(struct mvneta_port *pp)
  579. {
  580. u32 val;
  581. /* Enable port */
  582. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  583. val |= MVNETA_GMAC0_PORT_ENABLE;
  584. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  585. }
  586. /* Disable the port and wait for about 200 usec before retuning */
  587. static void mvneta_port_disable(struct mvneta_port *pp)
  588. {
  589. u32 val;
  590. /* Reset the Enable bit in the Serial Control Register */
  591. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  592. val &= ~MVNETA_GMAC0_PORT_ENABLE;
  593. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  594. udelay(200);
  595. }
  596. /* Multicast tables methods */
  597. /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
  598. static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
  599. {
  600. int offset;
  601. u32 val;
  602. if (queue == -1) {
  603. val = 0;
  604. } else {
  605. val = 0x1 | (queue << 1);
  606. val |= (val << 24) | (val << 16) | (val << 8);
  607. }
  608. for (offset = 0; offset <= 0xc; offset += 4)
  609. mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
  610. }
  611. /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
  612. static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
  613. {
  614. int offset;
  615. u32 val;
  616. if (queue == -1) {
  617. val = 0;
  618. } else {
  619. val = 0x1 | (queue << 1);
  620. val |= (val << 24) | (val << 16) | (val << 8);
  621. }
  622. for (offset = 0; offset <= 0xfc; offset += 4)
  623. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
  624. }
  625. /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
  626. static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
  627. {
  628. int offset;
  629. u32 val;
  630. if (queue == -1) {
  631. memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
  632. val = 0;
  633. } else {
  634. memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
  635. val = 0x1 | (queue << 1);
  636. val |= (val << 24) | (val << 16) | (val << 8);
  637. }
  638. for (offset = 0; offset <= 0xfc; offset += 4)
  639. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
  640. }
  641. /* This method sets defaults to the NETA port:
  642. * Clears interrupt Cause and Mask registers.
  643. * Clears all MAC tables.
  644. * Sets defaults to all registers.
  645. * Resets RX and TX descriptor rings.
  646. * Resets PHY.
  647. * This method can be called after mvneta_port_down() to return the port
  648. * settings to defaults.
  649. */
  650. static void mvneta_defaults_set(struct mvneta_port *pp)
  651. {
  652. int cpu;
  653. int queue;
  654. u32 val;
  655. /* Clear all Cause registers */
  656. mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
  657. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  658. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  659. /* Mask all interrupts */
  660. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  661. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  662. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  663. mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
  664. /* Enable MBUS Retry bit16 */
  665. mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
  666. /* Set CPU queue access map - all CPUs have access to all RX
  667. * queues and to all TX queues
  668. */
  669. for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
  670. mvreg_write(pp, MVNETA_CPU_MAP(cpu),
  671. (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
  672. MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
  673. /* Reset RX and TX DMAs */
  674. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  675. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  676. /* Disable Legacy WRR, Disable EJP, Release from reset */
  677. mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
  678. for (queue = 0; queue < txq_number; queue++) {
  679. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
  680. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
  681. }
  682. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  683. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  684. /* Set Port Acceleration Mode */
  685. val = MVNETA_ACC_MODE_EXT;
  686. mvreg_write(pp, MVNETA_ACC_MODE, val);
  687. /* Update val of portCfg register accordingly with all RxQueue types */
  688. val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
  689. mvreg_write(pp, MVNETA_PORT_CONFIG, val);
  690. val = 0;
  691. mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
