clk_rk3399.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232
  1. /*
  2. * (C) Copyright 2015 Google, Inc
  3. * (C) 2017 Theobroma Systems Design und Consulting GmbH
  4. *
  5. * SPDX-License-Identifier: GPL-2.0
  6. */
  7. #include <common.h>
  8. #include <clk-uclass.h>
  9. #include <dm.h>
  10. #include <dt-structs.h>
  11. #include <errno.h>
  12. #include <mapmem.h>
  13. #include <syscon.h>
  14. #include <bitfield.h>
  15. #include <asm/io.h>
  16. #include <asm/arch/clock.h>
  17. #include <asm/arch/cru_rk3399.h>
  18. #include <asm/arch/hardware.h>
  19. #include <dm/lists.h>
  20. #include <dt-bindings/clock/rk3399-cru.h>
  21. DECLARE_GLOBAL_DATA_PTR;
  22. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  23. struct rk3399_clk_plat {
  24. struct dtd_rockchip_rk3399_cru dtd;
  25. };
  26. struct rk3399_pmuclk_plat {
  27. struct dtd_rockchip_rk3399_pmucru dtd;
  28. };
  29. #endif
  30. struct pll_div {
  31. u32 refdiv;
  32. u32 fbdiv;
  33. u32 postdiv1;
  34. u32 postdiv2;
  35. u32 frac;
  36. };
  37. #define RATE_TO_DIV(input_rate, output_rate) \
  38. ((input_rate) / (output_rate) - 1);
  39. #define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
  40. #define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
  41. .refdiv = _refdiv,\
  42. .fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
  43. .postdiv1 = _postdiv1, .postdiv2 = _postdiv2};
  44. #if defined(CONFIG_SPL_BUILD)
  45. static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
  46. static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2, 2);
  47. #else
  48. static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 2, 2, 1);
  49. #endif
  50. static const struct pll_div apll_l_1600_cfg = PLL_DIVISORS(1600*MHz, 3, 1, 1);
  51. static const struct pll_div apll_l_600_cfg = PLL_DIVISORS(600*MHz, 1, 2, 1);
  52. static const struct pll_div *apll_l_cfgs[] = {
  53. [APLL_L_1600_MHZ] = &apll_l_1600_cfg,
  54. [APLL_L_600_MHZ] = &apll_l_600_cfg,
  55. };
  56. enum {
  57. /* PLL_CON0 */
  58. PLL_FBDIV_MASK = 0xfff,
  59. PLL_FBDIV_SHIFT = 0,
  60. /* PLL_CON1 */
  61. PLL_POSTDIV2_SHIFT = 12,
  62. PLL_POSTDIV2_MASK = 0x7 << PLL_POSTDIV2_SHIFT,
  63. PLL_POSTDIV1_SHIFT = 8,
  64. PLL_POSTDIV1_MASK = 0x7 << PLL_POSTDIV1_SHIFT,
  65. PLL_REFDIV_MASK = 0x3f,
  66. PLL_REFDIV_SHIFT = 0,
  67. /* PLL_CON2 */
  68. PLL_LOCK_STATUS_SHIFT = 31,
  69. PLL_LOCK_STATUS_MASK = 1 << PLL_LOCK_STATUS_SHIFT,
  70. PLL_FRACDIV_MASK = 0xffffff,
  71. PLL_FRACDIV_SHIFT = 0,
  72. /* PLL_CON3 */
  73. PLL_MODE_SHIFT = 8,
  74. PLL_MODE_MASK = 3 << PLL_MODE_SHIFT,
  75. PLL_MODE_SLOW = 0,
  76. PLL_MODE_NORM,
  77. PLL_MODE_DEEP,
  78. PLL_DSMPD_SHIFT = 3,
  79. PLL_DSMPD_MASK = 1 << PLL_DSMPD_SHIFT,
  80. PLL_INTEGER_MODE = 1,
  81. /* PMUCRU_CLKSEL_CON0 */
  82. PMU_PCLK_DIV_CON_MASK = 0x1f,
  83. PMU_PCLK_DIV_CON_SHIFT = 0,
  84. /* PMUCRU_CLKSEL_CON1 */
  85. SPI3_PLL_SEL_SHIFT = 7,
  86. SPI3_PLL_SEL_MASK = 1 << SPI3_PLL_SEL_SHIFT,
  87. SPI3_PLL_SEL_24M = 0,
  88. SPI3_PLL_SEL_PPLL = 1,
  89. SPI3_DIV_CON_SHIFT = 0x0,
  90. SPI3_DIV_CON_MASK = 0x7f,
  91. /* PMUCRU_CLKSEL_CON2 */
  92. I2C_DIV_CON_MASK = 0x7f,
  93. CLK_I2C8_DIV_CON_SHIFT = 8,
  94. CLK_I2C0_DIV_CON_SHIFT = 0,
  95. /* PMUCRU_CLKSEL_CON3 */
  96. CLK_I2C4_DIV_CON_SHIFT = 0,
  97. /* CLKSEL_CON0 */
  98. ACLKM_CORE_L_DIV_CON_SHIFT = 8,
  99. ACLKM_CORE_L_DIV_CON_MASK = 0x1f << ACLKM_CORE_L_DIV_CON_SHIFT,
  100. CLK_CORE_L_PLL_SEL_SHIFT = 6,
  101. CLK_CORE_L_PLL_SEL_MASK = 3 << CLK_CORE_L_PLL_SEL_SHIFT,
  102. CLK_CORE_L_PLL_SEL_ALPLL = 0x0,
  103. CLK_CORE_L_PLL_SEL_ABPLL = 0x1,
  104. CLK_CORE_L_PLL_SEL_DPLL = 0x10,
  105. CLK_CORE_L_PLL_SEL_GPLL = 0x11,
  106. CLK_CORE_L_DIV_MASK = 0x1f,
  107. CLK_CORE_L_DIV_SHIFT = 0,
  108. /* CLKSEL_CON1 */
  109. PCLK_DBG_L_DIV_SHIFT = 0x8,
  110. PCLK_DBG_L_DIV_MASK = 0x1f << PCLK_DBG_L_DIV_SHIFT,
  111. ATCLK_CORE_L_DIV_SHIFT = 0,
  112. ATCLK_CORE_L_DIV_MASK = 0x1f << ATCLK_CORE_L_DIV_SHIFT,
  113. /* CLKSEL_CON14 */
  114. PCLK_PERIHP_DIV_CON_SHIFT = 12,
  115. PCLK_PERIHP_DIV_CON_MASK = 0x7 << PCLK_PERIHP_DIV_CON_SHIFT,
  116. HCLK_PERIHP_DIV_CON_SHIFT = 8,
  117. HCLK_PERIHP_DIV_CON_MASK = 3 << HCLK_PERIHP_DIV_CON_SHIFT,
  118. ACLK_PERIHP_PLL_SEL_SHIFT = 7,
  119. ACLK_PERIHP_PLL_SEL_MASK = 1 << ACLK_PERIHP_PLL_SEL_SHIFT,
  120. ACLK_PERIHP_PLL_SEL_CPLL = 0,
  121. ACLK_PERIHP_PLL_SEL_GPLL = 1,
  122. ACLK_PERIHP_DIV_CON_SHIFT = 0,
  123. ACLK_PERIHP_DIV_CON_MASK = 0x1f,
  124. /* CLKSEL_CON21 */
  125. ACLK_EMMC_PLL_SEL_SHIFT = 7,
  126. ACLK_EMMC_PLL_SEL_MASK = 0x1 << ACLK_EMMC_PLL_SEL_SHIFT,