  692. mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
  693. /* Build PORT_SDMA_CONFIG_REG */
  694. val = 0;
  695. /* Default burst size */
  696. val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  697. val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  698. val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
  699. /* Assign port SDMA configuration */
  700. mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
  701. /* Enable PHY polling in hardware if not in fixed-link mode */
  702. if (!mvneta_port_is_fixed_link(pp)) {
  703. val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
  704. val |= MVNETA_PHY_POLLING_ENABLE;
  705. mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
  706. }
  707. mvneta_set_ucast_table(pp, -1);
  708. mvneta_set_special_mcast_table(pp, -1);
  709. mvneta_set_other_mcast_table(pp, -1);
  710. }
  711. /* Set unicast address */
  712. static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
  713. int queue)
  714. {
  715. unsigned int unicast_reg;
  716. unsigned int tbl_offset;
  717. unsigned int reg_offset;
  718. /* Locate the Unicast table entry */
  719. last_nibble = (0xf & last_nibble);
  720. /* offset from unicast tbl base */
  721. tbl_offset = (last_nibble / 4) * 4;
  722. /* offset within the above reg */
  723. reg_offset = last_nibble % 4;
  724. unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
  725. if (queue == -1) {
  726. /* Clear accepts frame bit at specified unicast DA tbl entry */
  727. unicast_reg &= ~(0xff << (8 * reg_offset));
  728. } else {
  729. unicast_reg &= ~(0xff << (8 * reg_offset));
  730. unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  731. }
  732. mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
  733. }
  734. /* Set mac address */
  735. static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
  736. int queue)
  737. {
  738. unsigned int mac_h;
  739. unsigned int mac_l;
  740. if (queue != -1) {
  741. mac_l = (addr[4] << 8) | (addr[5]);
  742. mac_h = (addr[0] << 24) | (addr[1] << 16) |
  743. (addr[2] << 8) | (addr[3] << 0);
  744. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
  745. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
  746. }
  747. /* Accept frames of this address */
  748. mvneta_set_ucast_addr(pp, addr[5], queue);
  749. }
  750. static int mvneta_write_hwaddr(struct udevice *dev)
  751. {
  752. mvneta_mac_addr_set(dev_get_priv(dev),
  753. ((struct eth_pdata *)dev_get_platdata(dev))->enetaddr,
  754. rxq_def);
  755. return 0;
  756. }
  757. /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
  758. static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
  759. u32 phys_addr, u32 cookie)
  760. {
  761. rx_desc->buf_cookie = cookie;
  762. rx_desc->buf_phys_addr = phys_addr;
  763. }
  764. /* Decrement sent descriptors counter */
  765. static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
  766. struct mvneta_tx_queue *txq,
  767. int sent_desc)
  768. {
  769. u32 val;
  770. /* Only 255 TX descriptors can be updated at once */
  771. while (sent_desc > 0xff) {
  772. val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
  773. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  774. sent_desc = sent_desc - 0xff;
  775. }
  776. val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
  777. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  778. }
  779. /* Get number of TX descriptors already sent by HW */
  780. static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
  781. struct mvneta_tx_queue *txq)
  782. {
  783. u32 val;
  784. int sent_desc;
  785. val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
  786. sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
  787. MVNETA_TXQ_SENT_DESC_SHIFT;
  788. return sent_desc;
  789. }
  790. /* Display more error info */
  791. static void mvneta_rx_error(struct mvneta_port *pp,
  792. struct mvneta_rx_desc *rx_desc)
  793. {
  794. u32 status = rx_desc->status;
  795. if (!mvneta_rxq_desc_is_first_last(status)) {
  796. netdev_err(pp->dev,
  797. "bad rx status %08x (buffer oversize), size=%d\n",
  798. status, rx_desc->data_size);
  799. return;
  800. }
  801. switch (status & MVNETA_RXD_ERR_CODE_MASK) {
  802. case MVNETA_RXD_ERR_CRC:
  803. netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
  804. status, rx_desc->data_size);
  805. break;
  806. case MVNETA_RXD_ERR_OVERRUN:
  807. netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
  808. status, rx_desc->data_size);
  809. break;