  127. ACLK_EMMC_PLL_SEL_GPLL = 0x1,
  128. ACLK_EMMC_DIV_CON_SHIFT = 0,
  129. ACLK_EMMC_DIV_CON_MASK = 0x1f,
  130. /* CLKSEL_CON22 */
  131. CLK_EMMC_PLL_SHIFT = 8,
  132. CLK_EMMC_PLL_MASK = 0x7 << CLK_EMMC_PLL_SHIFT,
  133. CLK_EMMC_PLL_SEL_GPLL = 0x1,
  134. CLK_EMMC_PLL_SEL_24M = 0x5,
  135. CLK_EMMC_DIV_CON_SHIFT = 0,
  136. CLK_EMMC_DIV_CON_MASK = 0x7f << CLK_EMMC_DIV_CON_SHIFT,
  137. /* CLKSEL_CON23 */
  138. PCLK_PERILP0_DIV_CON_SHIFT = 12,
  139. PCLK_PERILP0_DIV_CON_MASK = 0x7 << PCLK_PERILP0_DIV_CON_SHIFT,
  140. HCLK_PERILP0_DIV_CON_SHIFT = 8,
  141. HCLK_PERILP0_DIV_CON_MASK = 3 << HCLK_PERILP0_DIV_CON_SHIFT,
  142. ACLK_PERILP0_PLL_SEL_SHIFT = 7,
  143. ACLK_PERILP0_PLL_SEL_MASK = 1 << ACLK_PERILP0_PLL_SEL_SHIFT,
  144. ACLK_PERILP0_PLL_SEL_CPLL = 0,
  145. ACLK_PERILP0_PLL_SEL_GPLL = 1,
  146. ACLK_PERILP0_DIV_CON_SHIFT = 0,
  147. ACLK_PERILP0_DIV_CON_MASK = 0x1f,
  148. /* CLKSEL_CON25 */
  149. PCLK_PERILP1_DIV_CON_SHIFT = 8,
  150. PCLK_PERILP1_DIV_CON_MASK = 0x7 << PCLK_PERILP1_DIV_CON_SHIFT,
  151. HCLK_PERILP1_PLL_SEL_SHIFT = 7,
  152. HCLK_PERILP1_PLL_SEL_MASK = 1 << HCLK_PERILP1_PLL_SEL_SHIFT,
  153. HCLK_PERILP1_PLL_SEL_CPLL = 0,
  154. HCLK_PERILP1_PLL_SEL_GPLL = 1,
  155. HCLK_PERILP1_DIV_CON_SHIFT = 0,
  156. HCLK_PERILP1_DIV_CON_MASK = 0x1f,
  157. /* CLKSEL_CON26 */
  158. CLK_SARADC_DIV_CON_SHIFT = 8,
  159. CLK_SARADC_DIV_CON_MASK = GENMASK(15, 8),
  160. CLK_SARADC_DIV_CON_WIDTH = 8,
  161. /* CLKSEL_CON27 */
  162. CLK_TSADC_SEL_X24M = 0x0,
  163. CLK_TSADC_SEL_SHIFT = 15,
  164. CLK_TSADC_SEL_MASK = 1 << CLK_TSADC_SEL_SHIFT,
  165. CLK_TSADC_DIV_CON_SHIFT = 0,
  166. CLK_TSADC_DIV_CON_MASK = 0x3ff,
  167. /* CLKSEL_CON47 & CLKSEL_CON48 */
  168. ACLK_VOP_PLL_SEL_SHIFT = 6,
  169. ACLK_VOP_PLL_SEL_MASK = 0x3 << ACLK_VOP_PLL_SEL_SHIFT,
  170. ACLK_VOP_PLL_SEL_CPLL = 0x1,
  171. ACLK_VOP_DIV_CON_SHIFT = 0,
  172. ACLK_VOP_DIV_CON_MASK = 0x1f << ACLK_VOP_DIV_CON_SHIFT,
  173. /* CLKSEL_CON49 & CLKSEL_CON50 */
  174. DCLK_VOP_DCLK_SEL_SHIFT = 11,
  175. DCLK_VOP_DCLK_SEL_MASK = 1 << DCLK_VOP_DCLK_SEL_SHIFT,
  176. DCLK_VOP_DCLK_SEL_DIVOUT = 0,
  177. DCLK_VOP_PLL_SEL_SHIFT = 8,
  178. DCLK_VOP_PLL_SEL_MASK = 3 << DCLK_VOP_PLL_SEL_SHIFT,
  179. DCLK_VOP_PLL_SEL_VPLL = 0,
  180. DCLK_VOP_DIV_CON_MASK = 0xff,
  181. DCLK_VOP_DIV_CON_SHIFT = 0,
  182. /* CLKSEL_CON58 */
  183. CLK_SPI_PLL_SEL_WIDTH = 1,
  184. CLK_SPI_PLL_SEL_MASK = ((1 < CLK_SPI_PLL_SEL_WIDTH) - 1),
  185. CLK_SPI_PLL_SEL_CPLL = 0,
  186. CLK_SPI_PLL_SEL_GPLL = 1,
  187. CLK_SPI_PLL_DIV_CON_WIDTH = 7,
  188. CLK_SPI_PLL_DIV_CON_MASK = ((1 << CLK_SPI_PLL_DIV_CON_WIDTH) - 1),
  189. CLK_SPI5_PLL_DIV_CON_SHIFT = 8,
  190. CLK_SPI5_PLL_SEL_SHIFT = 15,
  191. /* CLKSEL_CON59 */
  192. CLK_SPI1_PLL_SEL_SHIFT = 15,
  193. CLK_SPI1_PLL_DIV_CON_SHIFT = 8,
  194. CLK_SPI0_PLL_SEL_SHIFT = 7,
  195. CLK_SPI0_PLL_DIV_CON_SHIFT = 0,
  196. /* CLKSEL_CON60 */
  197. CLK_SPI4_PLL_SEL_SHIFT = 15,
  198. CLK_SPI4_PLL_DIV_CON_SHIFT = 8,
  199. CLK_SPI2_PLL_SEL_SHIFT = 7,
  200. CLK_SPI2_PLL_DIV_CON_SHIFT = 0,
  201. /* CLKSEL_CON61 */
  202. CLK_I2C_PLL_SEL_MASK = 1,
  203. CLK_I2C_PLL_SEL_CPLL = 0,
  204. CLK_I2C_PLL_SEL_GPLL = 1,
  205. CLK_I2C5_PLL_SEL_SHIFT = 15,
  206. CLK_I2C5_DIV_CON_SHIFT = 8,
  207. CLK_I2C1_PLL_SEL_SHIFT = 7,
  208. CLK_I2C1_DIV_CON_SHIFT = 0,
  209. /* CLKSEL_CON62 */
  210. CLK_I2C6_PLL_SEL_SHIFT = 15,
  211. CLK_I2C6_DIV_CON_SHIFT = 8,
  212. CLK_I2C2_PLL_SEL_SHIFT = 7,
  213. CLK_I2C2_DIV_CON_SHIFT = 0,
  214. /* CLKSEL_CON63 */
  215. CLK_I2C7_PLL_SEL_SHIFT = 15,
  216. CLK_I2C7_DIV_CON_SHIFT = 8,
  217. CLK_I2C3_PLL_SEL_SHIFT = 7,
  218. CLK_I2C3_DIV_CON_SHIFT = 0,
  219. /* CRU_SOFTRST_CON4 */
  220. RESETN_DDR0_REQ_SHIFT = 8,
  221. RESETN_DDR0_REQ_MASK = 1 << RESETN_DDR0_REQ_SHIFT,
  222. RESETN_DDRPHY0_REQ_SHIFT = 9,
  223. RESETN_DDRPHY0_REQ_MASK = 1 << RESETN_DDRPHY0_REQ_SHIFT,
  224. RESETN_DDR1_REQ_SHIFT = 12,
  225. RESETN_DDR1_REQ_MASK = 1 << RESETN_DDR1_REQ_SHIFT,
  226. RESETN_DDRPHY1_REQ_SHIFT = 13,
  227. RESETN_DDRPHY1_REQ_MASK = 1 << RESETN_DDRPHY1_REQ_SHIFT,
  228. };
  229. #define VCO_MAX_KHZ (3200 * (MHz / KHz))
  230. #define VCO_MIN_KHZ (800 * (MHz / KHz))
  231. #define OUTPUT_MAX_KHZ (3200 * (MHz / KHz))
  232. #define OUTPUT_MIN_KHZ (16 * (MHz / KHz))
  233. /*
  234. * the div restructions of pll in integer mode, these are defined in
  235. * * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
  236. */
  237. #define PLL_DIV_MIN 16
  238. #define PLL_DIV_MAX 3200
  239. /*
  240. * How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