  810. case MVNETA_RXD_ERR_LEN:
  811. netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
  812. status, rx_desc->data_size);
  813. break;
  814. case MVNETA_RXD_ERR_RESOURCE:
  815. netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
  816. status, rx_desc->data_size);
  817. break;
  818. }
  819. }
  820. static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
  821. int rxq)
  822. {
  823. return &pp->rxqs[rxq];
  824. }
  825. /* Drop packets received by the RXQ and free buffers */
  826. static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
  827. struct mvneta_rx_queue *rxq)
  828. {
  829. int rx_done;
  830. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  831. if (rx_done)
  832. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  833. }
  834. /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
  835. static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
  836. int num)
  837. {
  838. int i;
  839. for (i = 0; i < num; i++) {
  840. u32 addr;
  841. /* U-Boot special: Fill in the rx buffer addresses */
  842. addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
  843. mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
  844. }
  845. /* Add this number of RX descriptors as non occupied (ready to
  846. * get packets)
  847. */
  848. mvneta_rxq_non_occup_desc_add(pp, rxq, i);
  849. return 0;
  850. }
  851. /* Rx/Tx queue initialization/cleanup methods */
  852. /* Create a specified RX queue */
  853. static int mvneta_rxq_init(struct mvneta_port *pp,
  854. struct mvneta_rx_queue *rxq)
  855. {
  856. rxq->size = pp->rx_ring_size;
  857. /* Allocate memory for RX descriptors */
  858. rxq->descs_phys = (dma_addr_t)rxq->descs;
  859. if (rxq->descs == NULL)
  860. return -ENOMEM;
  861. rxq->last_desc = rxq->size - 1;
  862. /* Set Rx descriptors queue starting address */
  863. mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
  864. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
  865. /* Fill RXQ with buffers from RX pool */
  866. mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
  867. mvneta_rxq_fill(pp, rxq, rxq->size);
  868. return 0;
  869. }
  870. /* Cleanup Rx queue */
  871. static void mvneta_rxq_deinit(struct mvneta_port *pp,
  872. struct mvneta_rx_queue *rxq)
  873. {
  874. mvneta_rxq_drop_pkts(pp, rxq);
  875. rxq->descs = NULL;
  876. rxq->last_desc = 0;
  877. rxq->next_desc_to_proc = 0;
  878. rxq->descs_phys = 0;
  879. }
  880. /* Create and initialize a tx queue */
  881. static int mvneta_txq_init(struct mvneta_port *pp,
  882. struct mvneta_tx_queue *txq)
  883. {
  884. txq->size = pp->tx_ring_size;
  885. /* Allocate memory for TX descriptors */
  886. txq->descs_phys = (dma_addr_t)txq->descs;
  887. if (txq->descs == NULL)
  888. return -ENOMEM;
  889. txq->last_desc = txq->size - 1;
  890. /* Set maximum bandwidth for enabled TXQs */
  891. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
  892. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
  893. /* Set Tx descriptors queue starting address */
  894. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
  895. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
  896. return 0;
  897. }
  898. /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
  899. static void mvneta_txq_deinit(struct mvneta_port *pp,
  900. struct mvneta_tx_queue *txq)
  901. {
  902. txq->descs = NULL;
  903. txq->last_desc = 0;
  904. txq->next_desc_to_proc = 0;
  905. txq->descs_phys = 0;
  906. /* Set minimum bandwidth for disabled TXQs */
  907. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
  908. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
  909. /* Set Tx descriptors queue starting address and size */
  910. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
  911. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
  912. }
  913. /* Cleanup all Tx queues */
  914. static void mvneta_cleanup_txqs(struct mvneta_port *pp)
  915. {
  916. int queue;
  917. for (queue = 0; queue < txq_number; queue++)
  918. mvneta_txq_deinit(pp, &pp->txqs[queue]);
  919. }
  920. /* Cleanup all Rx queues */
  921. static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
  922. {
  923. int queue;
  924. for (queue = 0; queue < rxq_number; queue++)
  925. mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
  926. }
  927. /* Init all Rx queues */
  928. static int mvneta_setup_rxqs(struct mvneta_port *pp)
  929. {
  930. int queue;
  931. for (queue = 0; queue < rxq_number; queue++) {
  932. int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
  933. if (err) {
  934. netdev_err(pp->dev, "%s: can't create rxq=%d\n",
  935. __func__, queue);
  936. mvneta_cleanup_rxqs(pp);
  937. return err;
  938. }
  939. }
  940. return 0;
  941. }
  942. /* Init all tx queues */
  943. static int mvneta_setup_txqs(struct mvneta_port *pp)
  944. {
  945. int queue;
  946. for (queue = 0; queue < txq_number; queue++) {
  947. int err = mvneta_txq_init(pp, &pp->txqs[queue]);
  948. if (err) {
  949. netdev_err(pp->dev, "%s: can't create txq=%d\n",
  950. __func__, queue);
  951. mvneta_cleanup_txqs(pp);
  952. return err;
  953. }
  954. }
  955. return 0;
  956. }
  957. static void mvneta_start_dev(struct mvneta_port *pp)
  958. {
  959. /* start the Rx/Tx activity */
  960. mvneta_port_enable(pp);
  961. }
  962. static void mvneta_adjust_link(struct udevice *dev)
  963. {
  964. struct mvneta_port *pp = dev_get_priv(dev);
  965. struct phy_device *phydev = pp->phydev;
  966. int status_change = 0;
  967. if (mvneta_port_is_fixed_link(pp)) {
  968. debug("Using fixed link, skip link adjust\n");
  969. return;
  970. }
  971. if (phydev->link) {
  972. if ((pp->speed != phydev->speed) ||
  973. (pp->duplex != phydev->duplex)) {
  974. u32 val;
  975. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  976. val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
  977. MVNETA_GMAC_CONFIG_GMII_SPEED |
  978. MVNETA_GMAC_CONFIG_FULL_DUPLEX |
  979. MVNETA_GMAC_AN_SPEED_EN |
  980. MVNETA_GMAC_AN_DUPLEX_EN);
  981. if (phydev->duplex)
  982. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  983. if (phydev->speed == SPEED_1000)
  984. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  985. else
  986. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  987. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  988. pp->duplex = phydev->duplex;
  989. pp->speed = phydev->speed;
  990. }
  991. }
  992. if (phydev->link != pp->link) {
  993. if (!phydev->link) {
  994. pp->duplex = -1;
  995. pp->speed = 0;
  996. }
  997. pp->link = phydev->link;
  998. status_change = 1;
  999. }
  1000. if (status_change) {
  1001. if (phydev->link) {
  1002. u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  1003. val |= (MVNETA_GMAC_FORCE_LINK_PASS |
  1004. MVNETA_GMAC_FORCE_LINK_DOWN);
  1005. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  1006. mvneta_port_up(pp);
  1007. } else {
  1008. mvneta_port_down(pp);
  1009. }
  1010. }
  1011. }
  1012. static int mvneta_open(struct udevice *dev)
  1013. {
  1014. struct mvneta_port *pp = dev_get_priv(dev);
  1015. int ret;
  1016. ret = mvneta_setup_rxqs(pp);
  1017. if (ret)
  1018. return ret;
  1019. ret = mvneta_setup_txqs(pp);
  1020. if (ret)
  1021. return ret;
  1022. mvneta_adjust_link(dev);
  1023. mvneta_start_dev(pp);
  1024. return 0;
  1025. }
  1026. /* Initialize hw */
  1027. static int mvneta_init2(struct mvneta_port *pp)
  1028. {
  1029. int queue;
  1030. /* Disable port */
  1031. mvneta_port_disable(pp);
  1032. /* Set port default values */
  1033. mvneta_defaults_set(pp);
  1034. pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
  1035. GFP_KERNEL);
  1036. if (!pp->txqs)
  1037. return -ENOMEM;
  1038. /* U-Boot special: use preallocated area */
  1039. pp->txqs[0].descs = buffer_loc.tx_descs;
  1040. /* Initialize TX descriptor rings */
  1041. for (queue = 0; queue < txq_number; queue++) {
  1042. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  1043. txq->id = queue;
  1044. txq->size = pp->tx_ring_size;
  1045. }
  1046. pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
  1047. GFP_KERNEL);
  1048. if (!pp->rxqs) {
  1049. kfree(pp->txqs);
  1050. return -ENOMEM;
  1051. }
  1052. /* U-Boot special: use preallocated area */
  1053. pp->rxqs[0].descs = buffer_loc.rx_descs;
  1054. /* Create Rx descriptor rings */
  1055. for (queue = 0; queue < rxq_number; queue++) {
  1056. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  1057. rxq->id = queue;
  1058. rxq->size = pp->rx_ring_size;
  1059. }
  1060. return 0;
  1061. }
  1062. /* platform glue : initialize decoding windows */
  1063. /*
  1064. * Not like A380, in Armada3700, there are two layers of decode windows for GBE:
  1065. * First layer is: GbE Address window that resides inside the GBE unit,
  1066. * Second layer is: Fabric address window which is located in the NIC400
  1067. * (South Fabric).
  1068. * To simplify the address decode configuration for Armada3700, we bypass the
  1069. * first layer of GBE decode window by setting the first window to 4GB.