  241. * Formulas also embedded within the Fractional PLL Verilog model:
  242. * If DSMPD = 1 (DSM is disabled, "integer mode")
  243. * FOUTVCO = FREF / REFDIV * FBDIV
  244. * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
  245. * Where:
  246. * FOUTVCO = Fractional PLL non-divided output frequency
  247. * FOUTPOSTDIV = Fractional PLL divided output frequency
  248. * (output of second post divider)
  249. * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
  250. * REFDIV = Fractional PLL input reference clock divider
  251. * FBDIV = Integer value programmed into feedback divide
  252. *
  253. */
  254. static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div)
  255. {
  256. /* All 8 PLLs have same VCO and output frequency range restrictions. */
  257. u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
  258. u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
  259. debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, "
  260. "postdiv2=%d, vco=%u khz, output=%u khz\n",
  261. pll_con, div->fbdiv, div->refdiv, div->postdiv1,
  262. div->postdiv2, vco_khz, output_khz);
  263. assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
  264. output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
  265. div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
  266. /*
  267. * When power on or changing PLL setting,
  268. * we must force PLL into slow mode to ensure output stable clock.
  269. */
  270. rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
  271. PLL_MODE_SLOW << PLL_MODE_SHIFT);
  272. /* use integer mode */
  273. rk_clrsetreg(&pll_con[3], PLL_DSMPD_MASK,
  274. PLL_INTEGER_MODE << PLL_DSMPD_SHIFT);
  275. rk_clrsetreg(&pll_con[0], PLL_FBDIV_MASK,
  276. div->fbdiv << PLL_FBDIV_SHIFT);
  277. rk_clrsetreg(&pll_con[1],
  278. PLL_POSTDIV2_MASK | PLL_POSTDIV1_MASK |
  279. PLL_REFDIV_MASK | PLL_REFDIV_SHIFT,
  280. (div->postdiv2 << PLL_POSTDIV2_SHIFT) |
  281. (div->postdiv1 << PLL_POSTDIV1_SHIFT) |
  282. (div->refdiv << PLL_REFDIV_SHIFT));
  283. /* waiting for pll lock */
  284. while (!(readl(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT)))
  285. udelay(1);
  286. /* pll enter normal mode */
  287. rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
  288. PLL_MODE_NORM << PLL_MODE_SHIFT);
  289. }
  290. static int pll_para_config(u32 freq_hz, struct pll_div *div)
  291. {
  292. u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0;
  293. u32 postdiv1, postdiv2 = 1;
  294. u32 fref_khz;
  295. u32 diff_khz, best_diff_khz;
  296. const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16;
  297. const u32 max_postdiv1 = 7, max_postdiv2 = 7;
  298. u32 vco_khz;
  299. u32 freq_khz = freq_hz / KHz;
  300. if (!freq_hz) {
  301. printf("%s: the frequency can't be 0 Hz\n", __func__);
  302. return -1;
  303. }
  304. postdiv1 = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz);
  305. if (postdiv1 > max_postdiv1) {
  306. postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1);
  307. postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2);
  308. }
  309. vco_khz = freq_khz * postdiv1 * postdiv2;
  310. if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ ||
  311. postdiv2 > max_postdiv2) {
  312. printf("%s: Cannot find out a supported VCO"
  313. " for Frequency (%uHz).\n", __func__, freq_hz);
  314. return -1;
  315. }
  316. div->postdiv1 = postdiv1;
  317. div->postdiv2 = postdiv2;
  318. best_diff_khz = vco_khz;
  319. for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) {
  320. fref_khz = ref_khz / refdiv;
  321. fbdiv = vco_khz / fref_khz;
  322. if ((fbdiv >= max_fbdiv) || (fbdiv <= min_fbdiv))
  323. continue;
  324. diff_khz = vco_khz - fbdiv * fref_khz;
  325. if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) {
  326. fbdiv++;
  327. diff_khz = fref_khz - diff_khz;
  328. }
  329. if (diff_khz >= best_diff_khz)
  330. continue;
  331. best_diff_khz = diff_khz;
  332. div->refdiv = refdiv;
  333. div->fbdiv = fbdiv;
  334. }
  335. if (best_diff_khz > 4 * (MHz/KHz)) {
  336. printf("%s: Failed to match output frequency %u, "
  337. "difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz,
  338. best_diff_khz * KHz);
  339. return -1;
  340. }
  341. return 0;
  342. }
  343. #ifdef CONFIG_SPL_BUILD
  344. static void rkclk_init(struct rk3399_cru *cru)
  345. {
  346. u32 aclk_div;
  347. u32 hclk_div;
  348. u32 pclk_div;
  349. /*
  350. * some cru registers changed by bootrom, we'd better reset them to
  351. * reset/default values described in TRM to avoid confusion in kernel.