  1070. */
  1071. static void mvneta_bypass_mbus_windows(struct mvneta_port *pp)
  1072. {
  1073. /*
  1074. * Set window size to 4GB, to bypass GBE address decode, leave the
  1075. * work to MBUS decode window
  1076. */
  1077. mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK);
  1078. /* Enable GBE address decode window 0 by set bit 0 to 0 */
  1079. clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE,
  1080. MVNETA_BASE_ADDR_ENABLE_BIT);
  1081. /* Set GBE address decode window 0 to full Access (read or write) */
  1082. setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT,
  1083. MVNETA_PORT_ACCESS_PROTECT_WIN0_RW);
  1084. }
  1085. static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
  1086. {
  1087. const struct mbus_dram_target_info *dram;
  1088. u32 win_enable;
  1089. u32 win_protect;
  1090. int i;
  1091. dram = mvebu_mbus_dram_info();
  1092. for (i = 0; i < 6; i++) {
  1093. mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
  1094. mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
  1095. if (i < 4)
  1096. mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
  1097. }
  1098. win_enable = 0x3f;
  1099. win_protect = 0;
  1100. for (i = 0; i < dram->num_cs; i++) {
  1101. const struct mbus_dram_window *cs = dram->cs + i;
  1102. mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
  1103. (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
  1104. mvreg_write(pp, MVNETA_WIN_SIZE(i),
  1105. (cs->size - 1) & 0xffff0000);
  1106. win_enable &= ~(1 << i);
  1107. win_protect |= 3 << (2 * i);
  1108. }
  1109. mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
  1110. }
  1111. /* Power up the port */
  1112. static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
  1113. {
  1114. u32 ctrl;
  1115. /* MAC Cause register should be cleared */
  1116. mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
  1117. ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  1118. /* Even though it might look weird, when we're configured in
  1119. * SGMII or QSGMII mode, the RGMII bit needs to be set.
  1120. */
  1121. switch (phy_mode) {
  1122. case PHY_INTERFACE_MODE_QSGMII:
  1123. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
  1124. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  1125. break;
  1126. case PHY_INTERFACE_MODE_SGMII:
  1127. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
  1128. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  1129. break;
  1130. case PHY_INTERFACE_MODE_RGMII:
  1131. case PHY_INTERFACE_MODE_RGMII_ID:
  1132. ctrl |= MVNETA_GMAC2_PORT_RGMII;
  1133. break;
  1134. default:
  1135. return -EINVAL;
  1136. }
  1137. /* Cancel Port Reset */
  1138. ctrl &= ~MVNETA_GMAC2_PORT_RESET;
  1139. mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
  1140. while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
  1141. MVNETA_GMAC2_PORT_RESET) != 0)
  1142. continue;
  1143. return 0;
  1144. }
  1145. /* Device initialization routine */
  1146. static int mvneta_init(struct udevice *dev)
  1147. {
  1148. struct eth_pdata *pdata = dev_get_platdata(dev);
  1149. struct mvneta_port *pp = dev_get_priv(dev);
  1150. int err;
  1151. pp->tx_ring_size = MVNETA_MAX_TXD;
  1152. pp->rx_ring_size = MVNETA_MAX_RXD;
  1153. err = mvneta_init2(pp);
  1154. if (err < 0) {
  1155. dev_err(&pdev->dev, "can't init eth hal\n");
  1156. return err;
  1157. }
  1158. mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
  1159. err = mvneta_port_power_up(pp, pp->phy_interface);
  1160. if (err < 0) {
  1161. dev_err(&pdev->dev, "can't power up port\n");
  1162. return err;
  1163. }
  1164. /* Call open() now as it needs to be done before runing send() */
  1165. mvneta_open(dev);
  1166. return 0;
  1167. }
  1168. /* U-Boot only functions follow here */
  1169. /* SMI / MDIO functions */
  1170. static int smi_wait_ready(struct mvneta_port *pp)
  1171. {
  1172. u32 timeout = MVNETA_SMI_TIMEOUT;
  1173. u32 smi_reg;
  1174. /* wait till the SMI is not busy */
  1175. do {
  1176. /* read smi register */
  1177. smi_reg = mvreg_read(pp, MVNETA_SMI);
  1178. if (timeout-- == 0) {
  1179. printf("Error: SMI busy timeout\n");
  1180. return -EFAULT;
  1181. }
  1182. } while (smi_reg & MVNETA_SMI_BUSY);
  1183. return 0;
  1184. }
  1185. /*
  1186. * mvneta_mdio_read - miiphy_read callback function.