  352. * Please consider these three lines as a fix of bootrom bug.
  353. */
  354. rk_clrsetreg(&cru->clksel_con[12], 0xffff, 0x4101);
  355. rk_clrsetreg(&cru->clksel_con[19], 0xffff, 0x033f);
  356. rk_clrsetreg(&cru->clksel_con[56], 0x0003, 0x0003);
  357. /* configure gpll cpll */
  358. rkclk_set_pll(&cru->gpll_con[0], &gpll_init_cfg);
  359. rkclk_set_pll(&cru->cpll_con[0], &cpll_init_cfg);
  360. /* configure perihp aclk, hclk, pclk */
  361. aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
  362. assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
  363. hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
  364. assert((hclk_div + 1) * PERIHP_HCLK_HZ ==
  365. PERIHP_ACLK_HZ && (hclk_div < 0x4));
  366. pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
  367. assert((pclk_div + 1) * PERIHP_PCLK_HZ ==
  368. PERIHP_ACLK_HZ && (pclk_div < 0x7));
  369. rk_clrsetreg(&cru->clksel_con[14],
  370. PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK |
  371. ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK,
  372. pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
  373. hclk_div << HCLK_PERIHP_DIV_CON_SHIFT |
  374. ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT |
  375. aclk_div << ACLK_PERIHP_DIV_CON_SHIFT);
  376. /* configure perilp0 aclk, hclk, pclk */
  377. aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1;
  378. assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
  379. hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1;
  380. assert((hclk_div + 1) * PERILP0_HCLK_HZ ==
  381. PERILP0_ACLK_HZ && (hclk_div < 0x4));
  382. pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1;
  383. assert((pclk_div + 1) * PERILP0_PCLK_HZ ==
  384. PERILP0_ACLK_HZ && (pclk_div < 0x7));
  385. rk_clrsetreg(&cru->clksel_con[23],
  386. PCLK_PERILP0_DIV_CON_MASK | HCLK_PERILP0_DIV_CON_MASK |
  387. ACLK_PERILP0_PLL_SEL_MASK | ACLK_PERILP0_DIV_CON_MASK,
  388. pclk_div << PCLK_PERILP0_DIV_CON_SHIFT |
  389. hclk_div << HCLK_PERILP0_DIV_CON_SHIFT |
  390. ACLK_PERILP0_PLL_SEL_GPLL << ACLK_PERILP0_PLL_SEL_SHIFT |
  391. aclk_div << ACLK_PERILP0_DIV_CON_SHIFT);
  392. /* perilp1 hclk select gpll as source */
  393. hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1;
  394. assert((hclk_div + 1) * PERILP1_HCLK_HZ ==
  395. GPLL_HZ && (hclk_div < 0x1f));
  396. pclk_div = PERILP1_HCLK_HZ / PERILP1_HCLK_HZ - 1;
  397. assert((pclk_div + 1) * PERILP1_HCLK_HZ ==
  398. PERILP1_HCLK_HZ && (hclk_div < 0x7));
  399. rk_clrsetreg(&cru->clksel_con[25],
  400. PCLK_PERILP1_DIV_CON_MASK | HCLK_PERILP1_DIV_CON_MASK |
  401. HCLK_PERILP1_PLL_SEL_MASK,
  402. pclk_div << PCLK_PERILP1_DIV_CON_SHIFT |
  403. hclk_div << HCLK_PERILP1_DIV_CON_SHIFT |
  404. HCLK_PERILP1_PLL_SEL_GPLL << HCLK_PERILP1_PLL_SEL_SHIFT);
  405. }
  406. #endif
  407. void rk3399_configure_cpu(struct rk3399_cru *cru,
  408. enum apll_l_frequencies apll_l_freq)
  409. {
  410. u32 aclkm_div;
  411. u32 pclk_dbg_div;
  412. u32 atclk_div;
  413. rkclk_set_pll(&cru->apll_l_con[0], apll_l_cfgs[apll_l_freq]);
  414. aclkm_div = APLL_HZ / ACLKM_CORE_HZ - 1;
  415. assert((aclkm_div + 1) * ACLKM_CORE_HZ == APLL_HZ &&
  416. aclkm_div < 0x1f);
  417. pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ - 1;
  418. assert((pclk_dbg_div + 1) * PCLK_DBG_HZ == APLL_HZ &&
  419. pclk_dbg_div < 0x1f);
  420. atclk_div = APLL_HZ / ATCLK_CORE_HZ - 1;
  421. assert((atclk_div + 1) * ATCLK_CORE_HZ == APLL_HZ &&
  422. atclk_div < 0x1f);
  423. rk_clrsetreg(&cru->clksel_con[0],
  424. ACLKM_CORE_L_DIV_CON_MASK | CLK_CORE_L_PLL_SEL_MASK |
  425. CLK_CORE_L_DIV_MASK,
  426. aclkm_div << ACLKM_CORE_L_DIV_CON_SHIFT |
  427. CLK_CORE_L_PLL_SEL_ALPLL << CLK_CORE_L_PLL_SEL_SHIFT |
  428. 0 << CLK_CORE_L_DIV_SHIFT);
  429. rk_clrsetreg(&cru->clksel_con[1],
  430. PCLK_DBG_L_DIV_MASK | ATCLK_CORE_L_DIV_MASK,
  431. pclk_dbg_div << PCLK_DBG_L_DIV_SHIFT |
  432. atclk_div << ATCLK_CORE_L_DIV_SHIFT);
  433. }
  434. #define I2C_CLK_REG_MASK(bus) \
  435. (I2C_DIV_CON_MASK << \
  436. CLK_I2C ##bus## _DIV_CON_SHIFT | \
  437. CLK_I2C_PLL_SEL_MASK << \
  438. CLK_I2C ##bus## _PLL_SEL_SHIFT)
  439. #define I2C_CLK_REG_VALUE(bus, clk_div) \
  440. ((clk_div - 1) << \
  441. CLK_I2C ##bus## _DIV_CON_SHIFT | \
  442. CLK_I2C_PLL_SEL_GPLL << \
  443. CLK_I2C ##bus## _PLL_SEL_SHIFT)
  444. #define I2C_CLK_DIV_VALUE(con, bus) \
  445. (con >> CLK_I2C ##bus## _DIV_CON_SHIFT) & \
  446. I2C_DIV_CON_MASK;
  447. #define I2C_PMUCLK_REG_MASK(bus) \
  448. (I2C_DIV_CON_MASK << \
  449. CLK_I2C ##bus## _DIV_CON_SHIFT)
  450. #define I2C_PMUCLK_REG_VALUE(bus, clk_div) \
  451. ((clk_div - 1) << \
  452. CLK_I2C ##bus## _DIV_CON_SHIFT)
  453. static ulong rk3399_i2c_get_clk(struct rk3399_cru *cru, ulong clk_id)
  454. {
  455. u32 div, con;
  456. switch (clk_id) {
  457. case SCLK_I2C1:
  458. con = readl(&cru->clksel_con[61]);
  459. div = I2C_CLK_DIV_VALUE(con, 1);
  460. break;
  461. case SCLK_I2C2:
  462. con = readl(&cru->clksel_con[62]);
  463. div = I2C_CLK_DIV_VALUE(con, 2);
  464. break;
  465. case SCLK_I2C3:
  466. con = readl(&cru->clksel_con[63]);
  467. div = I2C_CLK_DIV_VALUE(con, 3);
  468. break;
  469. case SCLK_I2C5:
  470. con = readl(&cru->clksel_con[61]);
  471. div = I2C_CLK_DIV_VALUE(con, 5);
  472. break;
  473. case SCLK_I2C6:
  474. con = readl(&cru->clksel_con[62]);
  475. div = I2C_CLK_DIV_VALUE(con, 6);
  476. break;
  477. case SCLK_I2C7:
  478. con = readl(&cru->clksel_con[63]);
  479. div = I2C_CLK_DIV_VALUE(con, 7);
  480. break;
  481. default:
  482. printf("do not support this i2c bus\n");
  483. return -EINVAL;
  484. }
  485. return DIV_TO_RATE(GPLL_HZ, div);
  486. }
  487. static ulong rk3399_i2c_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
  488. {
  489. int src_clk_div;
  490. /* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll*/
  491. src_clk_div = GPLL_HZ / hz;
  492. assert(src_clk_div - 1 < 127);
  493. switch (clk_id) {
  494. case SCLK_I2C1:
  495. rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(1),
  496. I2C_CLK_REG_VALUE(1, src_clk_div));
  497. break;
  498. case SCLK_I2C2:
  499. rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(2),
  500. I2C_CLK_REG_VALUE(2, src_clk_div));
  501. break;
  502. case SCLK_I2C3:
  503. rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(3),
  504. I2C_CLK_REG_VALUE(3, src_clk_div));
  505. break;
  506. case SCLK_I2C5:
  507. rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(5),
  508. I2C_CLK_REG_VALUE(5, src_clk_div));
  509. break;
  510. case SCLK_I2C6:
  511. rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(6),
  512. I2C_CLK_REG_VALUE(6, src_clk_div));
  513. break;
  514. case SCLK_I2C7:
  515. rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(7),
  516. I2C_CLK_REG_VALUE(7, src_clk_div));
  517. break;
  518. default:
  519. printf("do not support this i2c bus\n");
  520. return -EINVAL;
  521. }
  522. return rk3399_i2c_get_clk(cru, clk_id);
  523. }
  524. /*
  525. * RK3399 SPI clocks have a common divider-width (7 bits) and a single bit
  526. * to select either CPLL or GPLL as the clock-parent. The location within
  527. * the enclosing CLKSEL_CON (i.e. div_shift and sel_shift) are variable.
  528. */
  529. struct spi_clkreg {
  530. uint8_t reg; /* CLKSEL_CON[reg] register in CRU */
  531. uint8_t div_shift;
  532. uint8_t sel_shift;
  533. };
  534. /*
  535. * The entries are numbered relative to their offset from SCLK_SPI0.
  536. *
  537. * Note that SCLK_SPI3 (which is configured via PMUCRU and requires different
  538. * logic is not supported).
  539. */
  540. static const struct spi_clkreg spi_clkregs[] = {
  541. [0] = { .reg = 59,
  542. .div_shift = CLK_SPI0_PLL_DIV_CON_SHIFT,
  543. .sel_shift = CLK_SPI0_PLL_SEL_SHIFT, },
  544. [1] = { .reg = 59,
  545. .div_shift = CLK_SPI1_PLL_DIV_CON_SHIFT,
  546. .sel_shift = CLK_SPI1_PLL_SEL_SHIFT, },
  547. [2] = { .reg = 60,
  548. .div_shift = CLK_SPI2_PLL_DIV_CON_SHIFT,
  549. .sel_shift = CLK_SPI2_PLL_SEL_SHIFT, },
  550. [3] = { .reg = 60,
  551. .div_shift = CLK_SPI4_PLL_DIV_CON_SHIFT,
  552. .sel_shift = CLK_SPI4_PLL_SEL_SHIFT, },
  553. [4] = { .reg = 58,
  554. .div_shift = CLK_SPI5_PLL_DIV_CON_SHIFT,
  555. .sel_shift = CLK_SPI5_PLL_SEL_SHIFT, },
  556. };
  557. static inline u32 extract_bits(u32 val, unsigned width, unsigned shift)
  558. {
  559. return (val >> shift) & ((1 << width) - 1);
  560. }
  561. static ulong rk3399_spi_get_clk(struct rk3399_cru *cru, ulong clk_id)
  562. {
  563. const struct spi_clkreg *spiclk = NULL;
  564. u32 div, val;
  565. switch (clk_id) {
  566. case SCLK_SPI0 ... SCLK_SPI5:
  567. spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
  568. break;
  569. default:
  570. pr_err("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
  571. return -EINVAL;
  572. }
  573. val = readl(&cru->clksel_con[spiclk->reg]);
  574. div = extract_bits(val, CLK_SPI_PLL_DIV_CON_WIDTH, spiclk->div_shift);
  575. return DIV_TO_RATE(GPLL_HZ, div);
  576. }
  577. static ulong rk3399_spi_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz)
  578. {
  579. const struct spi_clkreg *spiclk = NULL;
  580. int src_clk_div;
  581. src_clk_div = DIV_ROUND_UP(GPLL_HZ, hz) - 1;
  582. assert(src_clk_div < 128);
  583. switch (clk_id) {
  584. case SCLK_SPI1 ... SCLK_SPI5:
  585. spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
  586. break;
  587. default:
  588. pr_err("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
  589. return -EINVAL;
  590. }
  591. rk_clrsetreg(&cru->clksel_con[spiclk->reg],
  592. ((CLK_SPI_PLL_DIV_CON_MASK << spiclk->div_shift) |
  593. (CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)),
  594. ((src_clk_div << spiclk->div_shift) |
  595. (CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)));
  596. return rk3399_spi_get_clk(cru, clk_id);
  597. }
  598. static ulong rk3399_vop_set_clk(struct rk3399_cru *cru, ulong clk_id, u32 hz)
  599. {
  600. struct pll_div vpll_config = {0};
  601. int aclk_vop = 198*MHz;
  602. void *aclkreg_addr, *dclkreg_addr;