  1187. *
  1188. * Returns 16bit phy register value, or 0xffff on error
  1189. */
  1190. static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
  1191. {
  1192. struct mvneta_port *pp = bus->priv;
  1193. u32 smi_reg;
  1194. u32 timeout;
  1195. /* check parameters */
  1196. if (addr > MVNETA_PHY_ADDR_MASK) {
  1197. printf("Error: Invalid PHY address %d\n", addr);
  1198. return -EFAULT;
  1199. }
  1200. if (reg > MVNETA_PHY_REG_MASK) {
  1201. printf("Err: Invalid register offset %d\n", reg);
  1202. return -EFAULT;
  1203. }
  1204. /* wait till the SMI is not busy */
  1205. if (smi_wait_ready(pp) < 0)
  1206. return -EFAULT;
  1207. /* fill the phy address and regiser offset and read opcode */
  1208. smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
  1209. | (reg << MVNETA_SMI_REG_ADDR_OFFS)
  1210. | MVNETA_SMI_OPCODE_READ;
  1211. /* write the smi register */
  1212. mvreg_write(pp, MVNETA_SMI, smi_reg);
  1213. /* wait till read value is ready */
  1214. timeout = MVNETA_SMI_TIMEOUT;
  1215. do {
  1216. /* read smi register */
  1217. smi_reg = mvreg_read(pp, MVNETA_SMI);
  1218. if (timeout-- == 0) {
  1219. printf("Err: SMI read ready timeout\n");
  1220. return -EFAULT;
  1221. }
  1222. } while (!(smi_reg & MVNETA_SMI_READ_VALID));
  1223. /* Wait for the data to update in the SMI register */
  1224. for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
  1225. ;
  1226. return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
  1227. }
  1228. /*
  1229. * mvneta_mdio_write - miiphy_write callback function.
  1230. *
  1231. * Returns 0 if write succeed, -EINVAL on bad parameters
  1232. * -ETIME on timeout
  1233. */
  1234. static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
  1235. u16 value)
  1236. {
  1237. struct mvneta_port *pp = bus->priv;
  1238. u32 smi_reg;
  1239. /* check parameters */
  1240. if (addr > MVNETA_PHY_ADDR_MASK) {
  1241. printf("Error: Invalid PHY address %d\n", addr);
  1242. return -EFAULT;
  1243. }
  1244. if (reg > MVNETA_PHY_REG_MASK) {
  1245. printf("Err: Invalid register offset %d\n", reg);
  1246. return -EFAULT;
  1247. }
  1248. /* wait till the SMI is not busy */
  1249. if (smi_wait_ready(pp) < 0)
  1250. return -EFAULT;
  1251. /* fill the phy addr and reg offset and write opcode and data */
  1252. smi_reg = value << MVNETA_SMI_DATA_OFFS;
  1253. smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
  1254. | (reg << MVNETA_SMI_REG_ADDR_OFFS);
  1255. smi_reg &= ~MVNETA_SMI_OPCODE_READ;
  1256. /* write the smi register */
  1257. mvreg_write(pp, MVNETA_SMI, smi_reg);
  1258. return 0;
  1259. }
  1260. static int mvneta_start(struct udevice *dev)
  1261. {
  1262. struct mvneta_port *pp = dev_get_priv(dev);
  1263. struct phy_device *phydev;
  1264. mvneta_port_power_up(pp, pp->phy_interface);
  1265. if (!pp->init || pp->link == 0) {
  1266. if (mvneta_port_is_fixed_link(pp)) {
  1267. u32 val;
  1268. pp->init = 1;
  1269. pp->link = 1;
  1270. mvneta_init(dev);
  1271. val = MVNETA_GMAC_FORCE_LINK_UP |
  1272. MVNETA_GMAC_IB_BYPASS_AN_EN |
  1273. MVNETA_GMAC_SET_FC_EN |
  1274. MVNETA_GMAC_ADVERT_FC_EN |
  1275. MVNETA_GMAC_SAMPLE_TX_CFG_EN;
  1276. if (pp->duplex)
  1277. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  1278. if (pp->speed == SPEED_1000)
  1279. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  1280. else if (pp->speed == SPEED_100)
  1281. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  1282. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  1283. } else {
  1284. /* Set phy address of the port */
  1285. mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
  1286. phydev = phy_connect(pp->bus, pp->phyaddr, dev,
  1287. pp->phy_interface);
  1288. if (!phydev) {
  1289. printf("phy_connect failed\n");