  603. u32 div;
  604. switch (clk_id) {
  605. case DCLK_VOP0:
  606. aclkreg_addr = &cru->clksel_con[47];
  607. dclkreg_addr = &cru->clksel_con[49];
  608. break;
  609. case DCLK_VOP1:
  610. aclkreg_addr = &cru->clksel_con[48];
  611. dclkreg_addr = &cru->clksel_con[50];
  612. break;
  613. default:
  614. return -EINVAL;
  615. }
  616. /* vop aclk source clk: cpll */
  617. div = CPLL_HZ / aclk_vop;
  618. assert(div - 1 < 32);
  619. rk_clrsetreg(aclkreg_addr,
  620. ACLK_VOP_PLL_SEL_MASK | ACLK_VOP_DIV_CON_MASK,
  621. ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT |
  622. (div - 1) << ACLK_VOP_DIV_CON_SHIFT);
  623. /* vop dclk source from vpll, and equals to vpll(means div == 1) */
  624. if (pll_para_config(hz, &vpll_config))
  625. return -1;
  626. rkclk_set_pll(&cru->vpll_con[0], &vpll_config);
  627. rk_clrsetreg(dclkreg_addr,
  628. DCLK_VOP_DCLK_SEL_MASK | DCLK_VOP_PLL_SEL_MASK|
  629. DCLK_VOP_DIV_CON_MASK,
  630. DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT |
  631. DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT |
  632. (1 - 1) << DCLK_VOP_DIV_CON_SHIFT);
  633. return hz;
  634. }
  635. static ulong rk3399_mmc_get_clk(struct rk3399_cru *cru, uint clk_id)
  636. {
  637. u32 div, con;
  638. switch (clk_id) {
  639. case HCLK_SDMMC:
  640. case SCLK_SDMMC:
  641. con = readl(&cru->clksel_con[16]);
  642. /* dwmmc controller have internal div 2 */
  643. div = 2;
  644. break;
  645. case SCLK_EMMC:
  646. con = readl(&cru->clksel_con[21]);
  647. div = 1;
  648. break;
  649. default:
  650. return -EINVAL;
  651. }
  652. div *= (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT;
  653. if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT
  654. == CLK_EMMC_PLL_SEL_24M)
  655. return DIV_TO_RATE(OSC_HZ, div);
  656. else
  657. return DIV_TO_RATE(GPLL_HZ, div);
  658. }
  659. static ulong rk3399_mmc_set_clk(struct rk3399_cru *cru,
  660. ulong clk_id, ulong set_rate)
  661. {
  662. int src_clk_div;
  663. int aclk_emmc = 198*MHz;
  664. switch (clk_id) {
  665. case HCLK_SDMMC:
  666. case SCLK_SDMMC:
  667. /* Select clk_sdmmc source from GPLL by default */
  668. /* mmc clock defaulg div 2 internal, provide double in cru */
  669. src_clk_div = DIV_ROUND_UP(GPLL_HZ / 2, set_rate);
  670. if (src_clk_div > 128) {
  671. /* use 24MHz source for 400KHz clock */
  672. src_clk_div = DIV_ROUND_UP(OSC_HZ / 2, set_rate);
  673. assert(src_clk_div - 1 < 128);
  674. rk_clrsetreg(&cru->clksel_con[16],
  675. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  676. CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT |
  677. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  678. } else {
  679. rk_clrsetreg(&cru->clksel_con[16],
  680. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  681. CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
  682. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  683. }
  684. break;
  685. case SCLK_EMMC:
  686. /* Select aclk_emmc source from GPLL */
  687. src_clk_div = DIV_ROUND_UP(GPLL_HZ , aclk_emmc);
  688. assert(src_clk_div - 1 < 32);
  689. rk_clrsetreg(&cru->clksel_con[21],
  690. ACLK_EMMC_PLL_SEL_MASK | ACLK_EMMC_DIV_CON_MASK,
  691. ACLK_EMMC_PLL_SEL_GPLL << ACLK_EMMC_PLL_SEL_SHIFT |
  692. (src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT);
  693. /* Select clk_emmc source from GPLL too */
  694. src_clk_div = DIV_ROUND_UP(GPLL_HZ, set_rate);
  695. assert(src_clk_div - 1 < 128);
  696. rk_clrsetreg(&cru->clksel_con[22],
  697. CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
  698. CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
  699. (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
  700. break;
  701. default:
  702. return -EINVAL;
  703. }
  704. return rk3399_mmc_get_clk(cru, clk_id);
  705. }
  706. #define PMUSGRF_DDR_RGN_CON16 0xff330040
  707. static ulong rk3399_ddr_set_clk(struct rk3399_cru *cru,
  708. ulong set_rate)
  709. {
  710. struct pll_div dpll_cfg;
  711. /* IC ECO bug, need to set this register */
  712. writel(0xc000c000, PMUSGRF_DDR_RGN_CON16);
  713. /* clk_ddrc == DPLL = 24MHz / refdiv * fbdiv / postdiv1 / postdiv2 */
  714. switch (set_rate) {
  715. case 200*MHz:
  716. dpll_cfg = (struct pll_div)
  717. {.refdiv = 1, .fbdiv = 50, .postdiv1 = 6, .postdiv2 = 1};
  718. break;
  719. case 300*MHz:
  720. dpll_cfg = (struct pll_div)
  721. {.refdiv = 2, .fbdiv = 100, .postdiv1 = 4, .postdiv2 = 1};
  722. break;
  723. case 666*MHz:
  724. dpll_cfg = (struct pll_div)
  725. {.refdiv = 2, .fbdiv = 111, .postdiv1 = 2, .postdiv2 = 1};
  726. break;
  727. case 800*MHz:
  728. dpll_cfg = (struct pll_div)
  729. {.refdiv = 1, .fbdiv = 100, .postdiv1 = 3, .postdiv2 = 1};
  730. break;
  731. case 933*MHz:
  732. dpll_cfg = (struct pll_div)
  733. {.refdiv = 1, .fbdiv = 116, .postdiv1 = 3, .postdiv2 = 1};
  734. break;
  735. default:
  736. pr_err("Unsupported SDRAM frequency!,%ld\n", set_rate);
  737. }
  738. rkclk_set_pll(&cru->dpll_con[0], &dpll_cfg);
  739. return set_rate;
  740. }
  741. static ulong rk3399_saradc_get_clk(struct rk3399_cru *cru)
  742. {
  743. u32 div, val;
  744. val = readl(&cru->clksel_con[26]);
  745. div = bitfield_extract(val, CLK_SARADC_DIV_CON_SHIFT,
  746. CLK_SARADC_DIV_CON_WIDTH);
  747. return DIV_TO_RATE(OSC_HZ, div);
  748. }
  749. static ulong rk3399_saradc_set_clk(struct rk3399_cru *cru, uint hz)
  750. {
  751. int src_clk_div;
  752. src_clk_div = DIV_ROUND_UP(OSC_HZ, hz) - 1;
  753. assert(src_clk_div < 128);
  754. rk_clrsetreg(&cru->clksel_con[26],
  755. CLK_SARADC_DIV_CON_MASK,
  756. src_clk_div << CLK_SARADC_DIV_CON_SHIFT);
  757. return rk3399_saradc_get_clk(cru);
  758. }
  759. static ulong rk3399_clk_get_rate(struct clk *clk)
  760. {
  761. struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
  762. ulong rate = 0;
  763. switch (clk->id) {
  764. case 0 ... 63:
  765. return 0;
  766. case HCLK_SDMMC:
  767. case SCLK_SDMMC:
  768. case SCLK_EMMC:
  769. rate = rk3399_mmc_get_clk(priv->cru, clk->id);
  770. break;
  771. case SCLK_I2C1:
  772. case SCLK_I2C2:
  773. case SCLK_I2C3:
  774. case SCLK_I2C5:
  775. case SCLK_I2C6:
  776. case SCLK_I2C7:
  777. rate = rk3399_i2c_get_clk(priv->cru, clk->id);
  778. break;
  779. case SCLK_SPI0...SCLK_SPI5:
  780. rate = rk3399_spi_get_clk(priv->cru, clk->id);
  781. break;
  782. case SCLK_UART0:
  783. case SCLK_UART2:
  784. return 24000000;
  785. break;
  786. case PCLK_HDMI_CTRL:
  787. break;
  788. case DCLK_VOP0:
  789. case DCLK_VOP1:
  790. break;
  791. case PCLK_EFUSE1024NS:
  792. break;
  793. case SCLK_SARADC:
  794. rate = rk3399_saradc_get_clk(priv->cru);
  795. break;
  796. default:
  797. return -ENOENT;
  798. }
  799. return rate;
  800. }
  801. static ulong rk3399_clk_set_rate(struct clk *clk, ulong rate)
  802. {
  803. struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
  804. ulong ret = 0;
  805. switch (clk->id) {
  806. case 0 ... 63:
  807. return 0;
  808. case HCLK_SDMMC:
  809. case SCLK_SDMMC:
  810. case SCLK_EMMC:
  811. ret = rk3399_mmc_set_clk(priv->cru, clk->id, rate);
  812. break;
  813. case SCLK_MAC:
  814. /* nothing to do, as this is an external clock */
  815. ret = rate;
  816. break;
  817. case SCLK_I2C1:
  818. case SCLK_I2C2:
  819. case SCLK_I2C3:
  820. case SCLK_I2C5:
  821. case SCLK_I2C6:
  822. case SCLK_I2C7:
  823. ret = rk3399_i2c_set_clk(priv->cru, clk->id, rate);
  824. break;
  825. case SCLK_SPI0...SCLK_SPI5:
  826. ret = rk3399_spi_set_clk(priv->cru, clk->id, rate);
  827. break;
  828. case PCLK_HDMI_CTRL:
  829. case PCLK_VIO_GRF:
  830. /* the PCLK gates for video are enabled by default */
  831. break;
  832. case DCLK_VOP0:
  833. case DCLK_VOP1:
  834. ret = rk3399_vop_set_clk(priv->cru, clk->id, rate);
  835. break;
  836. case SCLK_DDRCLK:
  837. ret = rk3399_ddr_set_clk(priv->cru, rate);
  838. break;
  839. case PCLK_EFUSE1024NS:
  840. break;
  841. case SCLK_SARADC:
  842. ret = rk3399_saradc_set_clk(priv->cru, rate);
  843. break;
  844. default:
  845. return -ENOENT;
  846. }
  847. return ret;
  848. }
  849. static int rk3399_clk_enable(struct clk *clk)
  850. {
  851. switch (clk->id) {
  852. case HCLK_HOST0:
  853. case HCLK_HOST0_ARB:
  854. case HCLK_HOST1:
  855. case HCLK_HOST1_ARB:
  856. return 0;
  857. }
  858. debug("%s: unsupported clk %ld\n", __func__, clk->id);
  859. return -ENOENT;
  860. }
  861. static struct clk_ops rk3399_clk_ops = {
  862. .get_rate = rk3399_clk_get_rate,
  863. .set_rate = rk3399_clk_set_rate,
  864. .enable = rk3399_clk_enable,
  865. };
  866. static int rk3399_clk_probe(struct udevice *dev)
  867. {
  868. #ifdef CONFIG_SPL_BUILD
  869. struct rk3399_clk_priv *priv = dev_get_priv(dev);
  870. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  871. struct rk3399_clk_plat *plat = dev_get_platdata(dev);
  872. priv->cru = map_sysmem(plat->dtd.reg[0], plat->dtd.reg[1]);
  873. #endif
  874. rkclk_init(priv->cru);
  875. #endif
  876. return 0;
  877. }
  878. static int rk3399_clk_ofdata_to_platdata(struct udevice *dev)
  879. {
  880. #if !CONFIG_IS_ENABLED(OF_PLATDATA)
  881. struct rk3399_clk_priv *priv = dev_get_priv(dev);
  882. priv->cru = dev_read_addr_ptr(dev);
  883. #endif
  884. return 0;
  885. }
  886. static int rk3399_clk_bind(struct udevice *dev)
  887. {
  888. int ret;
  889. /* The reset driver does not have a device node, so bind it here */
  890. ret = device_bind_driver(gd->dm_root, "rk3399_sysreset", "reset", &dev);
  891. if (ret)
  892. printf("Warning: No RK3399 reset driver: ret=%d\n", ret);
  893. return 0;
  894. }
  895. static const struct udevice_id rk3399_clk_ids[] = {
  896. { .compatible = "rockchip,rk3399-cru" },
  897. { }
  898. };
  899. U_BOOT_DRIVER(clk_rk3399) = {
  900. .name = "rockchip_rk3399_cru",
  901. .id = UCLASS_CLK,
  902. .of_match = rk3399_clk_ids,
  903. .priv_auto_alloc_size = sizeof(struct rk3399_clk_priv),
  904. .ofdata_to_platdata = rk3399_clk_ofdata_to_platdata,
  905. .ops = &rk3399_clk_ops,