  1290. return -ENODEV;
  1291. }
  1292. pp->phydev = phydev;
  1293. phy_config(phydev);
  1294. phy_startup(phydev);
  1295. if (!phydev->link) {
  1296. printf("%s: No link.\n", phydev->dev->name);
  1297. return -1;
  1298. }
  1299. /* Full init on first call */
  1300. mvneta_init(dev);
  1301. pp->init = 1;
  1302. return 0;
  1303. }
  1304. }
  1305. /* Upon all following calls, this is enough */
  1306. mvneta_port_up(pp);
  1307. mvneta_port_enable(pp);
  1308. return 0;
  1309. }
  1310. static int mvneta_send(struct udevice *dev, void *packet, int length)
  1311. {
  1312. struct mvneta_port *pp = dev_get_priv(dev);
  1313. struct mvneta_tx_queue *txq = &pp->txqs[0];
  1314. struct mvneta_tx_desc *tx_desc;
  1315. int sent_desc;
  1316. u32 timeout = 0;
  1317. /* Get a descriptor for the first part of the packet */
  1318. tx_desc = mvneta_txq_next_desc_get(txq);
  1319. tx_desc->buf_phys_addr = (u32)(uintptr_t)packet;
  1320. tx_desc->data_size = length;
  1321. flush_dcache_range((ulong)packet,
  1322. (ulong)packet + ALIGN(length, PKTALIGN));
  1323. /* First and Last descriptor */
  1324. tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
  1325. mvneta_txq_pend_desc_add(pp, txq, 1);
  1326. /* Wait for packet to be sent (queue might help with speed here) */
  1327. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  1328. while (!sent_desc) {
  1329. if (timeout++ > 10000) {
  1330. printf("timeout: packet not sent\n");
  1331. return -1;
  1332. }
  1333. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  1334. }
  1335. /* txDone has increased - hw sent packet */
  1336. mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
  1337. return 0;
  1338. }
  1339. static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
  1340. {
  1341. struct mvneta_port *pp = dev_get_priv(dev);
  1342. int rx_done;
  1343. struct mvneta_rx_queue *rxq;
  1344. int rx_bytes = 0;
  1345. /* get rx queue */
  1346. rxq = mvneta_rxq_handle_get(pp, rxq_def);
  1347. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1348. if (rx_done) {
  1349. struct mvneta_rx_desc *rx_desc;
  1350. unsigned char *data;
  1351. u32 rx_status;
  1352. /*
  1353. * No cache invalidation needed here, since the desc's are
  1354. * located in a uncached memory region
  1355. */
  1356. rx_desc = mvneta_rxq_next_desc_get(rxq);
  1357. rx_status = rx_desc->status;
  1358. if (!mvneta_rxq_desc_is_first_last(rx_status) ||
  1359. (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
  1360. mvneta_rx_error(pp, rx_desc);
  1361. /* leave the descriptor untouched */
  1362. return -EIO;
  1363. }
  1364. /* 2 bytes for marvell header. 4 bytes for crc */
  1365. rx_bytes = rx_desc->data_size - 6;
  1366. /* give packet to stack - skip on first 2 bytes */
  1367. data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2;
  1368. /*
  1369. * No cache invalidation needed here, since the rx_buffer's are
  1370. * located in a uncached memory region
  1371. */
  1372. *packetp = data;
  1373. /*
  1374. * Only mark one descriptor as free
  1375. * since only one was processed
  1376. */
  1377. mvneta_rxq_desc_num_update(pp, rxq, 1, 1);
  1378. }
  1379. return rx_bytes;
  1380. }
  1381. static int mvneta_probe(struct udevice *dev)
  1382. {
  1383. struct eth_pdata *pdata = dev_get_platdata(dev);
  1384. struct mvneta_port *pp = dev_get_priv(dev);
  1385. void *blob = (void *)gd->fdt_blob;
  1386. int node = dev_of_offset(dev);
  1387. struct mii_dev *bus;
  1388. unsigned long addr;
  1389. void *bd_space;
  1390. int ret;
  1391. int fl_node;
  1392. /*
  1393. * Allocate buffer area for descs and rx_buffers. This is only
  1394. * done once for all interfaces. As only one interface can
  1395. * be active. Make this area DMA safe by disabling the D-cache