  906. .bind = rk3399_clk_bind,
  907. .probe = rk3399_clk_probe,
  908. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  909. .platdata_auto_alloc_size = sizeof(struct rk3399_clk_plat),
  910. #endif
  911. };
  912. static ulong rk3399_i2c_get_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id)
  913. {
  914. u32 div, con;
  915. switch (clk_id) {
  916. case SCLK_I2C0_PMU:
  917. con = readl(&pmucru->pmucru_clksel[2]);
  918. div = I2C_CLK_DIV_VALUE(con, 0);
  919. break;
  920. case SCLK_I2C4_PMU:
  921. con = readl(&pmucru->pmucru_clksel[3]);
  922. div = I2C_CLK_DIV_VALUE(con, 4);
  923. break;
  924. case SCLK_I2C8_PMU:
  925. con = readl(&pmucru->pmucru_clksel[2]);
  926. div = I2C_CLK_DIV_VALUE(con, 8);
  927. break;
  928. default:
  929. printf("do not support this i2c bus\n");
  930. return -EINVAL;
  931. }
  932. return DIV_TO_RATE(PPLL_HZ, div);
  933. }
  934. static ulong rk3399_i2c_set_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id,
  935. uint hz)
  936. {
  937. int src_clk_div;
  938. src_clk_div = PPLL_HZ / hz;
  939. assert(src_clk_div - 1 < 127);
  940. switch (clk_id) {
  941. case SCLK_I2C0_PMU:
  942. rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(0),
  943. I2C_PMUCLK_REG_VALUE(0, src_clk_div));
  944. break;
  945. case SCLK_I2C4_PMU:
  946. rk_clrsetreg(&pmucru->pmucru_clksel[3], I2C_PMUCLK_REG_MASK(4),
  947. I2C_PMUCLK_REG_VALUE(4, src_clk_div));
  948. break;
  949. case SCLK_I2C8_PMU:
  950. rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(8),
  951. I2C_PMUCLK_REG_VALUE(8, src_clk_div));
  952. break;
  953. default:
  954. printf("do not support this i2c bus\n");
  955. return -EINVAL;
  956. }
  957. return DIV_TO_RATE(PPLL_HZ, src_clk_div);
  958. }
  959. static ulong rk3399_pwm_get_clk(struct rk3399_pmucru *pmucru)
  960. {
  961. u32 div, con;
  962. /* PWM closk rate is same as pclk_pmu */
  963. con = readl(&pmucru->pmucru_clksel[0]);
  964. div = con & PMU_PCLK_DIV_CON_MASK;
  965. return DIV_TO_RATE(PPLL_HZ, div);
  966. }
  967. static ulong rk3399_pmuclk_get_rate(struct clk *clk)
  968. {
  969. struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
  970. ulong rate = 0;
  971. switch (clk->id) {
  972. case PCLK_RKPWM_PMU:
  973. rate = rk3399_pwm_get_clk(priv->pmucru);
  974. break;
  975. case SCLK_I2C0_PMU:
  976. case SCLK_I2C4_PMU:
  977. case SCLK_I2C8_PMU:
  978. rate = rk3399_i2c_get_pmuclk(priv->pmucru, clk->id);
  979. break;
  980. default:
  981. return -ENOENT;
  982. }
  983. return rate;
  984. }
  985. static ulong rk3399_pmuclk_set_rate(struct clk *clk, ulong rate)
  986. {
  987. struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
  988. ulong ret = 0;
  989. switch (clk->id) {
  990. case SCLK_I2C0_PMU:
  991. case SCLK_I2C4_PMU:
  992. case SCLK_I2C8_PMU:
  993. ret = rk3399_i2c_set_pmuclk(priv->pmucru, clk->id, rate);
  994. break;
  995. default:
  996. return -ENOENT;
  997. }
  998. return ret;
  999. }
  1000. static struct clk_ops rk3399_pmuclk_ops = {
  1001. .get_rate = rk3399_pmuclk_get_rate,
  1002. .set_rate = rk3399_pmuclk_set_rate,
  1003. };
  1004. #ifndef CONFIG_SPL_BUILD
  1005. static void pmuclk_init(struct rk3399_pmucru *pmucru)
  1006. {
  1007. u32 pclk_div;
  1008. /* configure pmu pll(ppll) */
  1009. rkclk_set_pll(&pmucru->ppll_con[0], &ppll_init_cfg);
  1010. /* configure pmu pclk */
  1011. pclk_div = PPLL_HZ / PMU_PCLK_HZ - 1;
  1012. rk_clrsetreg(&pmucru->pmucru_clksel[0],
  1013. PMU_PCLK_DIV_CON_MASK,
  1014. pclk_div << PMU_PCLK_DIV_CON_SHIFT);
  1015. }
  1016. #endif
  1017. static int rk3399_pmuclk_probe(struct udevice *dev)
  1018. {
  1019. #if CONFIG_IS_ENABLED(OF_PLATDATA) || !defined(CONFIG_SPL_BUILD)
  1020. struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
  1021. #endif
  1022. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  1023. struct rk3399_pmuclk_plat *plat = dev_get_platdata(dev);
  1024. priv->pmucru = map_sysmem(plat->dtd.reg[0], plat->dtd.reg[1]);
  1025. #endif
  1026. #ifndef CONFIG_SPL_BUILD
  1027. pmuclk_init(priv->pmucru);
  1028. #endif
  1029. return 0;
  1030. }
  1031. static int rk3399_pmuclk_ofdata_to_platdata(struct udevice *dev)
  1032. {
  1033. #if !CONFIG_IS_ENABLED(OF_PLATDATA)
  1034. struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
  1035. priv->pmucru = dev_read_addr_ptr(dev);
  1036. #endif
  1037. return 0;
  1038. }
  1039. static const struct udevice_id rk3399_pmuclk_ids[] = {
  1040. { .compatible = "rockchip,rk3399-pmucru" },
  1041. { }
  1042. };
  1043. U_BOOT_DRIVER(rockchip_rk3399_pmuclk) = {
  1044. .name = "rockchip_rk3399_pmucru",
  1045. .id = UCLASS_CLK,
  1046. .of_match = rk3399_pmuclk_ids,
  1047. .priv_auto_alloc_size = sizeof(struct rk3399_pmuclk_priv),
  1048. .ofdata_to_platdata = rk3399_pmuclk_ofdata_to_platdata,
  1049. .ops = &rk3399_pmuclk_ops,
  1050. .probe = rk3399_pmuclk_probe,
  1051. #if CONFIG_IS_ENABLED(OF_PLATDATA)
  1052. .platdata_auto_alloc_size = sizeof(struct rk3399_pmuclk_plat),
  1053. #endif
  1054. };