  1396. */
  1397. if (!buffer_loc.tx_descs) {
  1398. /* Align buffer area for descs and rx_buffers to 1MiB */
  1399. bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
  1400. mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE,
  1401. DCACHE_OFF);
  1402. buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
  1403. buffer_loc.rx_descs = (struct mvneta_rx_desc *)
  1404. ((phys_addr_t)bd_space +
  1405. MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc));
  1406. buffer_loc.rx_buffers = (phys_addr_t)
  1407. (bd_space +
  1408. MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc) +
  1409. MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc));
  1410. }
  1411. pp->base = (void __iomem *)pdata->iobase;
  1412. /* Configure MBUS address windows */
  1413. if (device_is_compatible(dev, "marvell,armada-3700-neta"))
  1414. mvneta_bypass_mbus_windows(pp);
  1415. else
  1416. mvneta_conf_mbus_windows(pp);
  1417. /* PHY interface is already decoded in mvneta_ofdata_to_platdata() */
  1418. pp->phy_interface = pdata->phy_interface;
  1419. /* fetch 'fixed-link' property from 'neta' node */
  1420. fl_node = fdt_subnode_offset(blob, node, "fixed-link");
  1421. if (fl_node != -FDT_ERR_NOTFOUND) {
  1422. /* set phy_addr to invalid value for fixed link */
  1423. pp->phyaddr = PHY_MAX_ADDR + 1;
  1424. pp->duplex = fdtdec_get_bool(blob, fl_node, "full-duplex");
  1425. pp->speed = fdtdec_get_int(blob, fl_node, "speed", 0);
  1426. } else {
  1427. /* Now read phyaddr from DT */
  1428. addr = fdtdec_get_int(blob, node, "phy", 0);
  1429. addr = fdt_node_offset_by_phandle(blob, addr);
  1430. pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
  1431. }
  1432. bus = mdio_alloc();
  1433. if (!bus) {
  1434. printf("Failed to allocate MDIO bus\n");
  1435. return -ENOMEM;
  1436. }
  1437. bus->read = mvneta_mdio_read;
  1438. bus->write = mvneta_mdio_write;
  1439. snprintf(bus->name, sizeof(bus->name), dev->name);
  1440. bus->priv = (void *)pp;
  1441. pp->bus = bus;
  1442. ret = mdio_register(bus);
  1443. if (ret)
  1444. return ret;
  1445. return board_network_enable(bus);
  1446. }
  1447. static void mvneta_stop(struct udevice *dev)
  1448. {
  1449. struct mvneta_port *pp = dev_get_priv(dev);
  1450. mvneta_port_down(pp);
  1451. mvneta_port_disable(pp);
  1452. }
  1453. static const struct eth_ops mvneta_ops = {
  1454. .start = mvneta_start,
  1455. .send = mvneta_send,
  1456. .recv = mvneta_recv,
  1457. .stop = mvneta_stop,
  1458. .write_hwaddr = mvneta_write_hwaddr,
  1459. };
  1460. static int mvneta_ofdata_to_platdata(struct udevice *dev)
  1461. {
  1462. struct eth_pdata *pdata = dev_get_platdata(dev);
  1463. const char *phy_mode;
  1464. pdata->iobase = devfdt_get_addr(dev);
  1465. /* Get phy-mode / phy_interface from DT */
  1466. pdata->phy_interface = -1;
  1467. phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
  1468. NULL);
  1469. if (phy_mode)
  1470. pdata->phy_interface = phy_get_interface_by_name(phy_mode);
  1471. if (pdata->phy_interface == -1) {
  1472. debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
  1473. return -EINVAL;
  1474. }
  1475. return 0;
  1476. }
  1477. static const struct udevice_id mvneta_ids[] = {
  1478. { .compatible = "marvell,armada-370-neta" },
  1479. { .compatible = "marvell,armada-xp-neta" },
  1480. { .compatible = "marvell,armada-3700-neta" },
  1481. { }
  1482. };
  1483. U_BOOT_DRIVER(mvneta) = {
  1484. .name = "mvneta",
  1485. .id = UCLASS_ETH,
  1486. .of_match = mvneta_ids,
  1487. .ofdata_to_platdata = mvneta_ofdata_to_platdata,
  1488. .probe = mvneta_probe,
  1489. .ops = &mvneta_ops,
  1490. .priv_auto_alloc_size = sizeof(struct mvneta_port),
  1491. .platdata_auto_alloc_size = sizeof(struct eth_pdata),
  1492. };